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A B S T R A C T

The Highly Pathogenic Avian Influenza (HPAI) subtype H5N1 virus persists in many countries and has been
circulating in poultry, wild birds. In addition, the virus has emerged in other species and frequent zoonotic
spillover events indicate that there remains a significant risk to human health. It is crucial to understand the
dynamics of the disease in the poultry industry to develop a more comprehensive knowledge of the risks of
transmission and to establish a better distribution of resources when implementing control. In this paper, we
develop a set of mathematical models that simulate the spread of HPAI H5N1 in the poultry industry in Thailand,
utilising data from the 2004 epidemic. The model that incorporates the intensity of duck farming when assessing
transmision risk provides the best fit to the spatiotemporal characteristics of the observed outbreak, implying
that intensive duck farming drives transmission of HPAI in Thailand. We also extend our models using a se-
quential model fitting approach to explore the ability of the models to be used in “real time” during novel disease
outbreaks. We conclude that, whilst predictions of epidemic size are estimated poorly in the early stages of
disease outbreaks, the model can infer the preferred control policy that should be deployed to minimise the
impact of the disease.

1. Introduction

Since the emergence of highly pathogenic avian influenza (HPAI)
H5N1 in the late 1990s, the virus has had significant impact on poultry
industries around the world and has posed a serious threat to public
health. The majority of outbreaks occur in East and South Asia, a region
that contains half of the population of the world. Whilst the probability
of a human avian influenza (AI) pandemic may appear low based on the
poor ability of the virus to adapt to the upper human airway (Peiris
et al., 2007), the death toll of such an event may be catastrophic. As a
result of the HPAI H5N1 panzootic, there have been 860 confirmed
human cases of avian influenza A (H5N1) in 16 countries and 454
deaths (a human case fatality of 53%) as of 28th May, 2018, based on
World Health Organization (WHO) statistics. The majority of humans
infected with the virus work in professions that involve close contact
with potentially infected poultry (de Bruin et al., 2017) and therefore it

is crucial to understand the dynamics of the disease in the poultry in-
dustry to develop a more comprehensive knowledge of the risks of
transmission to humans.

In Thailand, H5N1 was first detected in the poultry industry in
January 2004 (Tiensin et al., 2005). The first wave of infection took
place from January to May and resulted in 193 reported AI outbreaks. A
second infection wave started in July 2004 and culminated in March
2005, with 1,492 outbreaks notified during this period. Approximately
62 million birds were killed either through infection or through tar-
geted culling as a control measure. In addition, during the 2004 H5N1
epidemic there were 17 human cases of infection and 12 deaths
(Tiensin et al., 2005; Auewarakul, 2008). In an attempt to improve case
detection, the Thai government implemented an X-ray survey (Gilbert
et al., 2006) in September 2004. Control policies such as localised
movement restrictions and 1km ring culling were introduced to reduce
the risk of further spread of the disease; vaccination was not used.
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The spatial distribution of HPAI H5N1 has been studied in several
countries and regions using spatial statistical models (Gilbert et al.,
2006, 2007, 2008, 2010, 2014; Tiensin et al., 2007b, 2009; Paul et al.,
2010, 2014, 2016; Stegeman et al., 2011; Ssematimba et al., 2012;
Artois et al., 2017) and mathematical models (Truscott et al., 2007;
Tiensin et al., 2007a; Boender et al., 2007; Sharkey et al., 2008; Jewell
et al., 2009b; Minh et al., 2011; Walker et al., 2012; Hill et al., 2017,
2018). Evidence from previous work suggests that different landscapes,
production systems and water-related variables are risk factors that will
promote disease transmission. In addition, mathematical models such
as the one that we present here can improve understanding about the
transmission dynamics of infectious diseases and help with an assess-
ment of the effectiveness of control strategies applied during outbreaks
(Stegeman et al., 2011). A key challenge when implementing control is
the lack of clinical signs in many duck species - whilst chickens have a
very high mortality rate for H5N1 (Yu et al., 2007; Jeong et al., 2009),
ducks are largely asymptomatic but can readily transmit the disease. In
addition, in Thailand, as in many other countries in South East Asia, the
presence of free grazing ducks, that feed year round on rice paddies,
have been shown to be a strong predictor for the presence of the disease
in the landscape (Gilbert et al., 2007, 2008). It is therefore crucial to
develop a more detailed understanding of the factors leading to per-
sistence of AI in poultry, the conditions that are most suitable to disease
transmission, and intervention strategies that will minimize the future
impact of the disease.

In this paper, we develop a set of mathematical models to simulate
the spread of HPAI H5N1 in the poultry industry in Thailand. We use
detailed demographic and epidemiological data from the 2004 epi-
demic and fit our models to epidemiological surveillance (X-ray) data.
Our framework will allow us to establish the risk factors that result in
transmission of the disease that will in turn enable us to effectively
target intervention strategies. We will also consider the ability of the
models to be used in “real time”, whereby model parameters are ob-
tained by only using data that are observable at a given stage of the
epidemic. This enables us to determine the potential for HPAI models to
be used during outbreak both in terms of establishing transmission risk
and in determining the most appropriate intervention policy. It also
allows us to quantify how progressive accumulation of information
shapes the knowledge of outbreak dynamics and the robustness of
control strategies.

