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A B S T R A C T

Globally, flooding is the leading cause of natural disaster related deaths, especially in Bangladesh where ap-
proximately one third of national area gets flooded annually by overflowing rivers during the monsoon season,
which drastically affects paddy rice agriculture and food security. However, existing studies on the pattern of
floods and their impact on agriculture in Bangladesh are limited. Here we examined the spatiotemporal pattern
of floods for the country during 2014–2018 using all the available Sentinel-1 Synthetic Aperture Radar (SAR)
images and the Google Earth Engine (GEE) platform. We also identified the flood-affected paddy rice fields by
integrating the flooding areas and remote sensing-based paddy rice planting areas. Our results indicate that
flooding is frequent in northeastern Bangladesh and along the three major rivers, the Ganges, Brahmaputra, and
Meghna. Between 2014 and 2018, the flood-affected paddy rice areas accounted for 1.61–18.17% of the total
paddy rice area. The satellite-based detection of floods and flood-affected paddy rice fields advance our un-
derstanding of the annual dynamics of flooding in Bangladesh, which is essential for adaptation and mitigation
strategies where severe annual floods threaten human lives, properties, and agricultural production.

1. Introduction

It is estimated that nearly one billion people live in flood-prone
areas, and this number is predicted to double by 2050 due to erratic
precipitation events and rapid population growth (UNU, 2018). Floods
caused the loss of 6.8 million human lives in the 20th century globally,
and a recent study showed that floods affected 2.3 billion people be-
tween 1995 and 2015 (Wahlstrom and Guha-Sapir, 2015), marking
flood as the most deadly natural disaster (Doocy et al., 2013). In the
context of climate change, the frequency and severity of flooding are
increasing at an alarming rate, with a notable four-fold increase in Asia
between 1982 and 2006 (Adikari and Yoshitani, 2009). Knowing the
spatial extent and frequency of floods is an asset to government and
disaster relief agencies and is necessary for delivering quick and effi-
cient support to the people affected by floods. The catastrophic impacts
of floods on the people and agriculture can be reduced with the

identification of frequent flood-prone areas. Bangladesh is the fourth
largest rice-producing country in the world (Bangladesh, 2019). How-
ever, food security is still a concern for this nation (Maclean et al.,
2013), as local rice production is hampered by climate-induced natural
hazards including flood, droughts, and cyclones. Among these disasters,
flooding is the most common and substantially affects rice production
in Bangladesh. Thus, the identification of frequently flooded areas and
flood-affected rice paddies is essential for mitigating flood events, re-
ducing property damage, and ensuring food security for Bangladesh.

Flooding is very common for low-lying Bangladesh (Islam et al.,
2010). The country is comprised of flood plains along three major
rivers: the Brahmaputra, Meghna, and Ganges. Flooding occurs along
these three major rivers and their tributaries nearly every year during
the monsoon season between June and September. Annually, almost
one-third of Bangladesh is flooded by overflowing rivers induced by
excess monsoon rains (Mirza, 2002). Bangladesh is densely populated,
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and floods affect a vast number of people. Periodic flooding plays a
critical role in maintaining the flora and fauna along the rivers and
lakes (Huang et al., 2014). Floods enhance the fertility of the soil to
supply the necessary nutrients in the form of sediments carried in the
flood water. If effectively stored, flood waters can also be used for long
term water supply. However, floods severely damage property, build-
ings, roads, standing crops, and are deadly to livestock and humans.
Thus, monitoring of flooding events is necessary. Disaster relief orga-
nizations are required to respond quickly, and near-real time flood
maps are needed for relief operations. Additionally, maps of flood dy-
namics, frequency, and extent are essential for regional planning and
policymaking for flood mitigation and adaptation and designing flood
protection infrastructure.

The river gauge data and model simulations can predict the varia-
tion of flooded area at the country scale, but it is unable to provide the
accurate spatial extent of flooded areas (Huang et al., 2014). Unlike the
water level-based flood maps, the satellite-based flood maps provide
the spatial distribution and extent of floods in various spatial resolu-
tions over time and in near real time, and they can track frequently
flooded regions with high efficiency and accuracy. Field-based surveys
of flooded area are challenging and unfeasible for large areas, whereas
satellite observation is a realistic choice for near-real time flood mon-
itoring. Two types of satellite observations are available for monitoring
flooded areas: optical imagery and Synthetic Aperture Radar (SAR)
imagery. Data from a number of optical sensors, such as the Moderate
Resolution Imaging Spectroradiometer (MODIS), Advanced Very High
Resolution Radiometer (AVHRR), and Landsat, have been used to de-
rive flood maps (Islam et al., 2010; Qi et al., 2009; Sheng et al., 2001).
However, passive optical sensors are dependent on the solar reflectance
and are unable to capture the earth surface during the cloudy days. The
active sensor SAR is capable of collecting data through the cloud cover
and is suitable for flood monitoring (Clement et al., 2018; Long et al.,
2014; Matgen et al., 2011), and is especially advantageous in areas with
persistent cloud cover and a rainy monsoon season. Flooded areas
generate a low backscatter signal, and water surfaces appear to be very
dark in SAR images, which makes them distinguishable from the other
land cover classes like vegetation, agricultural land, bare land, or built-
up areas. Some challenges remain when using SAR for flood detection
(Notti et al., 2018). For instance, the temporary roughness of water
surface, caused by the wind or heavy rainfall during the key flooding
period, may complicate the detection of some flooded areas (Brisco
et al., 2009); the radar shadow present in the SAR images are dark and
can be misclassified as a flood water (Mason et al., 2010); and the
double-bounce backscatter signal and radar shadows produced from
high densities of buildings in urban areas hampers the correct identi-
fication of flooded areas. Nevertheless, the ability of SAR to collect data
through dense cloud clover during the rainy season and the abundant
availability of Sentinel-1 data makes SAR a key tool in flood mapping
and monitoring.

