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1. Introduction

The importance of rainfed croplands cannot be over-empha-
sized. Rainfed croplands meet about 60% of the food and
nutritional needs of the World’s population and are backbone of
the marginal or subsistence farmers. They are increasingly seen as
better alternative to irrigated agriculture as a result of its
environmental friendliness and sustainability over long periods

of time. Roughly 80% of the agricultural land worldwide is under
rainfed agriculture, with generally low yield levels and high on-
farm water losses (Rockstrom et al., 2003). This suggests a
significant window of opportunity for improvements. The balloon-
ing population is putting enormous strain on freshwater resources,
and it has become increasingly clear that the challenge of feeding
tomorrow’s world population is, to a large extent, about improved
water productivity within present land use; specifically in rainfed
cropland areas (CA, 2007). The theoretical potential for cropland
areas in the present climatic conditions and based on soil, climate,
and topography are estimated at 3.29 billion hectares or Bha (Xiao
et al., 1997) to 4.15 Bha (Cramer and Soloman, 1993). However, it
must be noted that the productivity of a large proportion of these
lands is limited due to poor soil fertility, soil depth, access to water,
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A B S T R A C T

The overarching goal of this study was to produce a global map of rainfed cropland areas (GMRCA) and

calculate country-by-country rainfed area statistics using remote sensing data. A suite of spatial

datasets, methods and protocols for mapping GMRCA were described. These consist of: (a) data fusion

and composition of multi-resolution time-series mega-file data-cube (MFDC), (b) image segmentation

based on precipitation, temperature, and elevation zones, (c) spectral correlation similarity (SCS), (d)

protocols for class identification and labeling through uses of SCS R2-values, bi-spectral plots, space-time

spiral curves (ST-SCs), rich source of field-plot data, and zoom-in-views of Google Earth (GE), and (e)

techniques for resolving mixed classes by decision tree algorithms, and spatial modeling. The outcome

was a 9-class GMRCA from which country-by-country rainfed area statistics were computed for the end

of the last millennium. The global rainfed cropland area estimate from the GMRCA 9-class map was

1.13 billion hectares (Bha). The total global cropland areas (rainfed plus irrigated) was 1.53 Bha which

was close to national statistics compiled by FAOSTAT (1.51 Bha). The accuracies and errors of GMRCA

were assessed using field-plot and Google Earth data points. The accuracy varied between 92 and 98%

with kappa value of about 0.76, errors of omission of 2–8%, and the errors of commission of 19–36%.
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and disease (e.g., Tse-tse flies and the black fleas). Land conversions
from forests, rangelands, protected areas will be environmentally
costly (Richards, 1990) and ecologically unacceptable. Thereby,
any increase will have to come from increased productivity and/or
intensification of rainfed croplands. In addition, rainfed agriculture
is generally known to be far better sustainable than irrigated
agriculture which is, often, associated with water logging and soil
salinisation. The rainfed cropland has a history of roughly 10,000
years compared to about 6000 years history of irrigated agriculture
(World Resources, 1992–1999; Mackenzie and Mackenzie, 1995).

Literature shows that the World’s cropland estimates vary from
1.11 to 3.62 Bha (Hansen et al., 2000; FAOSTAT, 2000; WRI, 2000;
Loveland et al., 2000; Goldewijk, 2001). It is well known that no
two global datasets match (Defries and Townshend, 1994) as a
result of differences in definitions, methods, data sources, data
types, data calibration, and data acquisition modes. Cropland area
increase has been only modest from 1.36 Bha in 1960 to 1.47 Bha in
1990. Based on various estimates, it has remained around 1.5–
1.8 Bha at the end of the millennium (Ramankutty and Foley, 1999;
World Resources, 1992–1999), of which about 16–18% is irrigated
(Siebert et al., 2006; Thenkabail et al., 2008). However, the above
efforts do not differentiate between the rainfed and irrigated
croplands.

Past global maps were focused on land use/land cover (LULC)
while not specifically concentrating on rainfed or irrigated
croplands. The commonly used global LULC datasets were
primarily non-remote sensing based, produced using data from
various maps at 100-km grid by Matthews (1983), and 50-km grid
by Olson and Watts (1982), Olson (1994), and Wilson and
Henderson-Sellers (1985). More recently, AVHRR and MODIS
sensor data have been widely used to produce global LULC. The
1992–1993 AVHRR 1-km data were used by USGS (Loveland et al.,
1999, 2000) and University of Maryland (Defries et al., 1995, 1998)
to produce global LULC datasets. These data also were used by
IGBP (Loveland et al., 2000). The most recent LULC products are
from Boston University using MODIS (Friedl et al., 2002) and
GLC2000 using Spot Vegetation data (Bartholomé and Belward,
2005).

The spatial distribution of cropland areas are also changing. For
example, in certain regions cropland areas are shrinking in recent
times as a result of soil degradation, urbanization, and desertifica-
tion and global warming. Between the early 1960s and the late
1990s, world cropland grew by only 11%, while world population
almost doubled. As a result, cropland per person fell by 40%, from
0.43 ha to only 0.26 ha (FAO, 2002). In the future, 80% of increased
crop production in developing countries will have to come from
intensification: higher yields, increased multiple cropping, and
shorter fallow periods. At the same time, cropland areas are
increasing in certain parts of the world such as the African and
Amazonian rainforests where slash-and-burn agriculture expan-
sion with decreasing fallow periods and expansion for bio-fuel
cultivation are major factors. In addition, changes are occurring in
cropping pattern (e.g., vegetables in place of grains) and
intensification (e.g., double crop in place single crop).

Therefore, there is a clear need to determine precise extent of
rainfed cropland areas and their spatial distribution. Given this
importance, the present research has been carried out to
produce the first satellite sensor based global map of rainfed
cropland areas (GMRCA) using: (a) monthly time-series path-
finder AVHRR 10-km data for 1999–2001, (b) SPOT VGT monthly
1-km data for 1999, and (c) a suite of secondary data. The
objectives of this research were to: (a) develop methods and
produce a global map of rainfed cropland areas using remote
sensing and secondary data, (b) calculate rainfed cropland areas
for every country in the world, and (c) establish accuracies and
errors of such an estimate.

2. Datasets

2.1. Satellite data and ancillary data

The satellite sensor and ancillary data, with global coverage,
used in this research consisted of: (a) NOAA AVHRR 10-km
monthly data for 1997–1999, (b) SPOT VGT 1-km monthly data for
1999, (c) GTOPO30 1-km digital elevation data, (d) University of
East Anglia Climate Research Unit’s (CRU’s) 50-km precipitation
monthly data for 1961–2001, (e) skin temperature data derived
from NOAA AVHRR for 1997–1999, (f) Google Earth (GE) very high
resolution imagery (VHRI) ‘‘zoom-in-views’’ of over 15,000 points,
and (g) field-plot data points from nearly 8000 points sourced from
degree confluence project (DCP) and collected during this research.
The detail descriptions of the above data sets are explained in the
Thenkabail et al. (2006, 2008).

