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A B S T R A C T   

Despite increasing attention to rising land surface temperatures (LSTs) and other climate changes caused by 
urbanization, few studies have considered the characteristics of LST or thermal comfort of human settlements 
from a regional perspective. Therefore, to explore the regional characteristics of LST and thermal comfort in 
Zhengzhou, China, we calculated the predicted mean vote (PMV) based on local climate zones (LCZs) using 
ENVI-met and studied correlations between LSTs and vegetation-type LCZs. The total land area under human 
settlements in Zhengzhou is 316.26 km2, 52.72% of which is accounted by LCZs of buildings. The LSTs of built-up 
areas in this region were significantly higher than those of natural surfaces, with the highest and lowest LSTs of 
37.98 ◦C (in LCZ3; compact low-rise buildings) and 32.46 ◦C (in LCZG; water areas), respectively. Under the 
same conditions, the PMV value was considered near “moderate” in areas with sparsely distributed buildings. 
LCZ7 (sparse high-rise buildings) always exhibited the lowest PMV, with an average value of − 0.16 at 18:00 h. In 
addition, the correlations between LST and normalized difference vegetation index varied for LCZs with different 
types of vegetation, with the highest correlation coefficient (− 0.80) observed in LCZA and the lowest correlation 
coefficient (− 0.62) observed in LCZB. These results provide a reference for designing an optimal layout of urban 
facilities to regulate the thermal environment of human settlements and promoting urban sustainable 
development.   

1. Introduction 

With rapid global urban development, the natural landscape is 
increasingly being replaced by impervious surfaces, and concentrated 
human activities are changing the urban thermal environment (Pan-
agopoulos et al., 2015; Yang et al., 2019; Yue et al., 2020; Yin et al., 
2022). These conditions have led to the development of Urban Heat 
Islands (UHIs), which not only reduce living comfort (Kong et al., 2017; 
Yang et al., 2017a; Omidvar and Kim, 2020), but also profoundly in-
fluence urban ecological systems and the regional climate (Emmanuel 
and Krüger, 2012; Qiao et al., 2019; Portela et al., 2020). In urban 
thermal environments, land surface temperature (LST) is a key 

parameter for determining the degree of surface warming. It is closely 
related to the season, time of day, impervious area, vegetation cover, 
water body area, population density, and other factors (Song et al., 
2014; Zhou et al., 2016; Deilami et al., 2018; Liu et al., 2021; Tan et al., 
2021). For example, Peng et al. (2012) analyzed LST differences in 419 
major cities worldwide and highlighted the importance of vegetation in 
mitigating the UHI effect. By comparing the normalized cooling capacity 
and efficiency indices, Xue et al. (2019) found that the cooling capacity 
of urban wetlands was positively correlated with their areas, forms, and 
degrees of connectivity and was negatively correlated with the height 
and density of the surrounding buildings. Moreover, Yang et al. (2020a) 
reported that the vegetation phenology exhibited a strong negative 

Abbreviations: LST, land surface temperature; LCZ, local climate zone; PMV, predicted mean vote; NTL, nighttime light; UHI, urban heat island; GDP, gross 
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correlation with LST. Guo et al. (2020a) explored the spatial heteroge-
neity of LST based on multiple time-series data, revealing that urban 
areas exhibited an increasingly strong influence on LST. Furthermore, 
Zhou et al. (2018) illustrated that urbanization led to an increase in LST 
and suggested that the urban agglomeration effect must be considered to 
accurately reflect the magnitude of the UHI. However, additional 
research on the characteristics of LST from a regional perspective is 
required. 