Several SAR-based flood detection techniques have been proposed
(Tsyganskaya et al., 2018), which primarily uses a single method or
with the combination of multiple methods. These include histogram
thresholding or clustering (Martinis et al., 2009), fuzzy classification
(Martinis et al., 2018; Twele et al., 2016), region growing (Martinis
et al., 2015; Mason et al., 2012), and texture analysis (Ouled Sghaier
et al., 2018; Pradhan et al., 2014; Senthilnath et al., 2013). Most of
these techniques use an image from a single date to detect flooding
events. The multi-temporal change detection methods use a time series
of images to detect the differences in pre-flood and post-flood land
cover (Li et al., 2018; Long et al., 2014). The land cover difference
image is combined with other techniques such as histogram thresh-
olding or image segmentation to identify flooded areas (Clement et al.,
2018). This method yields higher accuracy compared to a single image-
based method. Some methods use high resolution elevation maps to
detect floods (Manfreda et al., 2011; Sanders, 2007). However, eleva-
tion-based maps are not effective in the low-lying regions such as

Bangladesh. Previously, a combination of optical image (Landsat 8) and
SAR (COSMO-SkyMed) images were used to map floods using support
vector machine classifiers in China (Tong et al., 2018). In an amalga-
mated method, the combination of texture analysis with the fuzzy
classification system and the change detection approach was used to
map floods using Sentinel-1 SAR data (Amitrano et al., 2018). Recently,
the probability based approach was developed to map floods using the
SAR images (Hostache et al., 2018). Crowd sourced data has also been
combined with satellite data and geo-statistical analysis were also used
to derive flood extent maps (Panteras and Cervone, 2018).

For Bangladesh, Islam et al. (2010) identified flooded areas using
MODIS images for 2004 and 2007. Hoque et al. (2011) used RADARSAT
data from 2000 to 2004 for flood mapping in the Maghna River basin of
Bangladesh. However, flood patterns in Bangladesh never have been
analyzed with a time series of SAR images at a high spatial and tem-
poral resolution. The flood-affected paddy rice planting area is also
unknown in Bangladesh. In our study, to increase the flood identifica-
tion accuracy, we used two methods: the Change Detection and
Thresholding (CDAT) (Long et al., 2014) and Normalized Difference
Flood Index (NDFI)-based approaches (Cian et al., 2018). These two
methods have proven to be reliable in mapping floods accurately using
time series SAR data. However, SAR-based flood mapping has been
limited to small study areas due to the intensive amount of data pro-
cessing. With the recent development of high performance cloud com-
puting platforms like Google Earth Engine (GEE) (Gorelick et al., 2017),
NASA Earth Exchange (Nemani et al., 2011), Amazon Web Services
(Jackson et al., 2010), computationally expensive geospatial data
analysis has become possible. However, the use of these cloud com-
puting techniques in remote sensing applications is still in its infancy. In
this study, we used GEE to map flooded areas in near-real time for a
very large area and analyzed a huge volume of SAR time series data.

Our objective was to map flooded areas, analyze their frequency,
and determine the flood-affected paddy rice planting areas using
Sentinel-1 SAR data, the GEE cloud computing platform, and paddy rice
maps from our previous study (Singha et al., 2019). We would like to
answer the following research questions: (1) what are the annual spatial
patterns and dynamics of floods in Bangladesh from 2014 to 2018; and
(2) how were the paddy rice fields affected by flooding in Bangladesh?
This study will advance our knowledge on flooding in Bangladesh by:
(1) mapping floods at large-scales in near-real time and tracking its
spatial–temporal dynamics at high spatial resolution; and (2) de-
termining the paddy rice planting areas that are frequently affected by
floods. Bangladesh is very vulnerable to flood-induced disasters due to
its geography, climate, topography, and numerous rivers. The spatio-
temporal and immediate knowledge of flooding is necessary to effec-
tively reduce its destructive impact on croplands, ecosystems, property,
social welfare and human health. To our knowledge, our study is the
first to illustrate the spatiotemporal dynamics of flood events for den-
sely populated Bangladesh and the paddy rice fields. We expect our
maps to aid in flood management, disaster planning and response, food
security, policy making, and water resource utilization.

2. Materials and methods

2.1. Study area

Bangladesh is situated in South Asia (Fig. 1) and is one of the most
flood-prone countries in the world. It covers a land mass of approxi-
mately 147,000 km2 and extends from 20°44′00″ to 26°37′51″N latitude
and 88°0′14″ to 92°40′08″E longitude. The total population of Bangla-
desh is about 163 million. The topography of Bangladesh is primarily
flat except for the Chittagong Hill Tracts (CHT) regions in the southeast
with an average elevation over 300 m. The Ganges, Brahmaputra, and
Meghna are the three main rivers and 230 smaller rivers flow across
Bangladesh. The country has a subtropical monsoon climate with an
annual average temperature ranging from 18 °C to 29 °C. The average
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annual precipitation ranges between 200 mm and 2000 mm, and about
80% of precipitation occurs during the monsoon season between June
and September. The intensity, magnitude, and duration of precipitation
in the three river basins (Ganges, Brahmaputra, and Meghna Basins) is a
major determinant of flooding in Bangladesh. Agriculture areas cover
around 70% of the country and paddy rice is the major crop with some
areas being harvested up to three times per year. Severe flooding
usually destroys paddy rice crops in Bangladesh.

Continuous rainfall caused flooding in Bangladesh in recent years
(Fig. 1). The EM-DAT database showed an uneven temporal distribution
of 94 flood events between 1960 and 2018, but generally there has been
an increasing trend in flood frequency. Floods were most prevalent
between May and October, co-occurring with the high monsoon rains
(Fig. 1c). It was reported that a total of 52,616 people died due to floods
between 1960 and 2018, which mostly occurred between May to Oc-
tober (Fig. 1b, d). Apart from taking lives, floods have damaged an
innumerable number of houses, infrastructure, and crops in Bangla-
desh. It is expected that flooding events will increase in the coming
decades as the climate changes.

2.2. Data

2.2.1. Sentinel-1 SAR data and processing
The Sentinel-1 Synthetic Aperture Radar (SAR) C-band (5.4 GHz)

data is provided by the European Space Agency (ESA) and is freely
available to the public (Torres et al., 2012). This global dataset has a
12 day or 6 day revisit cycle depending on the availability of Sentinel-

1B imagery (Malenovský et al., 2012). Sentinel-1 satellite collects SAR
imagery in four modes: Stripmap (SM), Interferometric Wide Swath
(IW), Extra Wide Swath (EW), and Wave (WV) with various resolutions,
polarizations, and extents for a variety of purposes. For our study, we
used the IW mode, which meets the most current service requirements,
avoids conflicts, and preserves revisit performance. The IW mode also
provides consistent long-term archives and is particularly designed to
acquire imagery of land surfaces (Torres et al., 2012). The IW-mode
SAR imagery is provided in dual-polarization with vertical transmit and
vertical receive (VV), and vertical transmit and horizontal receive (VH).
The spatial resolution of this imagery is 10 m. We used the Level-1
Ground Range Detected (GRD) product, processed to the backscatter
coefficient ( 0) (Sentinel-1 Algorithms, 2019). The GRD scenes con-
stitute of focused SAR data that has been detected, multi-looked, and
projected to the Earth ellipsoid model WGS84 (Sentinel-1 Algorithms,
2019).