2.2. Mega-file data-cube (MFDC) of time-series satellite sensor data

Most of the global agricultural land use types are seasonal in
nature in terms of the canopy cover, growth, and senescence of
vegetation strata. Mapping and monitoring agricultural season-
ality at the global level requires information at high temporal
frequency. Remote sensing data allows us to obtain such time
responsive information at a global scale (IGBP, 1992). In this study,
we use state-of-art pathfinder time-series satellite data derived
from NOAA AVHRR (http://www.iwmidsp.org), SPOT-Vegetation
(http://www.spot-vegetation.com), and a suite of secondary data
(Table 1) to map the rainfed croplands of the world. Time-series
data helps to differentiate the dynamics of agriculture to delineate
rainfed croplands from other LULC types. Table 1 describes the
dataset used and its characteristics. Arrangement of datasets was
one of the important components for the time-series analysis.
Time-series data sets were arranged as layer by layer (layer stack)
in common projection and uniform unsigned 8-bit level to
synchronize the variability from its original form to generate a
single mega-file data-cube of 159 layers in image processing
software (e.g., ER-Mapper and ERDAS Imagine) consisting of data
outlined with characteristics in Table 1. This single MFDC was re-
sampled and saved as 1-km grid file, the volume of which was
110GB. This consisted of (Table 1): (a) 144 AVHRR layers from 3
years (12 layers with 1 layer per month � 4 bands per month with
red, near-infrared, thermal infrared, and NDVI layers,�3 years), (b)
12 SPOT layers from 1 year, (c) a single layer of elevation, (d) a
single layer of mean rainfall for 40 years, and (d) a single layer of
forest cover (Table 1). Table 1 describes the dataset used and its
characteristics.

2.3. Field-plot data

Field-plot data is important to understand the real situation on
the ground for class identification, naming, and accuracy assess-
ment. One of the strengths of this work is the collection of a large
volume of field-plot data (Fig. 1) that is made available to public
through International Water Management Institute’s Data Store-
house Pathway (IWMIDSP; http://www.iwmidsp.org). The three
distinct field-plot data are described below.

2.3.1. GMRCA project field-plot data

A total of 1861 field-plot points were collected during various
field campaigns in India, China, Central Asia, West Africa, Middle
East, and Southern Africa. The data consist of precise location, land
use/land cover, irrigated croplands, rainfed croplands, canopy
cover percentage, and digital photos. Of this 936 points were used
during the class identification and labeling and the remaining 915
were reserved for class accuracy assessment of GMRCA.
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2.3.2. Google Earth field-plot (GE-FP) data

A total of 11,000 locations of sub-meter to 0.6–4 m very high
resolution imagery zoom-in-views from Google Earth were used as
‘‘field-plot areas’’. These areas of interests (AOIs) provided visual
information on various landscape feature and classes such as
agriculture, forests, barren, and existence of irrigation structure
(e.g., canals, tanks and reservoirs). The visual interpretation keys
such as such as shape, size, texture, pattern, tone, and association
were used to distinguish the various LULC classes (Lillesand and
Kiefer, 1987) Using Google Earth very high resolution images as
AOIs have an advantage over point based field-plot in that it
provides information on much larger areas, and therefore more
representative view than is normally sampled directly on the
ground. The simultaneously unsupervised clusters were also
overlaid on the Google Earth high resolution base images to
identify the class using image interpretation keys. In addition,

1009 randomly sampled Google Earth points were used for the
purpose of accuracy assessment of the GMRCA.

2.3.3. Degree confluence project data

The degree confluence project (http://www.confluence.org)
is a voluntary effort of organized sampling of the entire World at
every 1-degree latitude and longitude intersection. The con-
fluence points have precise latitude, longitude, and a digital
photo. We used DCP data, putting the entire dataset in a
geographic information systems (GIS) format to interpret land
use at each location based on the digital photo. Initially, we have
downloaded over 6000 DCP field-plot data points across the
globe. We have each point data with proper LULC based on the
detail description provided by the visitor who collected that
particular point. Unfortunately every field-plot point data does
not have detail description about the factors such as the land

Fig. 1. Distribution of field-plot data points across the World. The field-plot data points were obtained from two sources: (a) field-plot campaigns specific to the project, and

(b) degree confluence project (http://www.confluence.org/).

Table 1
Mega-file data characteristics. A single global mega-file of 159 bands was composed by fusing AVHRR 10-km, SPOT VGT 1-km, and a suite of secondary data. All data were re-

sampled to 1-km in the mega-file.

Band number or

primary source (#)

Wavelength

range (mm)

Duration (year) Number of bands and

radiometry (#; one per month)

Data final format Z-scale

(percent: for reflectance)

Range

Satellite sensor data

AVHRR 10-km

Band 1 (B1) 0.58–0.68 1997–1999 36 Reflectance @ ground, 8-bit 0–100

Band 2 (B2) 0.73–1.1 1997–1999 36 Reflectance @ ground, 8-bit 0–100

Band 4 (B4) 10.3–11.3 1997–1999 36 Brightness temperature 160–340

(Top-of-atmosphere)

NDVI (B2 � B1)/(B2 + B1) 1997–1999 36 Unitless, 8-bit scaled NDVI �1 to +1

SPOT VGT 1-km

NDVI (B2 � B1)/(B2 + B1) 2000 12 Unitless, 8-bit scaled NDVI �1 to +1

Secondary data

GTOPO30 1-km

One-band DCW, DTM, and others 1 time 1 Meters, 16-bit �1 to +1

Rainfall 1-km

One-band Mean of monthly 40-years 1961–2001 1 mm, 16-bit 0–65536

Forest cover 1-km

One-band None 1992–1993 1 Class names, 8-bit 0–256
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use, agriculture, irrigated, or rainfed. So we have dropped many
points whose description is insufficient to label the type of the
LULC class. Finally we were left with only 3982 confluence
points that had detailed LULC type, precise latitude, longitude,
and digital photos.

The above three unique field-plot data (Sections 2.3.1–2.3.3)
were pooled together and their spatial distribution shown in Fig. 1.
All field-plot data were converted to proprietary geographic
information systems formats and were made available publicly
through IWMIDSP.

3. Methods

The basic process involves composing mega-file data-cube
datasets (Fig. 2), segmenting the world into characteristic regions
that were easier to analyze, performing an unsupervised classi-
fication on each segment, grouping similar classes through spectral
matching techniques (SMTs), setting up a class identification and
labeling process (Figs. 3 and 4), resolving the mixed classes (Fig. 5),
and calculating the sub-pixel areas (SPAs) (Fig. 6). Class naming is
standardized with earlier global land cover classifications (Then-
kabail et al., 2008), as far as possible. The specific methods are
discussed in the following sections.

3.1. Segmenting the World into characteristic regions

The original 159 band mega-file data-cube was converted into a
mega-file of segments, each with its own set of 159 bands (see
Fig. 2). In order to create MFDC segments, we will first need to
create masks. The seven global masks are:

� Precipitation less than 360 mm per year (PLT360);
� Precipitation greater than 2400 mm per year (PGT2400);
� Temperature less than 280 K per year (TLT280);
� Forest cover greater than 75% canopy cover (FGT75);
� Special forest SAR (FSAR);
� Elevation greater than 1500 m (EGT1500); and
� All other areas of the World (AOAW).