2. Materials and methods

2.1. Data

In this paper, we use demographic data compiled by the Department
of Livestock Development (DLD, Bangkok) that was constructed
through the X-Ray surveys that were implemented in response to the
H5N1 outbreak in 2004. Demographic data was recorded at the farm/
owner level and consists of the number of chicken and ducks in each
flock, and a unique identifier of the subdistrict where each farm is lo-
cated.

Owing to imperfect reporting at the onset of the epidemic, data for
the first wave of infection in Thailand are largely incomplete.
Therefore, for parameter estimation and analysis, we use the outbreak
data from the second wave of the epidemic that took place from July
2004. In this second wave, more than 1400 outbreaks were reported
and over 62 million birds died or were culled as part of the control
policy (Tiensin et al., 2005). The outbreak data set includes the unique
identifier of the subdistrict as well as the total number of sick, dead and
destroyed animals.

In order to implement our mathematical model, we use geo-
graphical data for each subdistrict including the locations of subdistrict
boundaries and the area of each subdistrict. We infer indices of
neighbouring subdistricts by analysing intersection sets of subdistrict
boundaries. We then calculate the length of all shared boundaries by

fitting a linear spline through shared points on boundaries of neighbour
subdistricts. The proportion of area used by rice paddy fields within
each subdistrict was derived from the moderate resolution imaging
spectroradiometer (MODIS) sensor onboard the NASA Terra satellite
(Xiao et al., 2006).

2.2. Mathematical models

In our model, the basic unit of infection is the flock, and we assume
that all birds (chicken and ducks) within a flock become infected. The
model is stochastic time-discrete (1 day time-step). At any time, t, flocks
can be partitioned into four classes: susceptible, exposed, infectious, or
removed. The total number of infectious flocks at time t are defined as
nI(t). The probability that a susceptible flocks k is infected at time t is
given by

= − −p t λ t( ) 1 exp( ( )),k k (1)

where λk(t) is the force of infection on flock k at time t.
We develop a set of mathematical models of varying complexity

depending on environmental and epidemiological factors with the force
of infection having the following form:

    = + + +λ t e δ n t S t T t( ) (1 ) ( (1 ( )) ( ) ( )) .k k I k k

environmental factors epidemiological factors (2)

Here ek(t) is an environmental factor, which accounts for the effect of
the spatial location, δ is the background term, Sk(t) is the number of
susceptible flocks k and Tk(t) is the transmission rate owing to the
presence of infectious flocks within the subdistrict or in the neigh-
bouring subdistrict. We have included 1+ nI(t) in the model in order to
allow the probability of spontaneous infections even in the absence of
infectious flocks. This situation can occur for example due to the pre-
sence of a wildlife reservoir or the import of infected poultry from other
countries. The spatial heterogeneity is implied in the term ek(t), which
depends on the environmental attributes of the subdistrict that flock k
belongs to. We use a sigmoidal function to account for environmental
factors

=
+

H x n
x

( , ϵ, ) 1
( /ϵ) 1

,n

where x describes the value of the environmental factor at the geo-
graphical unit to which the susceptible flocks belongs. We develop a
meta-population framework for the term Tk(t) following the approach
of Buhnerkempe et al. (2014).

In our modelling framework, we consider transmission via one of
five mechanisms: (i) spatially independent transmission to any sub-
district in Thailand, (ii) transmission within a subdistrict, (iii) trans-
mission across borders to neighbouring subdistricts, (iv) transmission
driven by presence of rice paddies and (v) transmission driven by duck
farm intensity. By varying the combination of these factors, we have
formulated five mathematical models with increasing complexity: a
random process model (Model A), a spatial model (Model B), a spatial
model incorporating rice density (Model C), a spatial model in-
corporating duck intensity (Model D), and a spatial model in-
corporating both rice density and duck intensity (Model E). Details of
the equations governing each model are given below and in the
Supplementary Information. List of parameters is shown in Table 1.

2.2.1. Model A: Random process model
The simplest model for a HPAI outbreak is that of complete spatial

randomness, whereby transmission events are distributed in-
dependently according to a uniform probability distribution over all
susceptible flocks. Under this scenario, the infection pressure at time t
in any susceptible flock is:

= +λ t δ n t( ) (1 ( )).k I

The biological meaning of the model is that the outbreak dynamics
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does not depend on any environmental factors or the structure of the
poultry sector in Thailand. This naive model, whilst unlikely to be re-
presentative of heterogenous transmission routes, provides a baseline
for epidemic spread for comparison with the spatially explicit models.