The Google Earth Engine pre-processed the Sentinel-1 data to derive
the backscatter coefficient in each pixel using the following steps: (1)
apply orbit file (to update orbit metadata with a restituted orbit file);
(2) GRD border noise removal (removes low intensity noise and invalid
data on scene edges); (3) thermal noise removal (removes additive
noise by reducing discontinuities in sub-swaths for multi-swath acqui-
sition); (4) radiometric calibration (calibrate backscatter intensity using
sensor calibration parameters); (5) terrain corrections using SRTM or
ASTER DEM (converts the data from ground range geometry to back-
scatter coefficient ( 0) to account for terrain characteristics); and (6)
the data were converted to decibels via log scaling (10*log10(x)) and

Fig. 1. Brief introduction of the study area. (a) Location of the study area including the elevation and major rivers; (b) annual total number of flood events and their
trends (source of data: EM-DAT, The International Disaster Database); (c) mean monthly rainfall during 1981–2018, calculated from the Climate Hazards Group
InfraRed Precipitation with Station Data (CHIRPS) (Funk et al., 2015); (d) total number of flood events and fatalities between 1960 and 2018 in Bangladesh (source of
data: EM-DAT, The International Disaster Database).
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quantized to 16-bits. We used all the available Sentinel-1 SAR datasets
(2148 scenes) of Bangladesh for 2014–2018. The VV polarized data
were selected from Sentinel-1 for flood mapping for its accuracy in
detecting floods (Clement et al., 2018). Total number of observations of
available Sentinel-1 images were shown in Fig. 2.

2.2.2. Paddy rice maps of Bangladesh
The paddy rice maps of Bangladesh for the year of 2017 were ob-

tained from Singha et al. (2019). The maps were developed using the
Sentinel-1 SAR datasets. The dataset is available for three rice cropping
seasons in Bangladesh (Supplementary Fig. 1). The maps were pro-
duced at 10-m resolution using the Random Forest classifier, time series
Sentinel-1 satellite data, and the Google Earth Engine. The maps were
validated using samples generated from multiple sources, including
ground truth samples and visual interpretation of very high spatial re-
solution images and Sentinel-2 images. The maps were also compared
with the MODIS-based maps. The provided paddy rice maps had a sa-
tisfactory overall accuracy above 90%. Flood affected paddy rice
planting areas were identified based on these maps assuming there were
no drastic changes of paddy rice planting areas during the study period
of 2014–2018.

2.2.3. Other data

(1) Sentinel-2 MSI. Sentinel-2 images were used to generate optical
based flood map to evaluate the spatial pattern of the SAR based
flood map. Sentinel-2 MSI (multispectral Instrument) images are
provided by European Space Agency (ESA). This dataset contains
13 spectral bands including three QA bands, and the spatial re-
solution ranges from 10 m to 60 m depending on the bands. The

revisit interval of the Sentinel-2 satellite is 5 days. We used NIR
(band 8), red (band 4), and green (band 3) spectral bands with 10 m
spatial resolution Top-Of-Atmosphere (TOA) Level 1C product. All
the available images for Bangladesh during 2018 was used for the
analysis and we selected the least cloudy pixels to generate the
composites. These images were accessed using the Google Earth
Engine (GEE).

(2) Earth’s surface water dataset from 1984 to 2015 (https://global-
surface-water.appspot.com/). This high resolution dataset was
generated using Landsat satellite imagery at a global scale (Pekel
et al., 2016). This dataset shows the changes in Earth’s surface
water over the past 32 years. This dataset was used to derive long
term flood frequency to check the similarities of the Sentinel-1
based flood frequency.

(3) DEM data. We also used the 30 m resolution elevation data from the
Shuttle Radar Topography Mission (SRTM) to mask hilly terrain,
which is unlikely to flood.

(4) The flood archive data were derived from the International Disaster
Database (EM-DAT) (https://www.emdat.be/). This dataset con-
tains the flooding location, flood area, and total fatalities from 1960
to 2018.

(5) We also used flood archive data from the Darthmouth Flood
Observatory (DFO). This dataset contains information on large floods
from 1985 to 2018, including flood location, total flooded area, and
cause. All the datasets we used are summarized in Table 1.

2.3. Methods

The methodology of this study includes the following key compo-
nents: (1) flooded area identification using the Sentinel-1 SAR data by

Fig. 2. Availability of time series Sentinel-1 images during the study period. (a) the total observation numbers between 2014 and 2018; (b) total number of
observations in 2014; (c) total number of observations in 2015; (d) total number of observations in 2016; (e) total number of observations in 2017; (f) total number of
observations in 2018.
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integrating the Change Detection and Thresholding (CDAT) algorithm
and the Normalized Difference Flood Index (NDFI); (2) determination
of flood frequency of extreme flood events during the study period; (3)
flood-affected paddy rice planting area identification using the derived
flood extent maps. A flowchart of the methodology is shown in the
Fig. 3. The Sentinel-1 SAR time series dataset was used to extract the
flooded areas in Bangladesh for 2014–2018. The Sentinel-2-based flood
extent map was used to validate and compare the Sentinel-1 SAR-based
flood maps. The Landsat surface water datasets were used to derive the
long-term flood frequency map, it also served for the verification of
Sentinel-1 based flood frequency map.

2.3.1. Flood extent mapping by combining the CDAT and NDFI algorithms

(1) The Change Detection and Thresholding (CDAT) algorithm. The
CDAT algorithm (Long et al., 2014) was adopted to identify the
flooded area. The following steps were applied: (1) generate an
absolute difference image (D) using a reference image (R) and a
flooded image (F); and (2) classify the difference image (D) using
thresholds to extract the flooded region. The reference image (R) in
this study was calculated as a median value composite using the
images from December and January (Clement et al., 2018), which
are the driest months of the year and had no recorded floods in the
study period. In the difference image (D), the flooded area in the
image appeared to be darker, while the areas that appeared gray in
both images indicated no changes. The flooded area creates a large
negative difference due to the low backscatter radar signals from
the water, compared to the high backscatter from the non-water
areas. In the second step, a threshold is applied to identify the pixels
that are flooded. The threshold was determined by the following
criteria:

<F µ D k D({ [ ]} { [ ]})p c (1)

where Fp are the flooded pixels, µ and are the mean and standard
deviation of the difference image (D) respectively. kc is a coefficient and
the optimum value is 1.5 (Clement et al., 2018; Long et al., 2014).