Masks are achieved by taking the secondary datasets such as
precipitation, elevation, and temperature and applying simple
algorithms in ER-Mapper. For example, in order to create a mask of
areas greater than 1500 m elevation, first the elevation data layer is
displayed on the screen using ER-Mapper software (or other

similar software). This is followed by applying a code in ER-Mapper
such as:

If elevation>1500 then i1 else null

This will retain areas greater than 1500 elevation and makes all
other areas null (zero). Thus the areas of the world with 1500 m or
higher elevation are available as a mask. This mask (EGT1500) is
used to overlay on the MFDC (Section 2.2) and create a new mega-file
of only areas of the World greater than 1500 m elevation. The same
process is repeated for creating MFDC segments of other segments.

Segment based classification and class identification is very
helpful for rapid identification of classes. For example, we can be
almost certain that there is little or no agriculture possible in areas
with temperature less than 280 K. So when the MFDC of TLT280 is
classified into few hundred classes, each of these classes is unlikely
to be agriculture and certainly not irrigated. In contrast, the classes
with high vegetation amongst the classes generated from the
PLT360 are likely to be irrigated. Certainly any agriculture in this
area is irrigated. So, identification and labeling of classes becomes
simpler by taking a segment based classification and class
identification approach.

3.2. Spectral matching techniques to group classes

Class signatures (e.g., Fig. 3b and c) were generated based on
classification of various MFDC image segments as a function of
temperature, elevation, and precipitation (Fig. 2). Class signatures
were based on time-series NDVI derived from AVHRR\VGT. For
each segment, 100–250 classes were generated using unsuper-
vised classification algorithms (ISODATA clustering) and when a
particular class was mixed, the area of this mixed class was masked
and re-classified. For all segments, maximum of 250 classes were
attempted. However, for certain segments we got less than 100
classes using ISOCLASS clustering based on how many unique
classes a maximum likelihood classified could classify. Classes
were considered mixed, when it was not possible to definitively
identify these classes after going through class identification and
labeling protocols described in Sections 3.2.1–3.2.3. Mixed classes
were resolved as described in Section 3.4.

3.3. Class identification and labeling

The class identification and labeling process involved the use of
spectral matching techniques (Section 3.3.1), bi-spectral plots

Fig. 2. Flow chart for the global map of rainfed cropland areas (GMRCA).
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(Section 3.3.2), Google Earth very high resolution imagery (Section
3.3.3), and field-plot data (Sections 2.2 and 2.3). It is possible to
determine a class by using any one of these techniques or we may
need some or all of them. For example, field-plot data may identify
a particular class without any margin for error (e.g., 40 out of 40
points showing a class as a particular type or in the least an
overwhelming proportion of points falling into a single class).
When there is ambiguity, we may use other methods to provide
supporting evidence that the class indeed belongs to a particular
type or it is indeed mixed.

The first step in class identification and labeling was done
using spectral matching techniques (Homayouni and Roux,
2003; Thenkabail et al., 2007b). The SMTs groups classes with
similar spectral characteristics (e.g., Fig. 3b and c). The spectral
correlation similarity (SCS) R2-squared values which identifies
and matches classes with similar shape of time-series spectra
(e.g., NDVI, surface reflectivity) were used to group classes (e.g.,
Fig. 3b and c) whose spatial distribution was illustrated in
Fig. 3a. For example consider SPOT VGT NDVI values of four
classes. The classes 34 and 40 (Fig. 3b) had an SCS R2-value of
>0.95. Similarly classes 50 and 52 were highly correlated with
R2-value of >0.95 (Fig. 3b). This implies that these classes are

similar and can be merged. This is especially so for classes 50 and
52 since the NDVI time-series spectra of these classes match
both in terms of shape and magnitude. In case of classes 34 and
50, there is a shape match, but not magnitude. This implies,
before combining these classes further investigation (Sections
3.3.1–3.3.3) is needed to ensure the classes are of similar
characteristics. The quantitative SMTs facilitate identification of
a group of similar classes and are a powerful first step in class
identification and labeling.

3.3.1. Using ideal (or target) spectral data bank (ISDB)

The ideal or target spectral data bank was created based on
field-plot data points of: (a) this project (Sections 2.3, 2.3.1 and
2.3.2), and (b) degree confluence project (Section 2.3.3). The ideal
or target spectra were generated by precise knowledge of a class
through field-plot and generating the time-series class signature
(NDVI or surface reflectivity) using mega-file data-cube. For
example, a class such as ‘‘rainfed, single crop, season 1’’ is
established based on numerous NDVI spectral signatures of such a
class gathered from spatially well distributed points. The class
spectra were generated from ISOCLASS unsupervised classification.
Spectral correlation similarity R2-values were used for matching

Fig. 3. Class identification and labeling process based on time-series spectra of class. The classes generated (a) by classifying the multiple-sensor mega-file data are identified

and labeled based on several approaches described in this paper. One such method is illustrated here where classes are identified and labeled based on time-series

characteristics of classes in: (i) SPOT VGT (b) and (ii) AVHRR (c). The classes 34 and 40 and classes 50 and 52 had similar time-series SPOT NDVI with R2-value >0.95. The

classes 50 and 52 match very well in both shape and magnitude. However, class 34 matches class 40 in shape, but not magnitude.

C.M. Biradar et al. / International Journal of Applied Earth Observation and Geoinformation 11 (2009) 114–129118
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the class spectra with ideal spectra. The 100s of classes of class
spectra were matched with each ideal spectrum to see how many
classes of class spectra match with different ideal spectra (e.g.,
Fig. 3b). Using SCS R2-values makes this matching an automated
process. The SCS R2-values are shape measure. Typically, when SCS
R2-values between ideal spectra and class spectra was >0.80 then
we considered the classes as having close similarity. Once this was
the case, the class spectra in consideration were further
investigated using Sections 2.3.1–2.3.3 before firmly labeling the
class spectra. It is possible to have both shape and magnitude
measure by using Spectral Similarity Value (SSV) (Thenkabail et al.,
2007b). For a detailed explanation of SMTs, please refer to
Thenkabail et al. (2007b).

Theoretically, all classes in class spectra generated from
unsupervised classification should have an ideal or target spectra.
However, the ISDB is not often as comprehensive to include all
classes. And hence only a certain percentage of classes were
identified and labeled directly by using the ISDB.

3.3.2. Using bi-spectral plots and space-time spiral curves (ST-SCs)

The 2-dimensional (2-d) bi-spectral plots (e.g., Fig. 4a), and ST-
SCs (e.g., Fig. 4b) were useful in class identification process when
used in conjunction with field-plot data (Sections 2.2 and 2.3). The
ST-SCs (Fig. 4b) depict time-series characteristics such as band
reflectivity (Fig. 4a and b) of a class in 2-d feature space (2-d FS).
Each class has a territory in which they move around every year.
They may have completely distinct territories or may criss-cross
each other during certain periods of the year. The advantage of ST-
SCs is the time component as we can track class movement in 2-d
FS continuously over a season or a year. In contrast the bi-spectral
plot is limited to a single date event of class characteristics. Classes
such as rainfed and forests have the largest territories in contrast to
low and scattered vegetation classes (barren and wetlands)
(Fig. 4b). We have this approach to match and group classes that
are falling within similar ST-SC plots and have usually character-
istic territory that leads to more precise interpretation of the
nature of the class (based on sound field knowledge of at least one

Fig. 4. Class identification and labeling process based on bi-spectral plots and space-time spiral curves. The class spectral characteristics are depicted in 2-dimensional bi-

spectral plots (a) and identified and labeled based on combination of their location in spectral space and through field-plot knowledge. The time-series characteristics of the

classes are also depicted in 2-d plots in which every class moves through a ‘‘territory’’ in a calendar year and these characteristics are referred to as space-time spiral curves

(b).