2.2.2. Model B: Spatial model
The spatial model utilises a classical metapopulation approach,

based upon the model first used by Buhnerkempe et al. (2014). This
model is an extension of the random process model, with the addition of
within and between subdistrict transmission. The model therefore in-
corporates local density-dependent spread and contains three additive
terms representing the different transmission scenarios - the back-
ground term, δ, within-subdistrict transmission with transmission rate
βW and local cross-border transmission with transmission rate βB from
the set of neighbour subdistricts ��k. The framework assumes that
transmission is dependent upon the poultry industry features within a
given subdistrict and within neighbouring subdistricts and ignores the
presence of other landscape features that may results in increased
transmission risk. Under this scenario, the transmission within or be-
tween subdistricts at time t is:

��

∑= +
∈

T t β W I t β B I t( ) ( ) ( ),k W k k B
i

k i i,
k

where Ik(t) and Ii(t) represent the number of infectious flocks within the
subdistrict k and in the neighbour subdistrict i respectively. Details of
the analytical expression of Wk and Bk,i, where both terms account for a
probability of contact between premises within and between sub-
districts. Details of the equations governing each term are given in the
Supplementary Information.

2.2.3. Model C: Spatial (rice) model
Given that previous work suggests that the presence of free grazing

ducks can result in increased transmission risk in Thailand (Gilbert
et al., 2007), here we use data on rice fields in the country (Xiao et al.,
2006) and extend the meta-population model described in the spatial
model above to consider the likelihood of increased transmission risk in
subdistricts with a high density of rice paddies. In order to account for
the role of rice paddies in the infection dynamics, we use a sigmoidal
function that operates as a scaling factor for the infection pressure. We
define rck as the fraction of the area of the subdistrict occupied by rice
paddies. Here a higher infection pressure is presumed to be present for
subdistricts with a higher proportion of rice paddy fields. This depen-
dence is described by the scaling, αR, threshold, ϵR and power, nR.
Therefore, we have that ek= αRH(rck, ϵR, nR).

2.2.4. Model D: Spatial (duck) model
This model builds upon the spatial model but additionally considers

the intensity of duck farming within a subdistrict as an additional factor
influencing transmission. The intensity of the duck industry, dck, is
formalised as a log10 of the size of largest duck flock within a subdistrict
plus one. This dependence is described by the scaling, αD, threshold, ϵD
and power, nD given that the environmental factor is ek= αDH(dck, ϵD,
nD).

2.2.5. Model E: Spatial (duck and rice) model
Our final model incorporates dependence on all factors, i.e. spatial

structure, rice density and intensity of duck farming. Here, ek= αRH
(rck, ϵR, nR)+ αDH(dck, ϵD, nD).

2.3. Fitting the models to outbreak data

Having defined the full modelling framework, we will consider this
suite of nested mathematical models (A–E) to determine the factors that
contribute to transmission of HPAI H5N1 within Thailand. Each model
is fitted to outbreak data using a Bayesian likelihood approach that
determines the parameters that best captures the observations (for de-
tails see Supplementary Material section below).

To establish the ability of each model to capture the spatiotemporal
characteristics of the observed outbreak, we have simulated our models
using the posterior distribution for parameters. We used these simula-
tions to determine the ability of each model at capturing both the
temporal and the spatial epidemic profiles from the 2004 outbreak. This
provides an indication of whether our modelling frameworks are able to
mimic the fine-scale transmission dynamics between poultry farms in
the country. To assess goodness-of-fit of model predictions, we in-
spected the temporal and spatial profiles to ensure our simulations
produced similar patterns to the observed outbreak. We quantify spatial
similarity between observed and predicted maps by calculating the
Jaccard index given

=
∑
∑

J obs sim( , )
min(obs , sim )
max(obs , sim )

,k k k

k k k (3)

where obsk and simk are the observed and simulated number of infected
flocks in subdistrict k. Here, the higher the value of J, the better the fit
to the spatial epidemic. This index gives us a measure of the spatial
accuracy of our model predictions at the subdistrict level.

2.4. Sequential analysis

The model parameterisation that we have described in the section
above determines parameter values by fitting the set of models to the
entire observed spatiotemporal outbreak in Thailand. This gives us an
understanding of the level of complexity required to capture HPAI
epidemic dynamics. It is also important to explore the potential of the
model, so that we can assess whether the frameworks can be used to
provide policy advice for ongoing epidemics. For a sequential analysis,
we re-estimated model parameters by inclemently increasing the length
of the outbreak data, evaluating how increasing amounts of outbreak
data altered and influenced the parameter estimation and model pro-
jections.

In order to investigate the utility of our model predictions and
control options in real time during outbreaks, we fitted the model only
using outbreak data that would be available at particular points during
the epidemic. The model was therefore parameterised using reported
data up to day 10 (183 outbreaks) and then sequentially on days 15
(269 outbreaks), 20 (439 outbreaks), 25 (593 outbreaks), 30 (697
outbreaks), 35 (815 outbreaks), 50 (1170 outbreaks), 75 (1295 out-
breaks), 100 (1324 outbreaks), 125 (1388 outbreaks), 150 (1430 out-
breaks), 175 (1433 outbreaks), and 200 (the entire outbreak, 1435
outbreaks).