In some densely populated areas of developing countries in Asia, 
urban boundaries are blurring as old cities shrink and new development 
zones expand to accommodate social and economic development (Chen 
et al., 2019). Remote sensing technology supported by satellites has 
increased the efficiency of urban climate studies in these areas (Vahmani 
and Ban-Weiss, 2016). For example, Liu et al. (2017) reported that the 
UHI intensity exhibited significant positive correlations with the gross 
domestic product (GDP), population size, electricity consumption, and 
built-up area; the surfaces of the UHIs were larger than those of the 
urban built-up areas but smaller than those of urbanized areas. Night-
time light (NTL) data from the Defense Meteorological Satellite Pro-
gram’s Operational Linescan System (DMSP-OLS) and the Visible 
Infrared Imaging Radiometer Suite of the Suomi National Polar-Orbiting 
Partnership (NPP-VIIRS) can be used to directly obtain information on 
human activities and economic and social development by measuring 
the low-intensity light emitted by nighttime urban lights, including 
those from traffic flow, to reflect the urbanization level (Amaral et al., 
2005; Xie and Weng, 2016). For example, You et al. (2020) analyzed 
spatial and temporal changes in the population in Northeast China based 
on NTL images and demographic statistics, providing data related to 
population mobility. These NTL data are advantageous in determining 
the extent of urban sprawl and built-up areas, and they can be applied to 
dynamic monitoring of the regional thermal environment (Ma et al., 
2015; Hu et al., 2017; Li et al., 2020a). According to Li et al. (2019a), 
LST demonstrated an overall upward trend with increasing light in-
tensity. Moreover, NTL is strongly correlated with human activities and 
can be an effective indicator of the distribution of the regional thermal 
environment (Li et al., 2020b). Therefore, in this study, we focused on 
the LST characteristics of human settlements obtained from NPP-VIIRS 
NTL data instead of data extracted from administrative divisions. 

In addition to the blurring of boundaries between cities and built-up 
areas, the complexity of internal structures of human settlements (Oke, 
1973) should be considered in climate improvement and energy cycle 
research. To comprehensively consider the influence of 
three-dimensional (3D) urban forms, Stewart and Oke (2012) divided 
the urban climate into 17 LCZs each with different combinations of 
buildings, land covers, vegetation, and other ground objects. The LCZs 
have been widely used to analyze the spatiotemporal characteristics of 
LST using remote sensing data (Bartesaghi Koc et al., 2018; Budhiraja 
et al., 2019; Hu et al., 2019). The surface properties of LCZs, such as 
reflectivity, water permeability, vegetation coverage, and patch size, 
affect LST (Yu et al., 2019; Hofierka et al., 2020; Yang et al., 2020b). In 
addition, building concentration affects urban ventilation and heat 
dissipation in both the vertical and horizontal directions, leading to heat 
accumulation (Steeneveld et al., 2018; Ao et al., 2019; Feng et al., 2019; 
Yang et al., 2019a; Xie et al., 2020). Using ENVI-met software, the nu-
merical distributions of the ground temperature can be calculated with 
high accuracy using building models utilizing meteorological parame-
ters; therefore, the software is widely used in outdoor microclimate 
environment simulations (Bande et al., 2020; Berardi et al., 2020; 
Sundus and Bassam, 2020). Most previous studies identifying urban and 
rural fringe areas featured statistical analysis methods, comprehensively 
considering single- or multi-factor indicators, such as population den-
sity, proportion of built-up land, proportion of non-agricultural popu-
lation, and economic level (Ren et al., 2011; Lenzholzer, 2012; Yang 
et al., 2017b; He, 2018). The LCZ system resolves mismatches between 
landscape descriptions and regional climate classifications (Peng et al., 
2018; Yang et al., 2021a, 2021b), and NTL data are not restricted by 

administrative region (Zhao, 2018). Thus, we used NTL data to extract 
the boundaries of human settlement environment by data comparison 
and studied the characteristics of the urban thermal environment based 
on LCZs. 

The ENVI-met software is suitable for simulating the urban micro-
climate environments of small- and medium-sized urban blocks, build-
ing roofs, and green spaces. It comprehensively considers factors such as 
wind speed, temperature, human metabolism, and water vapor ex-
change between skin and air on the human surface and has been 
employed in several previous studies (Milesi et al., 2003; Guo et al., 
2019; Li et al., 2019b; Ouyang et al., 2020; Yang et al., 2021c). When 
building LCZ models, different materials are assigned to the surface to 
resemble the actual conditions. Moreover, a more accurate numerical 
distribution can be obtained using calculations based on meteorological 
data (Bruse and Fleer, 1998). However, a modeling method based on a 
3D rectangular network with a maximum limited mesh number of 250 
× 250 × 30 may result in inaccuracies compared with the actual con-
ditions (Simona et al., 2018). Existing studies have predominantly 
focused on small-scale blocks or single buildings. In contrast, this study 
incorporated nine LCZ categories for built-up areas in the model using 
ENVI-met software, facilitating the acquisition of residential thermal 
comfort levels for different LCZs. 