(2) The Normalized Difference Flood Index (NDFI) algorithm.
Flooded areas were also extracted using the NDFI algorithm (Cian
et al., 2018). The NDFI is based on multi-temporal analysis of
Sentinel-1 datasets. The NDFI was calculated as shown below in Eq.
(2), where 0 is the backscatter of each pixel.

= +
+ +

NDFI mean reference min reference flood
mean reference min reference flood

( ) ( )
( ) ( )

0 0

0 0 (2)

The NDFI highlights the flooded areas considering the normal condition
of earth surfaces and the temporarily covered water areas. The mean
backscatter value in the multi-temporal reference image stack re-
presents the average or normal characteristics of the land surface that
include the low values from the smooth surfaces and the high values
from the rough surfaces. The minimum value in the combined reference
and flood stack capture the very low backscatter values generated due
to flood. The difference between the mean and minimum value high-
light the low backscatter values, i.e. flooded areas. In NDFI, the non-
flooded areas have the values close to zero and can easily be masked
out. The NDFI has several advantages. First, robustness and simplicity,
NDFI requires minimum user dependent input and works in various
environments with various sensors data (Cian et al., 2018). Second, it
allows for an easy selection of threshold values due to the normalized
index. Third, it can be utilized on large volumes of data.

(3) Flood extent mapping by combining the CDAT and NDFI algo-
rithms. A “consistency map” (Arnell and Gosling, 2016) or a
common map of flood extent was constructed that showed flooding
areas common for both the CDAT and NDFI algorithms. The con-
sistency map was considered as the actual flooding and used in theTa
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further analysis. The flooded areas for each year were added to
obtain an image showing how many times a specific pixel was in-
undated within that year. This sum enables us to know the fre-
quency and duration of floods for a certain year. For each individual
year from 2014 to 2018, a time series of flood maps were created,
which is the longest SAR-based high-resolution flood maps for
Bangladesh.

2.3.2. Selection of most adequate reference image for CDAT and NDFI flood
extent mapping

SAR-based flood mapping algorithms are often based on change
detection techniques like CDAT and NDFI, which compares the back-
scattering signals between a reference image and a flooded image
(Fig. 4a, b). The reference image represents an area under ‘normal
conditions’, which helps to determine the changes in the SAR

backscatter coefficient during flooding conditions. The flood maps
produced from the change detection technique greatly depend on the
selected reference image. The most adequate reference images need to
be selected to minimize any under or over detection of flood. Hostache
et al. (2018) suggested that reference image should be from the driest
month that best represent the non-flood conditions. In our study, the
reference image was calculated as a median value composite using the
images from the month of December, January, and February (Fig. 4a). A
case study conducted by Hostache et al. (2018) in Bangladesh also
found the reference image from these months to be appropriate. These
three months provide the highest number of SAR images during the
driest time in the study region and are the preferred reference image for
accurate flood mapping. We cross-referenced the DFO and EM–DAT
flood archive to ensure that no flood events occurred during these time
periods to avoid the inclusion of any images that may have captured

Fig. 3. Flowchart of the methodology comprised of five parts (A-E).

Fig. 4. Sentinel-1 composites from 2018. (a) Reference image; (b) flooded image in June.
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inundation in the reference image.

2.3.3. Accuracy assessment and inter-comparison of flood maps
Accuracy assessment of our resultant flood maps includes two ap-

proaches: (1) a validation using the samples collected from multiple
sources of flood events data and high/medium resolution satellite
images and (2) a comparison with Sentinel-2 based flood maps.

Our study area was large, so to cover a reasonable area and to ob-
tain correct validation samples, we collected the validation samples
(reference data) using multiple datasets: (1) high resolution Sentinel-2
images, (2) Landsat 8 images, (3) MODIS images, (4) DFO datasets
(flooded area with longitude and latitude), and (5) EM-DAT datasets
(flooded area in general e.g. Sylhet district) (Fig. 5). We used the
stratified random sampling approach to collect the validation samples.
First, we divided the study area into six landcover classes (permanent
water, floods, vegetation, cropland, built-up and others) according to
the MODIS land cover map (Sulla-Menashe and Friedl, 2018) and
Landsat-based JRC Monthly Water History data (Pekel et al., 2016).
Second, we generated random sample points in each class and then we
created area of interest (AOIs) as square buffers of those points (Dong
et al., 2016). After experimenting with the several buffer sizes, we se-
lected the 100 m × 100 m AOIs based on the collected sample points
for validating the flood maps as it can provide a reasonable number of

pure flooding pixels in each AOI. Third, we manually verified each of
the AOIs and labelled them (flooded or non-flooded) in accordance to
the above-mentioned multi-source datasets (Sentinel-2, MODIS,
Landsat, EM-DAT, DFO). The AOIs without any confirmed signature of
suitable classes (flood or non-flood) due to data quality issues such as
clouds were excluded from the accuracy assessment. The AOI genera-
tion and validation were performed using the same monthly composited
images when severe floods were reported in the DFO and EM-DAT
datasets (Fig. 5). A total of 108, 93, 112, 109, and 113 AOIs were
collected for 2014 (August), 2015 (June), 2016 (July), 2017 (August),
and 2018 (June) respectively for the validation of flood maps (Sup-
plementary Fig. 2). The total number of flooded and non-flooded pixels
for each AOIs are provided in Supplementary Table 1. Finally, we cal-
culated the confusion matrices (Congalton and Green, 2008) for the
flood map to measure the accuracy of the results.