Table 1
List of parameters.

Symbol Description (units)

δ Background term
nI(t) Number of infectious flocks
Sk(t) Number of susceptible flocks in a district k at time t
βW Transmission rate within the subdistrict ((flock)−1 (day)−1)
βB Transmission rate from the neighbour subdistrict ((flock)−1 (day)−1)
pC Power coefficient for chicken
pD Power coefficient for ducks
ξ Multiplier for relative infectiousness and transmissibility of ducks to

chicken
rck Fraction of area occupied by rice paddies
αR Scaling coefficient for rice density
ϵR Threshold for rice density
nR Power coefficient for rice density
dk Intensity of duck industry
αD Scaling coefficient for intensity of duck farming
ϵD Threshold for intensity of duck farming
nD Power coefficient for intensity of duck farming
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2.5. Control options

Once fully parameterised, we will use the models to investigate the
effectiveness of a range of interventions that could be implemented to
control the outbreak. We will analyse outbreak projections under three
competing strategies: (i) culling of identified infected premises (IP)
only, (ii) culling of IPs and farms within a given radius of IPs (ring
culling) and (iii) IP culling and reactive vaccination with a given ca-
pacity within infected subdistricts.

The spatially aggregate nature of the meta-population model that
we have developed prevents us from applying a culling radius directly
to each IP to determine which flocks will be culled. In order to mimic
ring culling in our metapopulation framework we therefore reduce the
number of susceptible flocks within an infected subdistrict as a fraction
of the subdistrict area to the area of a circle with a particular culling
radius. We analyse projections based on the following culling radius
values: 0.25 km, 0.5 km, 1 km, 2 km and 5 km.

As an alternative to ring culling, we explore the impact of reactive
vaccination within any subdistrict reporting infection. For this control
policy, following the removal of infected flocks, we assume that a given
percentage of the poultry within an infected subdistrict are vaccinated
and become immune to infection. Challenge trials show that vaccines
can induce immunity (Qiao et al., 2003), reduce H5N1 excretion (van
der Goot et al., 2008) or reduced morbidity and mortality to zero
(EFSA, 2007) as soon as 7 days after vaccination. Therefore, we make
the assumption that any poultry that are targeted for vaccination will
acquire immunity 7 days after the relevant infected premises is re-
ported. We then explore the impact of vaccination upon the outbreak
size and duration, given vaccine capacities of 50%, 70% and 90% of all
poultry within each infected subdistrict. See Supplementary Informa-
tion for more details. As optimal control actions for control of disease
outbreaks may depend on objectives (Probert et al., 2016), we eval-
uated the effectiveness of local control by analysing the projected
number of infected flocks, the number of culled flocks and the duration
of the outbreak. Real-time decision-making capability was tested by
evaluating interventions based on the models fitted using outbreak data
throughout the course of an epidemic (Probert et al., 2018).

2.6. Assessment of the economic impact of control strategies

Economic losses incurred by epidemics can be broadly divided into
two categories: direct losses and consequential losses (Meuwissen et al.,
1999). Direct losses refer to the costs of the execution of the control
strategy, for example, compensation paid for destroyed animals or the
cost of vaccines. Consequential losses are the long-term consequences,
for example, due to supply and delivery problems or zoonotic trans-
mission. Any intervention will have a combination of both direct and
consequential losses.

The goal is to find a control which minimises the following cost
function:

= + +C c c c c n c n c n( , , ) ,1 2 3 1 cull 2 vacc 3 inf (4)

where ncull is the mean expected number of culled flocks, c1 is the cost
associated with culling of a single flock, nvac is the mean expected
number of vaccinated poultry, c2 is the cost associated with vaccination
of one hundred birds, ninf is the mean expected number of infected
flocks, and c3 is the cost associated with the monetary impact of a single
infected flock (e.g. the risk of zoonotic transmission to professions that
involve close contact with potentially infected poultry or wild-bird
transmission). In the results section we investigate the optimal policy
that should be implemented as the relative costs of c1, c2 and c3 vary.

3. Results

3.1. Model parameterisation

We used a Bayesian framework to parameterise each model to the
2004 epidemics of H5N1 in Thailand. In order to compare the five
modelling frameworks and establish a goodness of fit to the observa-
tional data, we calculate the deviance information criterion (DIC).
Models with a lower DIC value implies a closer fit to the observational
data compared to the alternative models and therefore this model is
preferred. For DIC calculations we use the parameter values generated
from our MCMC runs for parameter estimation (Spiegelhalter et al.,
2002). We calculated the following values for the four models:
DICA=37478.2, DICB=33763.5, DICC=33596.7, DICD=33164.3
and DICE=33208.3. The main decrease in DIC comes from taking into
account the spatial transmission component of the model (i.e. model B
vs A). In this analysis, we find that the Jaccard index takes the following
values for each model: JA=0.033, JB=0.043, JC=0.088, JD=0.112,
and JE=0.108. The DIC and Jaccard index values indicate that Model
D, incorporating the intensity of the duck industry, is preferred over all
other modelling frameworks, indicating that it is the intensive duck
farming industry that is predominantly driving transmission in Thai-
land.