C.M. Biradar et al. / International Journal of Applied Earth Observation and Geoinformation 11 (2009) 114–129 119
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Fig. 5. Resolving the mixed classes. The mixed classes are resolved through decision tree algorithms (illustrated using principal component analysis or PCA in this figure).

Fig. 6. Sub-pixel area (SPAs) calculations. The rainfed cropland areas were established using SPAs using the three robust methods (Thenkabail et al., 2007b). The sub-pixel

decomposition technique (SPDT) is illustrated here for the class1. Every pixel of a rainfed class is depicted in a 2-dimensional red versus near band reflectivity plot (e.g., this

figure). Based on where the pixels fall on a 2-d plot, percentages are assigned.

C.M. Biradar et al. / International Journal of Applied Earth Observation and Geoinformation 11 (2009) 114–129120
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or more classes in a group). In Fig. 4b, rainfed areas have the largest
‘‘territory’’ because it’s high variation in vegetation growth from
the sowing to peak vegetation/flowering and harvesting. It is
important to know the spatial distribution of the class and field-
plot knowledge to be definitive of the class name. The ST-SCs
provide very good indications of the classes based on where they
occur and their ‘‘territorial’’ characteristics (Fig. 4b). The 2-
dimensional spectral characteristics of the classes that need to
be identified are depicted in the bi-spectral plots (e.g., Fig. 4a) and
through space-time spiral curves (Fig. 4b). The specific location of a
class in 2-d feature space was indicative of the class type that was
further verified using field-plot data reported in Sections 2.2 and
2.3. Also, when classes cluster in specific location of the 2-d FS, all
the clustered classes are likely to be similar classes.

3.3.3. Using Google Earth and field-plot data

About 11,000 Google Earth very high resolution imagery zoom-
in-views were used in class identification and labeling. In addition,
nearly 6000 field-plot points from this project and sourced from
degree confluence project were used. The Google Earth field-plot
and field-plot data from various sources were used in two ways to
identify and label classes as described in Section 3.3.4.

3.3.4. Final labeling of classes

Class labeling is a systematic procedure. First, classes were
initially grouped using SMTs and identified using ISDB (Section
3.3.1). Second, initial identification also involves bi-spectral plots
and ST-SCs plots (Section 3.3.2). These two steps will lead to
preliminary labeling. Third, GE-FP and field-plot data were used for
the purposes of further identification and verification. For every
class, 30–60 Google Earth very high resolution ‘‘zoom-in-view’’
sample locations were investigated. For each investigated point a
class name was given based on image interpretation techniques
such as shape, size, texture, location, and proximity to water
sources. If an overwhelming majority of the classes were named as
a single class (e.g., rainfed), then the class name becomes clear. If
there were more than one possible name, then the class was
further investigated using field-plot data and resolved. In many
ways, Google Earth data is similar to field-plot data and in some
cases, even better because it provides spatial view that is not
provided by field-plot data. Fourth, field-plots were used either to
exclusively identify classes or to provide supportive and definitive
evidence of the class labeling during any of the steps one through
three. Overall, it is better to integrate these methods to identify and
label classes.

3.4. Resolving mixed classes

In spite of rigorous methods of class identification and labeling
(Sections 3.3.1–3.3.4), some classes remain unresolved due to
presence of more than one class within a class. When a global level
classification is performed using ISOCLASS clustering algorithm,
we may specify 250 classes (maximum possible using ERDAS
Imagine software) for every segment. However, some of these
classes actually have several sub-classes within a broad class. For
example, we will have irrigated crop mixed with rainfed crop. We
can separate this by several ways. First, we can take one of this
mixed classes, use it as a mask to further segment a MFDC, re-
classify this area, and obtain several classes. When such an
approach is used, we may be able to separate originally mixed
rainfed class from irrigated class and so on. There are other
approached of resolving the mixed classes by employing decision
tree algorithms (Defries et al., 1998), and spatial modeling
(Thenkabail et al., 2006, 2008).

In mask and re-classification approach, mixed class areas were
overlaid on image file and the areas masked out. Such an image

area was then re-classified and the process of class identification
and labeling (Section 3.3) were repeated. In the second method,
decision tree algorithms (e.g., Fig. 5) were used to resolve classes.
For example, in Fig. 5, we illustrate a mixed class areas for which a
principal component analysis (PCA) image was taken, classified
using unsupervised classification, and a decision tree code written
to identify and label classes. In the third method, we take the mixed
classes and perform GIS spatial analysis to resolve the classes. We
have used secondary datasets such as elevation, aspect, slope,
evapotranspiration to GIS modeling to separate mixed pixels of
two or more classes. For example, a mixed class having pixel of
forest and croplands, we used slope as a criteria and assumed that
cropland are usually not at slope more than 20% and forest can
occur even more than 20% slope. The mixed class (forest and
cropland) is multiplied with slope map to segregate the mixed
pixels into forests and croplands.

3.5. Sub-pixel area calculations

It is now well known that accurate estimates of areas from
coarse resolution imagery can only be achieved based on sub-pixel
areas. The two established SPA calculation techniques and
methods are described in Thenkabail et al. (2007a) and Biggs
et al. (2006). We adopted these methods to calculate precise
rainfed areas. The sub-pixel rainfed cropland areas were calculated
by multiplying full pixel areas (FPAs) of that pixel with rainfed area
fractions (RAFs). The RAFs were determined by using three
methods (Thenkabail et al., 2007b): (a) Google Earth Estimates
(GEE), (b) high resolution imagery (HRI), and (c) sub-pixel
decomposition techniques (SPDT). Of these three methods, SPDT
is automated and relatively fast. The SPDT involves plotting the
reflectivity of red versus near-infrared (Kauth and Thomas, 1976)
for every pixel in a class in a feature space. Depending upon the
pixel location in the feature space plot, the percent area cultivated
was determined, providing us with RAFs. A detailed explanation of
deriving sub-pixel area fractions is provided in Thenkabail et al.
(2007b). So we refer the reader to this paper.

In this study, we used the RAFs derived from the three methods
and used an average of the three methods to come to a final RAFs
(Table 2). When RAFs of two methods for a class were significantly
different (�0.05) then we re-investigated the class for RAF to ensure
that the two methods had significantly similar RAFs. This we had to do
for three of the nine classes.