In addition to the validation, we compared the Sentinel-1 based
flood maps with the Sentinel-2-based flood maps, previous studies
(Hostache et al., 2012; Uddin et al., 2019), and agency generated maps
(http://ffwc.gov.bd/index.php). Despite potential errors in identifying
water and floods using optical imagery due to clouds, the relatively
high temporal resolution can offset the effects of clouds to some degree
(Clement et al., 2018). The normalized difference water index (NDWI)
was used to extract the flooded area, which is calculated as follows:

Fig. 5. Validation sample collection. (a) Sentinel-1 image composite for June 2018 overlaying with the collected sample locations. The testing samples were selected
using the Sentinel-2, MODIS, Landsat 8, EM-DAT and DFO; (b) zoomed ‘during flood’ Sentinel-1 image composite of Bangladesh in June 2018; (c) zoomed ‘pre-flood’
Sentinel-1 composite image of Bangladesh acquired in March 2018; (d) Sentinel-2 false color composite (FCC); (e) MODIS FCC; (f) Landsat8 FCC; (g) DFO/EM-DAT
table data representation; (h) AOI generation case. In the figure (b), dark areas indicate the floods.
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=
+

NDWI Green NIR
Green NIR (3)

where Green and NIR are the reflectance of the green and near-infrared
bands. NDWI highlights all the surface water bodies from the input time
series Sentinel-2 datasets (Munasinghe et al., 2018). To extract the
flooded areas, we removed the permanent water bodies using the dry
season NDWI. The Sentinel-2 based flood map may not be perfect due to
frequent clouds in the study area, but it served our purpose of evalu-
ating the spatial pattern of SAR based flood maps.

3. Results

3.1. Accuracy assessment and inter-comparison of flooding maps from
multiple sources

We used two flood detection algorithms (CDAT and NDFI) to gen-
erate consistent flood maps where floods were detected in both the
algorithms (Fig. 6). Due to differences in the approach of the algo-
rithms, discrepancies exist between the two results. However, the
consistency map minimized uncertainties in the flood maps. The con-
sistency maps were considered as actual flooding in our study. The
zoomed consistency flood map in June 2018 could detect the deadly
cox’s bazar flood accurately (Fig. 6). We assessed the accuracy of the
consistent flood maps using the collected reference samples (See
Section 2.3.3). The validation based on the flooding events-based AOIs
indicated that the produced flood maps had high accuracies (Table 2).
The accuracies of the flood maps were not equal across the years; the

overall accuracies were 84%, 87%, 90%, 85% and 92% in the 2014
(August), 2015 (June), 2016 (July), 2017 (August) and 2018 (June)
respectively. The user’s accuracy (UA) and producer’s accuracy (PA) of
the flood class were (UA, 73% and PA, 55%) in 2014; (UA, 100% and
PA, 49%) in 2015; (UA, 88% and PA, 74%) in 2016; (UA, 100% and PA,
58%) in 2017 and (UA,100% and PA, 67%) in 2018. The high accuracy
of our flood maps could be attributed to the combination of the two
different algorithms. The combined results from the two algorithms
increased the accuracy and certainty of the flood maps. The flood water
pixels are distinct with very low backscatter coefficient and their
identification from a SAR image is quite straight forward and less
complex, and this could be another reason for the high accuracy of our
flood map. The lowest accuracies were obtained in 2014 and 2017 (OA,
84% and 85%) when flooding areas were distributed in very smaller
patches. The error might be associated with the estimation of threshold
value and the low flood area proportion. For more uncertainty analysis
please refer to the discussion Section 4.2. Overall, all of the five years of
flood maps had reasonably good accuracies and can be used to quantify
the dynamics of flood areas during 2014–2018. This study also in-
dicates that the flood maps from our combined algorithm are reliable if
there are sufficient numbers of observations of Sentinel-1 images.

The comparison of the flood maps and results from other satellite
data in previous studies is important (Clement et al., 2018; Dottori
et al., 2016; Hoque et al., 2011; Islam et al., 2010). Here, we also
conducted a comparison between the Sentinel-1-based flood maps in
this study and the results from the Sentinel-2 for 2014–2018. The
comparison showed that the two maps agree highly and are spatially
consistent in the frequently flooded areas. The Sentinel-1 SAR based

Fig. 6. Flooded areas derived from two algorithms and Sentinel-1 images in June 2018. (a) using CDAT algorithm; (b) using NDFI algorithm; (c) consistency map
(flooded areas common for both the CDAT and NDFI algorithm; (d) zoomed area from the consistency map showing Cox’s bazar flood.
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results were more detailed, and in particular it could exclude roads and
small houses which were not flooded with its 10 m spatial resolution.
The high temporal resolution (6 or 12 days) of Sentinel-1 allowed for
the rapid mapping of floods events. Additionally, Sentinel-1 has a
higher capacity to accurately map flooding in the cloudy conditions of
sub-tropical Bangladesh during the rainy season. Fig. 7 shows the
spatial comparison between Sentinel-1 SAR-based flood map and Sen-
tinel-2 based flood map. The comparison of flooded area estimates at
the sub-district level between the Sentinel-1 based and Sentinel-2 based
flood map was significantly correlated with the R2 value of 0.8 (Fig. 7e).
However, the Sentinel-2 based flood map underestimated flood area
due to the lack of data induced by cloud cover during rainy periods of
floods. We also compared our results with existing studies (Hoque et al.,
2011; Islam et al., 2010; Uddin et al., 2019) and with the reports from
the Flood Forecasting and Warning Centre of Bangladesh Water De-
velopment Board (BWDB) (http://ffwc.gov.bd/index.php). Our flood
maps had a high spatial consistency with the existing flood maps. The
validation and comparison with existing products indicated that the
flood maps generated in our study are reliable.

3.2. Spatiotemporal pattern of floods

The spatial extent and the progression of flood was observed and
analyzed from the monthly time series Sentinel-1 based flood maps. The
analysis of flood maps showed that the flooded area was large and
extensive for Bangladesh. The maximum flooded area during monsoon
season (June to September) varied approximately between 7,112 km2

and 12,040 km2 in Bangladesh during 2015–2018. During the study
period, the annual maximum and minimum flooded areas occurred in
2015 and 2018, respectively, and the monsoon season maximum and
minimum flooded area was in 2018 and 2015, respectively. The flood
maps are shown only for the rainy season of the year except for the
2014 where only October, November, and December acquisition was
available (Fig. 8). The monthly flooding maps are provided in the
Supplementary Fig. 3. During the peak flooding stage, the flooded area
covers approximately 8% of Bangladesh. During 2014–2018, for each
year about 6% of the country was inundated by flood water. Flooding
often occurred in the monsoon season, however excess pre-monsoon
rainfall caused occasional floods in some regions (Supplementary
Table 2, Supplementary Fig. 4).

Table 2
Confusion matrix for accuracy assessment based on area of interest (AOIs) from multi-source satellite images and flood archive data.