For all models, the fitted posterior mean and 95% credible intervals
for estimated parameters are summarised in Table 2. As the complexity
of the modelling framework increases, the value of the background
term δ decreases, as local scale characteristics drive transmission for the
more complex models. When considering rice paddy density as a risk
factor (Model C) similar parameter estimates are found for the back-
ground term and within-subdistrict transmission rate when compared
with the purely spatial Model B. Interestingly Model D, that includes
intensive duck farms as a risk factor, produces lower parameter value
estimates for δ, βW and βB, suggesting that the presence of intensive
duck farms may have a strong influence on transmission.

To compare each model's capacity to reproduce observed temporal
and spatial summary statistics the 2004 avian influenza H5N1 outbreak
in Thailand, we have simulated 1000 outbreaks for each model. Model
D appears to most accurately capture the spatiotemporal dynamics of

Table 2
Estimated parameters with posterior mean and 95% CI for random process model (A), spatial model (B), spatial rice model (C), and spatial duck model (D).

Parameter Model (A) Model (B) Model (C) Model (D) Model (E)

δ×10−8 2.55 (2.43, 2.68) 1.23 (1.14, 1.30) 1.23 (1.16, 1.30) 0.77 (0.69, 0.84) 0.64 (0.52, 0.76)
βW×10−6 3.60 (2.85, 4.52) 3.45 (3.22, 3.65) 0.99 (0.76, 1.12) 0.33 (0.24, 0.41)
βB×10−5 1.71 (1.38, 2.22) 1.08 (1.03, 1.13) 0.41 (0.34, 0.52) 0.14 (0.10, 0.18)
pC 0.38 (0.29, 0.47) 0.34 (0.30, 0.38) 0.41 (0.32, 0.48) 0.28 (0.16, 0.37)
pD 0.26 (0.22, 0.31) 0.21 (0.18, 0.24) 0.03 (0.01,0.08) 0.04 (0.02, 0.09)
ξ 3.2 (2.3, 3.9) 3.6 (3.4, 3.9) 2.8 (2.3, 3.2) 2.9 (2.4, 3.7)
αR 0.71 (0.65, 0.74) 3.19 (1.98, 5.51)
ϵR 0.61 (0.58, 0.63) 0.64 (0.48, 88)
nR 3.2 (3.1, 3.3) 5.4 (3.6, 8.3)
αD 13.5 (11.2, 16.7) 16.6 (12.3, 19.4)
ϵD 3.4 (3.2, 3.7) 3.9 (3.3, 4.7)
nD 5.9 (5.0, 6.8) 5.2 (4.2, 6.4)
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the HPAI outbreak in Thailand (Fig. 1, second column). For this model,
spatial predictions of spread are much more representative of the true
2004 outbreak, with infected subdistricts predominantly in the centre
and west of Thailand, in the region north of Bangkok. In addition, the
temporal profile captures both the epidemic peak and the epidemic tail,

providing supporting evidence of the significant role of the intensive
duck farming industry in transmission of HPAI H5N1 in Thailand.

The spatial model, Model B, does not accurately capture the geo-
graphical spread of the outbreak, with significant overestimates of in-
fected farms in the east of the country and underestimates in the main

Fig. 1. Predicted and observed outbreak distributions. Maps show the mean number of infected flocks in each subdistrict.
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epidemic hotspots. The model is also unable to accurately capture the
temporal profile of the epidemic tail (Fig. 1, third column). We see
remarkably similar predictions for Model C (Fig. 1, fourth column),
though in this case overpredictions of spread in the east of Thailand are
even greater, owing to the high densities of rice paddies in that part of
the country. In addition, south eastern subdistricts of Thailand tend to
have a higher average flock density, which will result in Models B and C
overpredicting spread in these regions.

The random process model is unable to capture the spatial profile of
the true outbreak, given that the model assumes random transmission
characteristics. The model performs marginally better at predicting
temporal behaviour, though slightly overestimates the epidemic peak
and underestimates the number of farms infected in the epidemic tail
(Fig. 1, last column).

3.2. Sequential analysis

Here we are interested in exploring how the prediction of the epi-
demiological parameters change through time. This is particularly va-
luable as it gives us an indication of the predictive power of our model
during the early stages of future outbreaks. Our results are summarised
in Fig. 2. As the observation time, T, increases, the estimated value of
the background term δ decreases. Meanwhile, within subdistrict and
between subdistrict transmission rates are both observed to initially
increase as T increases, before decreasing again after the epidemic
peak.