4. Results and discussions

The final outcome is an aggregated 9-class global map of rainfed
cropland areas (Fig. 7). The class names indicate (Table 2 and
Fig. 7): (a) rainfed classes with little or no other classes mixing with
them (classes 1 and 2), (b) significant rainfed classes with mix of
grasslands, shrublands, or woodlands (classes 3–5), (c) dominant
grasslands, shrublands, and woodlands, with moderate or low
levels of rainfed croplands (classes 6–8), and (d) dominant forest
lands with significant fragments of rainfed croplands (class 9). The
non-rainfed classes were not mapped and were shown in light
gray. All classes have mixed crops, at 1–10 km resolution this is
unavoidable. Crop dominance for the first two classes was
determined based on field-plot data (Table 2). The total rainfed
cropland area from all nine classes was 1.13 Bha; of this the first
two classes have 36.5%. These two classes were predominantly
rainfed croplands with very little other land use. The rainfed area
fractions were little over 50% for classes 1 and 2, between 34–40%
for classes 3–5, and between 12–25% for classes 6–9 (Table 2).
Every rainfed cropland class (or every pixel within a class) has its
own characteristics in terms of its vegetation dynamics, season-
ality, topographic location, and biophysical properties. The
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dynamic properties of an individual class allows one to study
variables such as cropping calendars, crop growth stages, biomass
levels, and rainfed fractions.

There was also a disaggregated GMRCA map with 66 classes, not
presented in this paper, which was made available for download
from the web portal (http://www.iwmigiam.org/). This map will be
specifically useful for those interested in creating more refined
class maps for their areas of interest.

4.1. Global rainfed and total cropland area

The total global rainfed cropland area was determined as
1.13 Bha (Table 2 and Fig. 7). The total cropland areas were
estimated at 1.53 Mha (Table 3) by adding rainfed cropland areas
of this study (Table 3 and Fig. 7) and the irrigated cropland study of
Thenkabail et al. (2006, 2008) for the year 1999 (Fig. 8). These
results compare very well with the cropland areas estimated in
the FAOSTAT (2000) which was based on country statistics
(Table 5 and Fig. 9a and b). Literature shows that the World’s
croplands (rainfed plus irrigated) around the end of the last
millennium was anywhere between 1.11 and 3.62 Bha as reported
in various studies (Table 4). Most global digital maps (e.g.,
Loveland et al., 1999; Olson and Watts, 1982; Matthews, 1983)

over estimate agricultural areas as a result of the full pixel based
area calculations (Xiao et al., 1997; Cramer and Soloman, 1993). A
pixel when classified as agriculture is automatically taken to have
100% croplands in digital global maps. In reality only a certain
percentage of a pixel is in cropland and that percentage can vary
substantially. This is specially so in most developing countries
where cropland areas are highly fragmented and mixed with other
land use/land cover. As a result, the total agricultural lands
estimated in various digital maps were 2.7 Bha by Olson and
Watts (1982) using a 50-km grid, 3.2 Bha by Matthews (1983)
using 100-km grid, and 2.8 Bha by IGBP and USGS using 1-km grid
(see Loveland et al., 1999). The FAOSTAT (2000) estimates at
1.51 Bha for year 1998 and Tilman et al. (2001) estimated 1.54 Bha
for the nominal year 2000. Our estimate for the year 1999
(1.53 Bha) falls between the immediate above two estimates. A
country-by-country comparison between total cropland area
estimated by this study with agricultural census dataset from the
FAOSTAT shows the linear relationship (R2 = 0.94; n = 182; Fig. 9).
The root mean squared error between these two datasets at the
national level is �6 Mha. There was some degree of similarity in
spatial distribution of cropland areas. The FAO statistics show
cultivated areas at about 1.51 Bha (FAO, 2002; Table 4). Grubler
(1994) estimated that an increase of 1 billion arable lands would

Fig. 7. Global map of rainfed cropland areas (GMRCA). This is a 9-class GMRCA map at nominal 1-km resolution produced using a fusion of 1-km SPOT VGT, 10-km NOAA

AVHRR, and numerous secondary data. The first five classes are dominated by rainfed classes, the next three are dominated by savannas with significant rainfed croplands,

and the class 9 is dominated by forests with significant rainfed cropland fragments.

Table 2
Areas of global map of rainfed cropland areas (GMRCA) classes. The areas are computed by taking the full pixel area (FPAs) and multiplying the same with the rainfed area

fraction (RAF). The SPAs provide the actual areas.

Class number Class name Full pixel

area (ha)

RAF*

(ha)

SPA# (ha) Percent of

total area

AVHRR

NDVI

1 Rainfed croplands (corn, soybeans, and wheat dominant) 423,204,269 0.55 232,762,348 20.57 0.39

2 Rainfed croplands (wheat, cotton, and barley dominant) 348,389,483 0.52 181,162,531 16.01 0.43

3 Rainfed croplands and grasslands 569,862,800 0.37 210,849,236 18.63 0.43

4 Rainfed croplands and shrublands 69,362,335 0.34 23,583,194 2.08 0.43

5 Rainfed croplands and woodlands 150,842,832 0.40 60,337,133 5.33 0.27

6 Grassland dominant with rainfed croplands 900,008,806 0.25 225,002,201 19.88 0.32

7 Shrublands dominant with rainfed croplands 416,508,118 0.13 54,146,055 4.79 0.32

8 Woodland dominant with rainfed croplands 359,324,051 0.17 61,085,089 5.40 0.58

9 Forest dominant with rainfed croplands 671,021,180 0.12 82,624,536 7.30 0.26

Note: * = RAF: rainfed area fraction; # = SPA: sub-pixel area.
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be needed for additional 5 billion world population in the 21st
century.

The geographical distribution of the total rainfed cropland area
estimated in this study was closely correlated with the geogra-
phical distribution of human population. The high percent of total
rainfed croplands occur mostly in countries with high population.
The United States, Russia, China, Brazil and India, account for the
highest rainfed cropland areas in the world. However, per capita
rainfed areas in Indian and China were quite low as compared to
rest of the top five rainfed nations. Rainfed croplands were often
inferred and are not reported directly. For example, the FAOSTAT
(2000) reports total croplands as 1.51 Bha without any indication
of the break-up between rainfed and irrigated areas. The FAO and
the University of Frankfurt study (Siebert et al., 2006) reported
global irrigated areas as 278.4 Mha. In an earlier study, Thenkabail
et al. (2008) reported the total global net irrigated area was
399 Mha (Table 2). The FAOSTAT (2000) estimates at 1.51 Bha for
year 1998 and Tilman et al. (2001) estimated 1.54 Bha for the
nominal year 2000. Our estimate for the year 1999 (1.53 Bha) falls
between the above two estimates. The causes of these differences
were due to: (a) methods and approaches employed, (b) definition
of irrigated and rainfed areas (e.g., supplemental areas are at times
mapped as irrigated and at other times mapped as rainfed), (c)
accounting or non-accounting for informal irrigation (e.g., ground
water, small reservoirs, and tanks as irrigated), (d) uncertainties in

rainfed area fractions, and (e) resolution (or scale) of the imagery
used.

4.2. Continental rainfed cropland area statistics

Of the 1.13 Bha (Table 3) of rainfed croplands in the World, Asia
dominates with 29%, followed by Europe (20%), North America
(17%), Africa (17%), South America (14%), and Australia (3%)
(Table 5).