In this study, we used multisource data to simulate thermal comfort 
in the municipal district of Zhengzhou using the LCZ system. From a 
view of emphasizing on regional complexity, the aims of this study were 
to (1) identify LST features of human settlements using a Geographic 
Information System (GIS) spatial analysis method based on Landsat-8, 
NTL, and meteorological data, and (2) construct models to simulate 
and calculate human thermal comfort in different LCZs using ENVI-met 
software. The results provide useful references for designing urban 
infrastructure and layouts, regulating urban thermal environments, and 
improving the quality of life of area residents. 

2. Research data and methods 

2.1. Study area 

Zhengzhou (34◦16ʹ–34◦58ʹ N, 112◦42ʹ–114◦14ʹ E) is in central China. 
The terrain altitude of this region is high in the southwest and low in the 
northeast, and the region exhibits a temperate continental monsoon 
climate with four distinct seasons. The annual average temperature is 
15.6 ◦C. August is the hottest month of the year, with a monthly average 
temperature of 25.9 ◦C, whereas January is the coldest month, with a 
monthly average temperature of 2.15 ◦C. A city rich in natural resources, 
Zhengzhou is a vital hub for railway transport, aviation, and electric 
power. In 2019, the urban population was 7.721 million and the city had 
an urbanization rate of 74.6% (USFD, 2019). Therefore, the municipal 
district of Zhengzhou (Fig. 1) was selected as the study area to provide a 
reference for rational urban construction. 

2.2. Research data 

The research data employed in this study included remote sensing 
images, meteorological data, and building distribution, as presented in 
Table 1. The original NPP-VIIRS data type was floating-point; light not 
produced by human populations, such as stray light, lightning, and lunar 
illumination were filtered out of the dataset. These images were also de- 
noised for more uniform brightness. Because the focus of this study was 
on the thermal comfort of LCZs at a specific time, we selected Landsat-8 
images with sunny days and low cloud cover on July 7. We then pro-
cessed them using the ENVI5.3 FLAASH atmospheric correction module 
to eliminate water vapor and other effects before use. The building data 
for Zhengzhou included building height (BH) and number of floors. The 
computational geometry tool in ArcGIS 10.2 was used to obtain the base 
area of the building. Building types were classified according to the 
current national General Rules for Civil Building Design (GB50352- 
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2019), and Landsat-8 images were used as supporting data for LCZ 
mapping. Finally, meteorological data were employed to determine the 
weather conditions and LST inversion. 

2.3. Methods 

2.3.1. LCZ mapping and human settlement environments 
In the LCZ system of Stewart and Oke (2012), building cover is 

described by BH and building density (BD). Land cover is categorized 
with the following types: high-density vegetation area, low-density 
vegetation area, shrub area, low vegetation area, hard ground (bare 
rock or paved ground), sandy land (bare soil or sand), and water body. In 
this study, ENVI5.3 was used to classify the land cover types by the 
random forest classification method (Huang et al., 2016). Because of the 
large computational load, training samples were initially collected, and 
a decision tree was later derived in the experimental area to obtain the 
LCZ land cover categories, such as LCZA–G. The Create Fishnet tool was 
used to calculate the lattice network BD and average BH (Wang et al., 
2017) for 30 × 30 m units (Fig. 2), which were used to classify the LCZ 
buildings, the categories LCZ1–9. Regarding the Zhengzhou City 

residential building structure, the industrial zone is typically distributed 
outside the city as large low-rise buildings; therefore, LCZ10 was clas-
sified as factories (heavy industry). The BD and BH were calculated as 
follows: 

BD=

∑
iAi
S

(1)  

BH=

∑
i(AiNi)ΔH
∑

iAi
(2)  

where Ai, Ni, and △H denote the floor area of the building, number of 
floors, and average height (typically 3 m), respectively, and S denotes 
the total land area, (the area per unit grid). The buildings were divided 
according to their density into compact, open, and sparse categories. In 
addition, the buildings were classified as low-rise, mid-rise, or high-rise 
buildings if their heights were <10 m, 10–27 m, or >27 m, respectively. 
Finally, the study area was divided into 17 LCZs (Table 2). 

ArcGIS 10.2 was used to calculate the light spot areas of the NTL 
images, and the threshold method was used to extract the human set-
tlement environments in combination with the Notice on the Size of 

Fig. 1. Overview of the study area.  

Table 1 
Data sources and interpretation.  