When the model is only fitted to the first 10 days on the outbreak,
we predict significant spread of the virus over large areas of the country
(Fig. 3, second column). The model also dramatically overestimates
outbreak size. This overestimate appears to be due to the para-
meterisation of the model on day 10 - the background term δ dominates
(Fig. 2, fourth row) and the model predicts much lower within-sub-
district and cross border transmission (Fig. 2, fourth row). However, as
the outbreak progresses, the model predicts that transmission is be-
coming more local, as seen by a reduction in the predictions of the
value of δ. As the epidemic progresses, we see that the model performs
much better at predicting the spatiotemporal profile of the outbreak.
Indeed by day 30 (Fig. 3, third column), predictions of epidemic spread
begin to be confined to regions where the true outbreak was observed.
By day 50, the model is capable of producing accurate predictions of
both the spatial and temporal profile (Fig. 3, fourth column), indicating
that from this stage our modelling framework could be used to generate
robust predictions that could inform policy in real time.

3.3. Evaluating the effectiveness of local control

We investigate the predictive ability of control policies for the
preferred Model D. We therefore simulate our model from the start of
the outbreak, using parameters that we have obtained on days 10, 15,
20, 25, 30, 35, 50, 100 and 200. We then explore the model predictions
of the effectiveness of all competing ring culling and vaccination po-
licies using model parameters obtained at each of these intervals. We
observe that, even on day 10 when there is significant uncertainty in
spatial spread parameters, Model D accurately predicts that 5km ring

culling is the policy that minimises the total number of infected flocks
(Fig. 4 A, top panel). Whilst the predicted epidemic sizes change for
each control policy during the outbreak, the relative ordering of control
policies remains consistent throughout. The same is true for total culled
flocks, in that high capacity ring culling is always preferred (Fig. 4A,
middle panel). However, we see somewhat different results for our
preferred spatial (duck) model in this case there is no significant dif-
ference between a 5 km ring culling policy and a vaccination strategy
with a 90% capacity (Fig. 4A, lower panel, Mann–Whitney test
p=0.14). This result is valid when the delay from vaccination to im-
munity is 7 days. However, if we assume that it takes 14 days to acquire
immunity, we find that the number of culled flocks increases by around
9% and therefore ring culling becomes the preferred intervention
strategy.

If we are interested in minimising outbreak duration we see a
somewhat different result. When the model uses only early outbreak
data, predictions of epidemic duration are dramatically overestimated
for IP only culling and all vaccination policies (Fig. 4A, lower panel).
The dynamics of the simulated outbreak is mostly dominated by the
background δ, so even under a vaccination capacity of 90%, this gives a
high enough infection pressure to sustain the outbreak for a long period
of time. This overprediction is largely resolved by day 25 when vacci-
nation is used, possibly owing to the more accurate predictions of the
spatial extent of the disease at this point in the epidemic.

Livestock epidemics like HPAI H5N1 have significant impact on the
poultry industry, causing severe economic losses for governments,
farmers and pose a serious threat to public health. We have performed a
general economic analysis to explore the economic impact of control
strategies by minimising the expected losses defined by Eq. (4). The
optimal control strategy depends on the ratio between the relative costs
of infection, culling and vaccination, as seen in Fig. 4. Interestingly, if
the relative cost of vaccination and culling is much higher than the
economic impact of infection, the best strategy is to cull only infected
flocks. This strategy is consistent for parameters estimated at 200, 100,
50 or 20 days. This highlights a key tenet, that the optimal control
policy is strongly dependent upon the objective of such an intervention.

4. Discussion

We have developed a set of mathematical models to investigate the
level of complexity required to make accurate predictions regarding the
spread of HPAI H5N1 in Thailand. When developing models, there is
always a trade off between including enough model complexity to be
able to capture the, often very complex, epidemiological and demo-
graphic characteristics that can lead to virus transmission, whilst at the
same time keeping the model simple enough such that it is possible to
parameterise. Here we explored that premise by considering five nested
models of increasing complexity, where we accounted for random (non-
distance based) spread, local spread of the disease, increased trans-
mission owing to rice paddy density and increased transmission owing
to presence of intensive duck farming.

Our results indicate that regions with a highly intensive duck
farming industry are most likely to be infected during the H5N1 out-
break – our model that includes this factor provides the closest fit to the

Fig. 2. Distribution of fitted parameters for the spatial (ducks) model D: δ (A), βW (B), and βB (C). Sequential parameter estimation performed for outbreak data
censored at time T days shown on x-axis.
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observational data from the 2004 outbreak. Our analysis reveals loca-
tions where the probability of finding infected animals is substantially
higher, which can be used to identify specific areas where surveillance
would be more beneficial than others in terms of increasing the prob-
ability of detecting the infection at early stages.