The total cropland area of the world has not changed significantly
compared to population growth. Compared to the early 1960s and
the late 1990s, the world cropland grew by only 11%, while world
population almost doubled. As a result, cropland per person fell by
40%, from 0.43 ha to only 0.26 ha and reduced from 0.23 to 0.11 ha
(FAO, 2002). Much of the increased food production has come from
the green revolution involving higher yielding grain varieties, and
rapid expansion of irrigated areas. The increased population and
little or no scope for further expansion of the cropland areas without
significant environmental damage requires us to think anew on
strategies for higher food production in from the available
agricultural lands and available water. In the future, approximately
80% of increased crop production in developing countries will have
to come from intensification: higher yields, increased multiple
cropping, and shorter fallow periods.

4.3. Country rainfed cropland areas and a summary of rainfed,

irrigated, and total cropland areas

The cropland area statistics are provided for the 182 countries
(Table 6) and total cropland area compared with FAO statistics
(FAOSTAT, 2000). Table 6 is arranged based on the ranking of the
global cropland areas (rainfed plus irrigated). It is obvious that
some of the countries like India and China have overwhelming
dominance of irrigated areas (Table 6), but have relatively low
rainfed areas (Table 6). The rainfed croplands (Fig. 8) are dominant
in the United States (11.8% of 1.13 Bha), followed by Russia (10.1%),
China (8.1%) Brazil (7.72%), India (4.31%), Australia (3.25%), Canada
(3.09%), and Argentina (3.03%). These eight countries have 51.4% of
all global rainfed croplands. There are 12 countries between 1.1
and 2.8%. The rest of the countries have less than 1% of the total

Table 3
Cropland areas of the continents and the World. The rainfed, irrigated, and the total

cropland areas for the continents and the World.

Sl. no. Continents

(name)

Irrigated area

(Million ha)

Rainfed area

(Million ha)

Total cropland

area (Million ha)

1 Africa 8.69 189.05 197.74

2 Asia 290.64 327.29 617.93

3 Australia 11.87 36.76 48.63

4 Europe 33.94 227.89 261.83

5 North America 35.43 190.67 226.10

6 Oceania 17.84 1.46 19.30

7 South America 0.13 158.44 158.57

Total 398.53 1131.56 1530.09

Fig. 8. Global rainfed croplands along with irrigated crops and other land use/land cover. The classes 1 and 2 are irrigated croplands, classes 3 and 4 are rainfed croplands, class

5 is natural vegetation with significant rainfed fragments, and the rest of the classes are non-croplands (http://www.iwmigiam.org).
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global rainfed cropland areas. The first 20 countries account for
70% of all rainfed croplands and first 40 countries account for 84.2%
of all rainfed croplands (Table 6). Roughly one third of the World’s
population lives in two countries. China and India are the most

populous countries in the world with only 23% of the total cropland
area. The geographical distribution of the total rainfed cropland
area estimated in this study is closely correlated with the
geographical distribution of human population. The high percent
of total rainfed croplands occur mostly in countries with high
population. The United States, Russia, China, Brazil and India,
account for the highest rainfed cropland area in the world.
However, per capita rainfed area in Indian and China is quite low as
compared to rest of the top five rainfed nations.

4.4. Spatial distribution of rainfed cropland areas

The cropland distribution estimate based on this research
indicates that 1.5 Bha of the earth’s land surface has been put
under agricultural crop production (irrigated and rainfed area).
This indicates that roughly one third of the total potential area
available for crop production is being utilized. There is still a large
surface area available for further expansion of agricultural
croplands especially in Latin America and Africa. However,
expansion of croplands in these regions depends on crop
management practices, where soil degradation will determine
the success of crop production. Highly populated nations such as
China and India have little scope for further expansion or
intensification of cropland areas.

Fig. 9. Global total cropland area estimated from this study is compared with FAOSTAT data compiled from national agricultural census data.

Table 4
Cropland areas of the World estimated from various sources. The cropland areas

(rainfed + irrigated) of the World estimated from different sources for the end of the

last millennium shows huge differences from one source to another.

Total cropland area (Bha) Year Source

1.11 2000 Hansen et al. (2000)

1.34 1994 Warnant et al. (1994)

1.36 1999 Houghton (1999)

1.39 1999 Loveland et al. (2000)

1.40 1991 FAO (1990, 1991)

1.48 2001 Goldewijk (2001)

1.48 1998 Amthor et al. (1998)

1.50 1991 Lal and Pierce (1991)

1.50 2003 WRI (2003)

1.51 1998 FAOSTAT (2000)

1.53 1999 Our estimation (see Table 3)

1.54 2000 Tilman et al. (2001)

1.60 1998 WBGU (1998)

1.79 1998 Ramankutty and Foley (1998)

2.79 2000 WRI (2000)

3.62 2000 Wood et al. (2000) and WRI (2000)

C.M. Biradar et al. / International Journal of Applied Earth Observation and Geoinformation 11 (2009) 114–129124



Author's personal copy

Table 5
Country level statistics for annualized irrigated area, rainfed cropland area and total cropland areas. The ranking of the countries based on total cropland areas.

Rank Countries Annualized irrigated areaa (ha) Rainfed cropland area (ha) Total cropland area (ha) by GMRCA