Year (month) Class Non-flooded Flooded User’s accuracy Producer’s accuracy Overall accuracy

2014 (August) Non-flooded 7712 516 0.86 0.93 0.84
Flooded 1174 1467 0.73 0.55

2015 (June) Non-flooded 7053 0 0.86 1 0.87
Flooded 1117 1100 1 0.49

2016 (July) Non-flooded 7916 298 0.91 0.96 0.90
Flooded 774 2272 0.88 0.74

2017 (August) Non-flooded 7121 0 0.81 1 0.85
Flooded 1599 2213 1 0.58

2018 (June) Non-flooded 8366 0 0.90 1 0.92
Flooded 886 1996 1 0.67

Fig. 7. Spatial pattern comparison between Sentinel-1 and Sentinel-2 flood maps. (a) Sentinel-2 false color composite using bands red, near infra-red, and green
bands; (b) Sentinel-2 derived flood; (c) Sentinel-1 composite of VV band; (d) Sentinel-1 derived flood. The maps were derived for the year 2018, and the comparison
is only for general purpose to visualize and check the spatial consistency; (e) scatter plot for the comparison between Sentinel-1 based and Sentinel-2 based flood area
at sub-district level in 2018.
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Extensive flooding occurred in the Meghna River basin in north-
eastern Bangladesh, where floods happened every year. The time series
flood maps revealed that the flood in this region of Bangladesh occurred
in the early rainy season and the flood water remained for a longer
period than other areas. The other regions of the country only flooded if
experienced excess or extreme precipitation during the year. The peak
flood month usually occurred between July and September, coinciding
with the highest monsoon rainfall with the respective year. In early
October, flood water starts to retreat back to the normal stage, begin-
ning from the far away areas to the areas nearest of lakes and rivers.
Extreme rainfall events in the catchments of Ganges, Brahmaputra, and
Meghna Rivers can lead to floods at any time during the monsoon
season, leaving short term and shallow flooded areas. With the excep-
tion of the monsoon and pre-monsoon extreme rainfall, if flooding oc-
curs it is usually due to man-made controlled flooding for paddy rice
cultivation or is due to tides or storms. The seasonality of the flooding
time has direct impacts on the agrarian economy of Bangladesh, where

paddy rice is often cultivated thrice in a year. The yield of the paddy
rice highly depends on the flooding time period, as unlike the other
crops, the paddy rice is primary cultivated in inundated lands. The
progression of the flood starts along the river in the lowland areas to the
elevated regions with the surplus rainfall in the basin and the upper
catchments of the rivers. We showed the pattern of flooding from
Sentinel-2 for the year 2018 in Fig. 9, which shows normal versus
flooding season and helps us visualize the flood dynamics and changes
in a year. The Sentinel-2 false color composite (FCC) of the dry season
depicts normal conditions with permanent waters and no sign of any
flooding (Fig. 9a), and the corresponding NDWI shows the permanent
waters more clearly (Fig. 9c). The FCC of the wet season shows the
flooded conditions, clearly visible in the northeast of Bangladesh
(Fig. 9b), the flooded areas are prominent in the corresponding NDWI
image (Fig. 9d). These contrasting images of dry and wet conditions
show us the severity and extensiveness of floods in Bangladesh. Fig. 10
demonstrates a zoom in of flooding events for random locations in

Fig. 8. Flooding pattern in rainy season (June-August) during 2015–2018. (a-c) 2015, (d-f) 2016, (g-i) 2017, (j-l) 2018.
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Bangladesh. The zoomed images indicate that floods occurred in large
areas and in small fragmented areas.

3.3. Flood frequency characteristics and flooding hotspots

Flood frequency depicts how often an area is inundated during the
observed period and frequent flooding hotspots. Fig. 11 shows the
flooding frequency of Bangladesh for 2014–2018. The frequently
flooded areas are located near the river or water bodies. The Ganges,
Brahmaputra, and Meghna River basins get flooded frequently with a
high discharge of waters from these three rivers and their tributaries.
An area of approximately 28,586 km2 was flooded five times, re-
presenting every year of flooding in those areas in 2014–2018. An area
of 207,762 km2 as flooded once during 2014–2018. The most often

flooded region was the northeast and northwest states of Sylhet and
Rajshahi (Fig. 11). Along with the extreme rainfall, the Bangladesh
flooding highly depends on the excess water flows from the upper
catchment of the Ganges, Brahmaputra, and Meghna River basins.
Cherrapunji, the world’s highest rainfall region is situated north to the
Bangladesh and most of its downfall flows directly into the flat land of
Bangladesh causing severe floods almost every year. Characteristically,
the northeastern Sylhet region of Bangladesh near to the Cherapunji get
flooded every year in the early monsoon season and suffers the longest
flooding period. It can be observed that in the frequently flooded re-
gions, flood water overflows through the roads or settlements (Fig. 10).
The less flooded regions are slightly elevated lands. The coastal region
was identified as less flooded, due to dense mangrove forest of Sun-
darbans and floods under vegetation may not detected unless they are

Fig. 9. Flooding pattern depicted from Sentinel-2 in 2018 using the red, near infra-red, and green bands. (a) Sentinel-2 false color composite from the dry season
(January to April); (b) Sentinel-2 false color composite from the rainy season (June to August); (c) flooding pattern in the dry season (January to April); (d) flooding
pattern in the rainy season (June to August). Flooding is shown in dark blue. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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very severe.
The long term (1986–2015) flooded area derived from the Landsat

monthly surface water showed similar patterns (Fig. 11b). These long-
term flooded areas are the ratio in percentage between the flood counts
and total Landsat observations. Except in northeastern Sylhet, the areas
along the Padma River also flooded often, evident from this long-term
analysis. The yearly flood frequency obtained from the Sentinel-1 was
provided in the Supplementary Fig. 5. The long-term flood frequency
indicates that the regions that are likely to be flooded remain un-
changed for the last 30 years. Therefore, increasing the flood protection
standard and adaption are the key to decrease the devastating impact of
floods in these regions.