The steady supply of poultry in the live birds markets has the po-
tential to support disease circulation and may act as a potential source
of genetic reassortment, emergence of new influenza viruses, zoonotic
transmission, and disease spread at a national scale. Several influenza
virus surveillance programs have found that HPAI H5N1 and other
influenza A viruses has circulated in live bird and food markets in
Thailand (Amonsin et al., 2008; Wisedchanwet et al., 2011; Jairak
et al., 2016). However, outbreaks were predominantly concentrated in
the centre of Thailand (Fig. 3), north from Bangkok, while the highest
density of LBMs is in the vicinity of Bangkok Gilbert et al. (2014). No
presence of influenza A virus was detected in any of the nine districts of
Bangkok with LBM during the surveillance program in 2013
(Tantawiwattananon et al., 2017). We therefore believe that the addi-
tion of live birds markets into our model will not improve the power of
our modelling to capture the 2004 Thailand outbreak.

We have explored the ability of models of this nature to be used in

real time during ongoing outbreaks. Many infectious disease models are
used retrospectively to determine the risks associated with spread and
the impact of control for previous outbreaks. Whilst this has value, it is
also crucial to determine whether these models can be used in real time
to advise policy makers during the course of an epidemic. Our results
suggest that, during the early stages of HPAI outbreaks, there is sig-
nificant uncertainty, owing to partial reporting of cases and potential
for undetected infections over large areas, in line with previous work on
foot-and-mouth disease. Models such as the one we describe here
therefore only have limited predictive power in the very early stages of
HPAI epidemics. However, as more data are accrued, the uncertainty in
predictions decreases, such that after the first few weeks, we are able to
accurately predict both the size and the spatial extent of the outbreak.
This is highly beneficial in terms of being able to inform targeted sur-
veillance policies to improve detection.

Despite this uncertainty, the models are consistent in determining
the control policies that should be deployed, even in the very early
stages of the outbreak. This is promising, in that, despite over predic-
tions of spread at epidemic onset, models are able to inform how to
target interventions to reduce the risk of spread in the future. The ca-
veat to this is the uncertainty in the impact of some control policies in

Fig. 3. Predicted and observed spatial and temporal outbreak distributions. Each map show the mean number of infected flocks in each subdistrict as predicted by the
model fitted at the given time in the outbreak. For each temporal profile, the observed 2004 outbreak is given by the red line, whilst the solid black line gives the
mean model prediction.
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the early stages of outbreaks – whilst the model accurately predicts that
high radius ring culling is the preferred policy to minimise the number
of infected farms even when only using the first 10 days of the outbreak
to parameterise the model, the duration of outbreaks is significantly
overpredicted for IP only culling and vaccination policies. Additionally,
we find that the strategy that minimises the overall cost of an outbreak

is highly dependent upon the relative costs of culling, vaccination and
other economic losses. We therefore conclude that it is important to
determine the objective of control when deciding upon an intervention
policy and that model predictions of the spread of the disease and the
impact of interventions should be considered with caution during the
early stages of any influenza epidemic.

Fig. 4. Effect of local controls for sequential parameter estimation using Model D with outbreak data censored at time T days. (A) Projected number of infected flocks,
number of culled flocks and duration of outbreak. (B) Effective control based on minimising the cost function Eq. (4) and varying the cost associated with culling of a
single flock (c1), the cost associated with vaccination of one hundred birds (c2), and the cost associated with the monetary impact of a single infected flock (c3).
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There is a lack of studies that focus upon measuring the onset of
immunity (i.e. the time necessary for a vaccine to induce clinical pro-
tection against the infection in transmission studies). The modeling
framework outlined can be extended by including a stochastic variation
in the delay from vaccination to immunity. We have assumed that there
was no bias in detection of infected cases according to species or geo-
graphical attributes as roads. Data augmentation Markov chain Monte
Carlo technique can be utilised to account for surveillance bias (Jewell
et al., 2009c).

For the future, it is important to explore mechanisms to improve the
predictive power of infectious disease models during the early stages of
disease outbreaks. It is simply not possible for policy makers to wait for
uncertainty to resolve after the first few weeks before employing an
intervention and therefore seeking methods to reduce uncertainty in
model predictions at epidemic onset is vital (Probert et al., 2018). It is
also important to state that a model that has been fitted to a previous
outbreak may not necessarily be able to predict the spatiotemporal
dynamics of future outbreaks. We would always recommend that, for
new outbreaks, even models that have been used previously should be
parameterised to take into account the most up to date information
from the current outbreak. One area for future research would be to use
data from previous outbreaks to provide more informed priors for
epidemiological parameters. This would enable us to explore whether
this can better establish the likelihood of spread in the first few days of
a new epidemic when the outputs of models could potentially have the
most significant impact upon reducing the spread of the disease.

5. Supplementary material

5.1. Data

The demographic data describing poultry industry in Thailand
during the 2004 outbreak has the following characteristics: number of
subdistricts: 7416; number of flocks: 3,303,160; number of chicken:
180,725,929; number of ducks: 19,745,049. This gives that the national
poultry density during the outbreak was 395 birds/km2.