1 China 151,802,086 91,635,702 203,624,473

2 United States 24,309,188 133,571,602 161,617,081

3 India 132,253,854 48,824,269 150,059,162

4 Russia 11,203,530 114,788,560 128,675,415

5 Brazil 4,085,844 87,408,556 91,603,674

6 Australia 5,373,409 36,758,302 48,623,546

7 Argentina 8,766,412 34,318,900 43,623,158

8 Kazakhstan 6,469,685 31,722,986 38,950,704

9 Canada 2,874,252 34,944,402 37,602,699

10 Ukraine 2,381,799 28,290,153 31,285,731

11 Indonesia 3,322,443 17,573,608 20,746,487

12 France 2,687,153 17,648,821 20,048,339

13 Spain 3,025,823 15,392,046 18,813,770

14 Pakistan 15,959,342 3,642,557 17,678,708

15 Zambia 536 16,677,106 16,677,885

16 Thailand 7,397,368 9,931,747 16,542,332

17 Tanzania 46,998 16,410,652 16,457,674

18 Mexico 3,608,730 12,497,923 16,352,595

19 Congo, DPR 20,375 15,815,336 15,837,169

20 Poland 454,111 14,424,037 14,775,550

21 Mozambique 60,742 13,726,544 13,782,960

22 Angola 34,158 13,454,118 13,477,434

23 Turkey 1,577,313 10,603,366 12,356,748

24 Germany 3,001,674 8,998,878 11,196,575

25 Belarus 60,926 10,968,114 11,052,202

26 South Africa 828,491 10,097,803 10,918,843

27 Ethiopia 162,808 10,564,343 10,748,582

28 Myanmar 6,306,671 6,257,996 10,710,993

29 Vietnam 4,949,533 5,967,528 10,351,550

30 Romania 2,049,888 7,563,254 9,938,493

31 Nigeria 216,154 9,572,789 9,770,698

32 Sudan 1,930,592 7,816,063 9,553,181

33 Italy 2,644,140 6,436,452 9,265,975

34 Philippines 1,789,108 7,479,645 9,022,274

35 Bolivia 163,036 8,803,829 9,017,920

36 Zimbabwe 3,533 8,781,932 8,786,677

37 Iran 2,488,558 5,509,694 8,133,031

38 Bangladesh 7,166,028 2,536,292 7,771,342

39 Uzbekistan 5,295,515 2,821,987 6,423,474

40 Kenya 104,527 5,944,333 6,029,734

41 United Kingdom 1,060,204 5,014,629 5,985,362

42 Japan 2,468,596 3,428,667 5,953,762

43 Colombia 592,495 5,359,287 5,905,473

44 Paraguay 25,029 5,538,996 5,567,578

45 Madagascar 75,156 5,345,476 5,417,835

46 Malaysia 274,565 5,042,468 5,301,234

47 Peru 374,954 4,846,774 5,202,729

48 Cote d’Ivoire 101,890 4,986,024 5,081,162

49 Uganda 30,586 5,012,869 5,042,886

50 Bulgaria 1,012,064 3,416,518 4,718,322

51 Morocco 1,153,817 3,603,724 4,648,843

52 Cambodia 938,441 3,868,166 4,604,483

53 Hungary 186,221 4,358,475 4,600,188

54 Nepal 1,477,303 3,131,060 4,383,047

55 Venezuela 807,078 3,256,971 4,151,851

56 Chile 1,445,230 2,412,213 3,927,135

57 Afghanistan 923,490 2,748,082 3,756,220

58 Uruguay 360,055 3,354,348 3,735,751

59 Greece 766,678 2,757,498 3,665,237

60 Algeria 136,946 3,520,819 3,665,169

61 Czech Republic 701,727 3,068,209 3,586,245

62 Iraq 2,626,564 1,356,711 3,576,735

63 Botswana 4,278 3,198,620 3,204,037

64 Ecuador 281,166 2,844,430 3,133,011

65 Korea, Rep. 1,313,755 1,928,760 3,121,229

66 Serbia 234,348 2,947,604 3,119,543

67 Portugal 313,908 2,756,177 3,115,042

68 Korea, DPR. 2,053,625 1,598,207 3,065,469

69 Ghana 71,764 2,716,307 2,776,954

70 Lithuania 41,591 2,651,512 2,708,784

71 Kyrgyzstan 770,274 1,990,967 2,691,843

72 Cameroon 52,128 2,591,767 2,644,461

73 Mongolia 376,378 2,136,984 2,559,316

74 Cuba 637,159 2,007,424 2,494,322

75 Guinea 320,350 2,190,800 2,493,433

76 Egypt 3,292,726 281,590 2,425,690
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Table 5 (Continued )

Rank Countries Annualized irrigated areaa (ha) Rainfed cropland area (ha) Total cropland area (ha) by GMRCA

77 Central African Republic 1,086 2,393,214 2,394,369

78 Sri Lanka 809,579 1,439,246 2,387,275

79 Congo 0 2,386,480 2,386,480

80 Azerbaijan 821,980 1,398,784 2,234,411

81 Senegal 290,572 1,980,242 2,191,659

82 Mali 65,879 2,051,073 2,107,428

83 Turkmenistan 1,999,984 542,979 2,065,350

84 Latvia 7,325 2,040,565 2,053,248

85 Burkina faso 14,660 2,025,961 2,041,623

86 Laos 107,734 1,917,269 2,022,854

87 Malawi 2,794 1,996,142 1,999,435

88 Austria 98,551 1,822,194 1,938,650

89 Moldova 229,433 1,533,012 1,827,082

90 Slovakia 75,488 1,690,815 1,800,719

91 Denmark 979,539 517,119 1,681,824

92 Taiwan, Province of China 677,877 1,111,947 1,610,990

93 Papua New Guinea 0 1,607,752 1,607,752

94 Liberia 300 1,598,806 1,599,043

95 Croatia 44,630 1,551,680 1,586,883

96 New Zealand 141,686 1,459,699 1,585,089

97 Tajikistan 449,153 1,190,392 1,573,635

98 Somalia 403,574 1,189,487 1,561,962

99 Guatemala 91,313 1,440,867 1,510,240

100 Honduras 77,729 1,384,346 1,454,930

101 Syria 596,263 879,249 1,446,239

102 Netherlands 1,011,340 564,102 1,434,345

103 Belgium 507,430 1,101,425 1,426,221

104 Tunisia 100,647 1,284,882 1,394,025

105 Sierra Leone 29,037 1,336,205 1,358,012

106 Bosnia and Herzegovina 14,203 1,303,620 1,314,387

107 Nicaragua 22,720 1,241,957 1,258,396

108 Sweden 71,108 1,040,821 1,124,739

109 Albania 225,864 864,549 1,088,326

110 Panama 45,048 1,037,572 1,086,641

111 Gabon 0 1,084,861 1,084,861

112 Estonia 14,476 1,052,562 1,077,199

113 Chad 27,698 925,287 950,520

114 Georgia 146,141 796,878 925,416

115 Macedonia 131,620 695,920 865,762

116 Finland 71,961 721,148 846,455

117 Burundi 8,490 798,743 810,536

118 Rwanda 64,806 710,557 790,624

119 Costa rica 15,791 772,096 784,724

120 Togo 23,843 725,130 746,856

121 Saudi Arabia 551,066 63,518 742,196

122 Switzerland 36,976 690,849 720,372

123 Niger 4,317 703,697 707,826

124 Benin 15,415 668,742 683,915

125 Namibia 9,303 672,697 683,224

126 Libya 210,022 412,158 642,814

127 Ireland 0 630,766 630,766

128 Dominican Republic 79,648 550,415 621,291

129 Swaziland 97,004 446,942 596,216

130 Lesotho 3,681 571,627 577,303

131 Slovenia 510 542,220 542,659

132 Haiti 53,903 486,161 537,009

133 Armenia 118,324 415,591 522,285

134 Norway 1,453 485,336 487,408

135 Montenegro 13,908 364,360 374,691

136 El Salvador 10,401 294,667 306,258

137 Guinea-Bissau 155,389 191,959 300,001

138 Yemen 79,188 206,310 297,998

139 Guyana 102,930 184,027 280,303

140 Eritrea 13,776 232,850 249,868

141 Thegambia 63,415 197,119 236,991

142 Belize 3,510 228,077 231,964

143 East Timor 4,061 222,063 225,863

144 Israel 104,542 101,665 201,470

145 Cyprus 4,863 148,942 156,041

146 Bhutan 1,396 154,068 155,065

147 Lebanon 25,268 126,708 151,455

148 Puerto Rico 11,253 138,701 150,664

149 Jordan 52,541 75,548 148,266

150 Mauritania 20,036 100,469 115,592

151 Luxembourg 0 111,041 111,041

152 Suriname 20,774 88,593 108,439

153 United Arab Emirates 70,603 0 93,810
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The spatial distribution of global rainfed croplands relative to
global irrigated croplands and other global LULC classes (http://
www.iwmigiam.org) are shown in Fig. 8. China and India with
about 2.6 billion people mostly depend on irrigation, often double
cropping, to feed their populations (Thenkabail et al., 2008). In
contrast, North America and Europe, with a combined population
of about 1.3 billion depend on rainfed agriculture with only one
crop per year. They also export large quantities of their food grains
to other continents (Thenkabail et al., 2008). Globally, on an
average only 0.26 ha per capita of cropland (including irrigated and
rainfed) is available for the food production. The per capita
availability of world total cropland area has decreased due to
population growth, soil degradation, and salinisation (Thomas and
Middleton, 1993; Worldwatch Institute, 2001; Preiser, 2005). In
contrast, North America and Europe accounts 0.55 ha per capita
cropland area to support the diverse food system. Over 60% of the
world population lives in Asia with support of the 40% of the total
cropland area. In others words, Europe and North America
accounts 16% of the global croplands areas with only 9% of the
total population of the world. Asia accounts only 0.17 ha of total

croplands area available per capita which is lowest against 0.26 of
the global average. North America has the highest per capita
cropland area of 0.74 ha followed by Europe (0.36), South America
(0.31), and Africa (0.26).