3.4. Flood-affected paddy rice fields

The flood-affected paddy rice planting areas are shown in Fig. 12.
The paddy rice maps were overlaid on the flood maps to determine the

rice cultivated areas affected by floods in 2014–2018. Annual floods
typically threatened the paddy rice planting areas, because a vast ma-
jority of rice croplands are in the low river deltas in Bangladesh. The
flood season (May to October) corresponds to the harvesting of Boro
rice (December-May) and the growing periods of Aus rice (April-Au-
gust) and Aman rice (July-November). The paddy rice areas affected by
flood ranges approximately from 1.61% to 18.17% of the total rice
areas during the study period (Fig. 12g). In general, paddy rice areas
affected by floods were between approximately 1,018–11,436 km2 in
2014–2018. The results indicated that the flood affected regions are the
lowland areas of the Ganges, Brahmaputra, and Meghna River basins.
The most often flood-affected paddy rice areas were concentrated in the
northeast and northwest states of Sylhet and Rajshahi. The paddy rice
areas near to the rivers or streams are found to be more vulnerable to
the floods. It was observed that paddy rice areas are under constant
threat to floods throughout the year. The impact of floods on paddy rice
depended on the severity and longevity of floods as well as the rice
growth stage. Floods are usually more harmful when the rice plants are
between the flowering and maturity stages. The size of the exposed
paddy rice area to floods will increase in the future with the expansion
of cropland areas, and increasing paddy rice cropping intensity
(FAOSTAT, 2019). The damage caused by flood to the rice agriculture
has an immense negative impact on local communities and the GDP of
the country. Knowledge of the spatial distribution of flood-affected
paddy rice planting areas is important for effective crop management to
avoid possible reduction of rice production.

4. Discussion

Extensive and frequent flooding is a profound problem of
Bangladesh. Annually, on average, floods cause economic losses
equivalent to 1.5% of gross domestic product (GDP). In the past, some
efforts have been made to map flooding extent in Bangladesh (Ahmed
et al., 2017; Hoque et al., 2011; Islam et al., 2010; Uddin et al., 2019) to
assess the flood impacts. However, these efforts were performed for
small regions and a nationwide understanding of flooding and its dy-
namics were not reported. Due to the limited availability of cloud-free
images during flood events, often the maps generated from the optical
sensors underestimated flood area for key flooding events. Most of the
studies generated flood maps for a single month, however floods have
lasted longer than a month on several occasions. Annual and recent
flooding maps were also unavailable for Bangladesh as the researchers
tend to publish the flood map results a few years after the flood events.
In our study, we addressed these issues by generating nationwide
monthly flood maps for 2014–2018 using the cloud independent SAR
data and the cloud computing GEE platform. Using our methods, we
were able to generate recent flood maps as soon as Sentinel-1 data are
available. Additionally, we detected the flood-affected paddy rice areas
to further aid pre- and post-flood management to minimize the eco-
nomic losses caused by floods and maintain the nation’s food security.

4.1. Reliability of flood mapping using all the available Sentinel-1 imagery,
integrating two algorithms, and GEE

This study demonstrated an operational approach to large-scale
flood mapping by integrating long time series SAR imagery, a combi-
nation of CDAT and NDFI algorithms, and parallel computing facilities.
Through the spatiotemporal analysis of annual flood maps derived from
the Sentinel-1 SAR, we found that floods occur almost every year in the
monsoon season. The yearly flooded areas were consistent with the
previous reporting in Bangladesh (Hoque et al., 2011; Islam et al.,
2010).

Sentinel-1 provides rapid image acquisitions, generates dense time
series data, and facilitates near–real time flood mapping and mon-
itoring. With the all-weather capability of SAR, it provides enough
number of acquisitions to meet the observation requirement for

Fig. 10. Detailed flood maps. (a) The Sentinel-1 SAR composite of Bangladesh
in August 2018; (b) and resultant flood map; (1) - (3) the zoom in maps show
local details of flooding in various locations; (S1-S3) respective Sentinel-1 zoom
in.
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Fig. 11. Recent and long-term flood frequency of Bangladesh. (a) Sentinel-1-derived flood frequency (count) between 2014 and 2018, (b) Landsat-based long-term
flood frequency (percent) between 1986 and 2015.

Fig. 12. Paddy rice planting areas affected by floods. (a) 2014–2018; (b) 2014; (c) 2015; (d) 2016; (e) 2017; (f) 2018 and (g) percentage of total paddy rice pixels
affected by flood.
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monthly mapping of floods for the entirety of Bangladesh. The floods
were determined by the CDAT and NDFI algorithms, these algorithms
were developed using high temporal resolution SAR data (Long et al.,
2014). Our methods identified flooded areas based on the difference of
pre- and post-flood images and threshold values were determined from
the statistics and applied to the differenced images. This method allows
for the identification of flooded areas for each individual image and can
be used for automatic, near real-time flood identification (Long et al.,
2014). Our study demonstrated an effective way of using all the
available Sentinel-1 imagery and the algorithm that particularly de-
signed for effective flood identification.

Floods mainly occur in the rainy season during a time with ex-
tensive cloud cover. The cloud-independent Sentinel-1 SAR took full
advantage of the image acquisitions unhampered by cloud con-
taminated pixels. This work shows the reliability of creating accurate
flooding maps by obtaining enough observations during the flooding
time, particularly in Asia. The C-band SAR is unable to penetrate
through the dense forest omitting many water pixels. This problem
probably influenced the flood detection in southern Bangladesh where
dense mangrove forests are present. However, most of Bangladesh
consists of flat croplands and flooding under vegetation is not extensive.

The GEE platform hosts all the available Sentinel-1 SAR images at a
petabyte scale and provides high-performance parallel computation
facilities (Gorelick et al., 2017). It provides pre-processing of Sentinel-1
data up to the terrain-corrected level, reducing the time requirement of
intense pre-processing steps of raw Sentinel-1 data. GEE provides op-
portunities for not only traditional remote sensing communities but also
other scientists who lack the technical experience to handle large scale
microwave data, supercomputers, and cloud computing facilities. Quick
responses to flood affected areas are very important. Here, we de-
monstrated that a huge amount of SAR data for a large area can be used
to detect flooded regions very quickly. Thus, our approach can also be
used for other regions of the world, making near real-time monitoring
of flood waters a possibility after some further tests in other regions.