5.2. Mathematical models

We formulate four mathematical models with increasing com-
plexity: a random process model (Model A), a spatial model (Model B),
a spatial model incorporating rice density (Model C), a spatial model
incorporating duck intensity (Model D), and a spatial model in-
corporating both rice density and duck intensity (Model E).

Any district k is described by a number of flocks, Fk, number of
susceptible flocks at time t, Sk(t), and number of in infectious flocks at
time t, Ik(t). Then any flock i in a subdistrict k is described by a number
of chicken, NCk,i and number of ducks, NDk,i. For further calculations,
we normalise number of chicken and ducks as follows:
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where power laws pC and pD account for virus transmission differences
in the two species.

We can write a general expression for the force of infection to a
susceptible flock, k:

��

= + +

× + + + ∑ ∈( )( )
λ t α H n α H n

δ n t S t β W I t β B I t

( ) (1 (rc , ϵ , ) (dc , ϵ , ))

(1 ( )) ( ) ( ) ( ) ,

k R k D k

I k W k k B i k i i

rc rc dc dc

,k

(5)

=
+

H x n
x

( , ϵ, ) 1
( /ϵ) 1

,n (6)

Here rck is the fraction of the area of the subdistrict occupied by rice

paddies; the intensity of duck industry is formalised as
= += …dc log (max (ND ) 1)k i F k i10 1 ,k ; nI(t) is the number of infectious

flocks at time t, whilst βW and βB are the rates of spatial transmission
within and between subdistricts, whilst Wk and Bk,i are the rates of
within-subdistrict transmission and local cross-border transmission.
These terms are calculated using a local spatial kernel that implicitly
incorporates the impact of distance on contact rates and takes a simple
but flexible parametric form (Buhnerkempe et al., 2014). The impact of
the local spatial kernel is determined by considering the distance be-
tween a randomly located susceptible premises and integrating over all
possible locations of infected premises.

The rate of within-subdistrict transmission for subdistricts with a
number of flocks Fk > 1 is given by
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where dk is the density of flocks (i.e. number of flocks divided per
subdistrict area) and Fk is a number of flocks in a subdistrict k.

The rate of local cross-border transmission between subdistricts
with a number of flocks Fk > 0 and neighbouring subdistricts

��∈ >i i F{ , 0}k i is given by
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where Lk,i is the length of a shared boundary between neighbour dis-
tricts k and i and Ak is the area of subdistrict k.

We have adopted the analytical expressions for Wk and Bk,i from
(Buhnerkempe et al., 2014). Both terms were derived to account for a
probability of contact between premises within and between sub-
districts.

The term Ωk,i is a scaling factor for between-subdistrict transmission
informed by the mean distance between neighbouring subdistricts
taking into account the size of each subdistrict, following the approach
of Buhnerkempe et al. (2014) such that:
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where α and θ are the shape and scale parameters of the distance-de-
pendent local spread kernel respectively (Buhnerkempe et al., 2014).
The normalisation constant ζ is defined such that

∫ =
∞
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5.3. Bayesian approach for parameter estimation

We use a Bayesian approach to fit the meta-population model to the
outbreak data (Jewell et al., 2009a). The likelihood function has the
following expression:
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where nk is the total number of infection events in a subdistrict k and tki
is the time of the ith infection event in a subdistrict k. We introduce I tˆ ( )k

to be the number of flocks that have been infected at time t, and note
that this is different from Ik(t) (i.e. the number of infectious flocks at
time t). For each of the parameters, we update the parameter value
using a random walk Metropolis algorithm with a Gaussian proposal:
θ*∼N(θ, σ), where θ and θ* are parameter vectors, and σ is a covar-
iance matrix.

The proposed set of updated parameters θ* is then accepted with
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where q(x, y, s) is a normal PDF value at x with mean y and covariance
matrix s.

As a pre-emptive culling policy within a 1km radius of flocks re-
porting infection was introduced during the outbreak, we simulate this
by reducing the number of susceptible flocks as a fraction given by the
ratio of the area of a circle with 1km radius to the total area of the
subdistrict in question. We assume that there was no re-population of
any flocks after culling prior to the end of the epidemic.

5.4. Model simulation

Posterior samples of parameters are used to generate predicted
outbreaks. At every time t of the simulation (time step Δt=1 day),
every susceptible flock k has a probability of becoming infected:

= − −p t λ t( ) 1 exp( ( )),k k (10)

where the infection pressure depends on a particular model. We start
the outbreak by seeding infection in the six subdistricts in Thailand that
had reported infection during the first three days of the outbreak. The
seed cases were the same for all simulations. The outbreak was assumed
to end after seven days without new infected cases (or alternatively the
simulation was terminated after 2000 days).

Modeling effect of vaccination

With vaccine capacity γ, the demographic factors on the infection
pressure then are reduced so that:
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