Types Description Sources Sample 

Remote Sensing data NPP-VIIRS 
Resolution: 500 m; Day: 2019-7 

earthexplorer.usgs.gov 

Landsat8 OLI-TIRS LC81240362019188LGN00; 
Date: 2019-7-7; Cloud cover<5% 

Building data Building outline contains height and floor information Baidumap 

Meteorological data Meteorological site data air temperature, pressure, relative humidity rp5.ru –  

J. Ren et al.                                                                                                                                                                                                                                      



Journal of Cleaner Production 340 (2022) 130744

4

Zhengzhou Urban Built-up Area, published by the Zhengzhou Municipal 
Government in 2019 (Table 3) (Li et al., 2007; Shi et al., 2014). 

This study adopted the data comparison method to conduct 
segmented statistics on the NPP-VIIRS data (Table 4) and extract the 
boundary of human settlement environments. The digital number (DN) 
range for Zhengzhou was 62–188, and the pixel areas with DN values 
greater than 150 and 160 were 433.26 km2 and 295.61 km2, respec-
tively. In 2019, the built-up area was 319.28 km2; therefore, the gray 
threshold was between 150 and 160. Thus, the DN threshold value was 
determined as 159, corresponding to a living environment area of 
316.26 km2. 

2.3.2. LST inversion algorithm 
The study period exhibited low precipitation and sunny weather, 

resulting in a more significant UHI effect. The remote sensing images 
obtained were clear enough for inversion. In this study, we estimated 
LST by combining the single-window algorithm (Qin et al., 2001) with 
the TM10 band of the Landsat-8 images (Hu et al., 2015) according to 
the following formulas:  

Ts = (a(1 – C – D) + (b(1 – C– D) + C + D)T10 – DTa)/(C – 237.15),    (3)  

C = ετ                                                                                           (4)  

D = (1 – τ)[1 + (1 – ε)τ],                                                                (5) 

where Ts, T10, and Ta respectively represent the surface temperature (K), 
brightness temperature on the sensor (K), and average atmospheric 
temperature (K); a and b are the reference coefficients (when LST is in 
the range of 0–70 ◦C, a = − 67.355351 and b = 0.458606); ε represents 

Fig. 2. Spatial distribution of buildings in Zhengzhou.  

Table 2 
LCZ classification types (Stewart et al., 2014).  

Building LCZs Explanation Nature LCZs Explanation 

LCZ1 Compact high-rise LCZA Dense trees 
LCZ2 Compact mid-rise LCZB Scattered trees 
LCZ3 Compact low-rise LCZC Bush, scrub 
LCZ4 Open high-rise LCZD Low plants 
LCZ5 Open mid-rise LCZE Bare rock or paved 
LCZ6 Open low-rise LCZF Bare soil or sand 
LCZ7 Sparse high-rise LCZG Water area 
LCZ8 Sparse mid-rise  
LCZ9 Sparse low-rise 
LCZ10 Heavy industry  

Table 3 
Built-up area of the central city.  

District Jinshui Erqi Guancheng Zhongyuan Huiji Sum 

Administrative area/km2 242.34 156.22 199.61 198.14 222.50 1018.81 
Built-up area/km2 79.96 63.78 61.59 58.54 55.41 319.28  

Table 4 
NTL brightness range and pixel areas in Zhengzhou.  

DN value Number Area/km2 DN value Number Area/km2 

≤100 70 116.40 140–150 70 120.81 
100–110 39 66.07 150–160 79 137.65 
110–120 37 61.98 160–170 87 170.06 
120–130 64 106.48 170–180 56 98.53 
130–140 69 112.28 180–188 13 27.02  
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the surface emissivity of T10; and τ represents the atmospheric trans-
mittance of T10. Finally, the surface temperature was converted from the 
thermodynamic temperature unit (K) to Celsius (◦C). 

2.3.3. Comfort simulation and calculation 
The Spaces plug-in in ENVI-met (30 × 30 × 30 m) was employed to 

construct the LCZ models. The building LCZ models were loaded into the 
Guide plug-in, and the meteorological parameters were set. Among the 
parameters, the wind speed was 3.9 m/s, wind direction was 45◦, and 
minimum and maximum air temperature was 22 ◦C and 31 ◦C and 
minimum and maximum relative humidity was 31% and 83%, respec-
tively. The plug-ins were run in ENVI-core to simulate the thermal 
environment of human habitation. The BioMet module was used to 
calculate a comprehensive thermal environment evaluation index based 
on the PMV which considers environmental factors to evaluate the 
thermal comfort of the human body. A PMV value near 0 (neutral) in-
dicates that the human body feels the most comfortable, while PMV 
values of 1 (− 1), 2 (− 2), and 3 (− 3) represent feelings of being slightly 
warm (slightly cool), warm (cool), and hot (cold), respectively. 