Several efficient and accurate flood detection algorithms are avail-
able based on microwave data. Although these algorithms are based on
various techniques and have various complexity, their resultant flood
maps are not substantially different. The choice of the algorithm de-
pends on its complexity of implementation and accuracy. For our study,
we used two recently developed flood detection algorithms (CDAT and
NDFI). These two algorithms were selected for the following reasons:
(1) CDAT and NDFI both are simple to implement and efficient for rapid
and quick flood mapping; (2) these algorithms can be extended to other
regions very easily with minimum required changes; (3) they have
potential for automatic flood mapping; and (4) these algorithms pro-
duced accurate flood maps for a large area (country scale). We con-
sidered the areas commonly detected by both the algorithms as a
flooded area in our study to reduce the uncertainty in the results. Both
algorithms could detect the major flooding events in the study area with
similar spatial patterns. The differences existed in the results generated
by the two algorithms were primarily in small and shallow flooded
areas. The amalgamated approach used in this study significantly re-
duces the false flood alarm that could be an initial step towards a large-
scale automatic flood monitoring system in the future.

4.2. Uncertainty analyses

All the available Sentinel-1 imagery is useful for large-scale rapid
flood mapping and monitoring in Bangladesh. However, some un-
certainties exist in the flood maps generated from Sentinel-1. First, the
uncertainty of flood extent maps could be from the sparse temporal
resolution of Sentinel-1, usually 6–12 days depending on the location
(Geographical Coverage, 2018). As flood water changes rapidly, this
temporal resolution may not be sufficient to track flood progression.
This is worsened when considering a large area such as Bangladesh,
where accurate identification of the high flood stages or the maximum

extent became a challenge. Second, uncertainty arises in the SAR-based
flood areas due to the environmental conditions of the study regions,
such as the presence of winds at the time of the image acquisition,
topography, vegetation types, and built-up areas. All of them could
have influence on the results to some degree. Winds roughs the water
surfaces and disturb the specular reflection characteristics of water, and
can cause an inaccurate determination of flooded areas. The radar
shadow generated from the hilly terrain creates misclassification of
surface water that might lead to overestimation of flooded areas. The
flood water under vegetation cover could not be detected with the C-
band Sentinel-1 SAR, while L-band data, for example the Phased Array
type L-band (PALSAR) (Rosenqvist et al., 2007) SAR, might provide
information under vegetation for flood mapping. The identification of
flooded locations within urban areas are hampered by the double
bounce of radar signals from buildings. However, high-resolution SAR
images (e.g. Sentinel-1) have demonstrated some promising results and
the effects of these factors are negligible. Third, the flood areas de-
pended on the selection of threshold values and the choice of these
values may induce an under or overestimation of the flood area.
Though the threshold values were selected based on the suggested and
experimented values, they may limit the ability to detect all the flooded
locations. Finally, selection of the non-flooded reference SAR images
can influence the detection of the flooded areas. The seasonal variations
in land cover and differences in Sentinel-1 acquisition parameters could
lead to differences in the SAR signals for the water areas for the same
location in varying time periods.

Using the Sentinel-1 data alone, it is not completely possible to
differentiate the individual events that influence flooding. The ancillary
data related to the dykes and river gauge can help to distinguish the
flooding components more reliably. Bangladesh is a major rice pro-
duction country, where rice transplanting-related flooding is common
for irrigation of paddy rice fields. This phenomenon should be con-
sidered for the flood modeling in the Bangladesh.

4.3. Challenges and implications for flood mitigation in Bangladesh

Water related disasters are a common phenomenon in Bangladesh
and living with flood is not an option but a way of life (Ali et al., 2019).
Almost every location in Bangladesh is affected by floods with varying
frequency and intensity. Floods in Bangladesh could be related to river
overflow, human controlled water release, and/or extreme rainfall and
tides. Flood extent and timing is a complex combination of these events,
including excess rainfall in the upstream basin (Kuenzer et al., 2013).
The flooding in Bangladesh depends on the total precipitation in the
Ganges, Brahmaputra, and Meghna River basins. Extreme flooding
events occurred when the peak water-flow of these river exceeds certain
thresholds (Ali et al., 2019).

Every year flood causes approximately 2 billion USD (Ali et al.,
2019) of damage in Bangladesh, primarily due to agricultural losses. In
the future with the changing climate, it is expected that the intensity
and frequency of flooding will increase and that the low-lying areas will
become more at risk of extreme flooding. Bangladesh is densely popu-
lated (more than 1,000 person/ km2) and continuous private and public
development is happening in low-lying areas, which will further in-
crease the scale of damage and loss of lives when extreme flooding
occurs. The long-term economic loss caused by floods has hampered
development goals set by the government. Flood management is a
challenging task due to its unavoidable nature, complexity, and scale.
To mitigate the regular flooding events, existing structural and non-
structural prevention measures are not sufficient for Bangladesh. To
lessen the impact of floods, the local and central governments need to
develop and deploy appropriate flood early warning systems and dis-
seminate flooding information via modern communication systems
such as cell phones. The government must have an efficient flood
management plan and should focus on increasing local flood protection
standard as a prevention measure.
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5. Conclusions

Previous efforts on SAR based-flood mapping generally focused on
small areas. Thus, our knowledge of the annual progression of floods,
their extent, and its impact is limited in Bangladesh, one of the most
flood-prone countries in Asia. Using all the available Sentinel-1 SAR
data during 2014–2018, the improved CDAT and NDFI algorithms, and
the Google Earth Engine (GEE), we generated high resolution (10-m)
monthly flood maps of Bangladesh for 2014–2018. To our knowledge,
this is the first application of Sentinel-1 imagery in flood mapping for
the entire country of Bangladesh. The results showed that flood is fre-
quent in northeastern Bangladesh and along the pathways of the three
major rivers: the Ganges, Brahmaputra, and Meghna. Our study also
demonstrated the potential of the GEE cloud-computing platform for
mapping using large-scale high-resolution SAR imagery. With the high
cloud cover during the flooding season in tropical regions, the cloud-
independent Sentinel-1 satellite has been proved effective in mapping
and monitoring floods at a high spatial and temporal resolution.

The generated flood maps will be helpful for disaster management
agencies, policy makers, and government agencies that respond to flood
disasters and aim to mitigate and prevent flooding. We also used the
flood observations to identify the paddy rice areas that were affected by
floods. The existing paddy rice planting areas in these regions were
found to be very prone to severe flooding events. The estimated flood
affected rice area is helpful to the government for post-flood compen-
sation, restoration efforts, and monitoring purposes. Despite the relia-
bility of our demonstrated approach, we would encourage to conduct a
thorough evaluation of the proposed method prior to applying it to
other regions. In the future, the inclusion of river gauge data can be
explored to improve flood mapping and better determine rice areas
affected by floods.
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