4.5. Accuracy assessments

The accuracies and errors were assessed based on pooling two
unique and independent datasets that were not used during the
class identification and labeling process. A total of 1924 field-plot
data points were used in class accuracy assessment. First, the 915
field-plot data points reserved for accuracy assessment from
GMRCA field campaigns were pooled and the accuracy was
assessed. Second, the 1009 randomly generated field-plot data
points were also used separately. Finally, all the points from field-
plot and Google Earth were pooled and an accuracy assessment
was conducted using 1924 points. Table 6 shows accuracy of the
rainfed croplands with errors of omission and commission.
Accuracy of the rainfed croplands found varied between 92 and
98%. However, the errors of omissions were 2–8% and errors of

Table 6
Accuracy of the rainfed cropland areas of the World. The rainfed classes were assessed for accuracies using data from two sources: (a) IWMI groundtruth (IWMI-GT) data, (b)

Google Earth groundtruth (GE-GT) data and (c) combined IWMI and GE-GT data.

Level of accuracy

assessment

Total groundtruth

sample size of rainfed

and non-cultivated

areas (#)

Total groundtruth

sample size of

rainfed areas (#)

Accuracy of rainfed

area classes (rainfed

GT points falling on

rainfed areas) (%)

Khat Coefficient (%) Errors of omission

(rainfed GT points

falling on non-rainfed) (%)

Errors of commission

(non-rainfed GT points

falling on rainfed) (%)

(a) IWMI-GT Data 915a 549 92 75.5 8 36

(b) GE-GT Data 1009b 647 98 76.0 2 19

(c) IWMI-GT + GE-GT 1924c 1196 95 75.6 5 27

a Groundtruth (GT) data points of the World for rainfed and non-rainfed areas collected by IWMI. The same data is also used for identification of the disaggregated classes.

These are non-independent data sets.
b Google Earth groundtruth (GE-GT) data points of the world for rainfed and non-cultivated areas collected by IWMI. The GE-GT points were randomly generated and are

completely independent. These 1009 points were not used in class identification and labeling process.
c The combined IWMI-GT Data and GE-GT Data. Of the 1924 points, 47.5% of points are also used for class identification process as mentioned in the point a.

Table 5 (Continued )

Rank Countries Annualized irrigated areaa (ha) Rainfed cropland area (ha) Total cropland area (ha) by GMRCA

154 Brunei 1,002 86,509 87,308

155 Oman 30,145 66,449 84,302

156 Jamaica 4,556 61,139 66,020

157 West Bank 1,542 64,136 65,748

158 Equatorial guinea 2,644 57,260 60,072

159 Qatar 27,596 0 38,509

160 Kuwait 26,753 0 37,333

161 French Guyana 2,822 18,869 21,729

162 Trinidad and Tobago 1,720 8,590 10,449

163 Singapore 0 8,941 8,941

164 Gaza Strip 6,790 693 6,601

165 Andorra 0 5,776 5,776

166 Mauritius 3,910 0 5,312

167 Liechtenstein 0 4,839 4,839

168 San Marino 797 2,060 3,162

169 Antigua and Barbuda 2,468 0 2,270

170 Guadeloupe 2,022 0 1,894

171 St. Kitts and Nevis 1,445 0 1,650

172 Djibouti 587 0 905

173 Virgin Islands 1,015 0 827

174 Reunion 846 0 651

175 Anguilla 404 0 489

176 Comoros 417 0 241

177 Turks and Caicos Islands 170 0 214

178 Monaco 53 132 206

179 St. Pierre and Miquelon 59 0 70

180 Montserrat 115 0 69

181 Seychells 44 0 66

182 Cayman Islands 55 0 66

466,757,680 1,131,552,270 1,530,079,274

a For irrigated area estimations, refer to Thenkabail et al. (2008).
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commissions were 19–36%. The pooled data from the two sources
provided the rainfed cropland accuracy of 94% with errors of
omission of 5% and errors of commission of 27% (Table 6). The large
error of commission indicates certain fragmented proportion of the
other land use/land cover areas were also mapped as rainfed
croplands. However, there was a number of fundamental issues
related to accuracy assessments at such large scales as 1-km or 10-
km resolution pixel size as explained in Thenkabail et al. (2006).
First, lack of a complete field-plot data base at the global scale
where there are considerable difficulties in field-plotting and
establishing the exact percent of rainfed fraction at the pixel size of
�10,000 ha (AVHRR at �10 km � 10 km). This, typically, lead to
the pixel being labeled as rainfed in field-plot data in one corner of
the �10,000 ha pixel, whereas in reality it has some percent of
other LULC fragments. Second, satellite sensors capture the
average reflectivity from the pixel and hence were influenced by
both the rainfed as well as non-rainfed crops within the pixel
leading to average spectra for the pixel. This can lead to somewhat
higher omission and commission errors. The phenomenon is acute
when dealing with pixels of other LULC area (e.g., grasslands,
shrublands, etc.) with fragmented rainfed croplands which leads to
higher errors of the commission.

5. Conclusions

A global map of rainfed cropland areas was produced and the
area statistics determined for the 182 countries for the end of the
last millennium using multiple resolution, multiple platform
remote sensing at nominal resolution of 10-km.

The study estimated the global rainfed cropland areas as
1.13 billion ha (Bha) at the end of the last millennium. This was 3
times the net global irrigated area which was estimated at
399 Mha by Thenkabail et al. (2008). The total cropland area of
1.53 Bha nearly agrees with the total cropland area reported by
FAO (FAOSTAT, 2000) which was compiled from national statistics.
A country-by-country 1:1 comparison between the two studies
showed an R2-value of 0.94. Since the FAO (Siebert et al., 2006)
study also determines the irrigated areas as 278.4 Mha, their
rainfed cropland areas was about 1.26 billion ha which was about
11.7% (130 million ha) higher than the figures reported in this
study. The total cropland estimates from various studies found in
literature varied from 1.11 to 3.62 Bha compared to 1.53 Bha
determined in this study. The differences were as a result of issues
such as: (a) methods and approaches, (b) definitions, (c)
uncertainties in rainfed area fractions, and (d) resolutions or scale.
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