2.3.4. Statistical analysis 
The data were statistically analyzed after the numerical simulation to 

compare the simulation results of each period to obtain the thermal 
comfort index for each LCZ type. In addition, vegetation has a cooling 
effect, but the specific correlation of between vegetation and natural 
LCZs has not been extensively studied. Therefore, we calculated the 

normalized difference vegetation index (NDVI) using Band Math tool in 
ENVI5.3 and discussed the correlation between NDVI and LST based on 
LCZ. The correlation coefficient (r) between LST and NDVI was calcu-
lated using SPSS 24.0 software after excluding outliers. The formula was 
as follows: 

r=
∑

(x − x)(y − y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(x − x)
2
(y − y)

2
√ (6)  

where x and y represent the observed values of the variables, while ‾x 
and ‾y represent the mean values of the variables. 

3. Results 

3.1. LCZ spatial pattern 

After image processing, grayscale differentiation of the NTL images 
was used to improve the reflected range of human activities. By 
comparing the total built-up area (319.28 km2) with the spot area of the 
NTL data, areas with DN values higher than 159 were extracted as 
human settlement areas. Thus, the total area of human settlements in the 
study area was 316.26 km2. The areas of human settlements in the 
Jinshui, Huiji, Zhongyuan, Erqi, and Guancheng areas were 134.82 km2, 
15.38 km2, 58.22 km2, 35.04 km2, and 72.80 km2, respectively, which 
accounted for 55.63%, 6.91%, 29.38%, 22.43%, and 36.47% of the area 
of each district, respectively. The spatial pattern of the LCZs is 

Fig. 3. LCZ mapping results and distribution of human settlements.  
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demonstrated in Fig. 3. The buildings in the city center were densely 
distributed and predominantly fell into the categories of LCZ1, LCZ2, 
and LCZ4. LCZ10 buildings were typically distributed in the periphery of 
the urban area, and urban parks were primarily LCZB and LCZG. Each 
type of LCZ was observed in the study area. The zones LCZ1–10, LCZA, 
LCZB, LCZC, LCZD, LCZE, LCZF, and LCZG accounted for 52.72%, 
11.08%, 3.64%, 18.74%, 1.69%, 5.70%, 1.17%, and 5.26% of the total 
inhabited area, respectively. 

3.2. Urban thermal environment 

The LST values obtained from the Landsat-8 image inversions are 
presented in Fig. 4. The spatial distribution demonstrated that the LSTs 
of the building areas (LCZ1–10) were higher than those of green spaces 
and water bodies in the city. The city center and some factories exhibited 
the highest temperatures, while the northern rivers and city parks had 
the lowest temperatures. The average LSTs in the districts of Zhengzhou 
decreased in the following order: Zhongyuan > Guancheng > Jinshui >
Erqi > Huiji (Table 5). The highest and lowest LST values among 
LCZA–G were in LCZB (37.53 ◦C) and LCZG (32.46 ◦C), respectively. The 
highest and lowest LST values among LCZ1–10 were in LCZ3 (37.98 ◦C) 
and LCZ4 (35.99 ◦C), respectively (Fig. 5). The LST values of the LCZ 
building category were significantly higher than those of the natural 
land cover categories. Regarding the horizontal spatial distribution, 
compact buildings exhibited higher LST values. Considering the vertical 
spatial distribution among the compact buildings (LCZ1–3), the highest 
LST (37.98 ◦C) was observed in LCZ3, (low-rise buildings), and the 
lowest LST (36.22 ◦C) was observed in LCZ1 (high-rise buildings). 
Among LCZ4–6 (open buildings), the highest LST value (37.36 ◦C) was 
observed in LCZ5 (mid-rise buildings), and the lowest LST (35.99 ◦C) 
was observed in LCZ4 (high-rise buildings). Among LCZ7–9 (sparse 
buildings), the LST values were lower for LCZ7 (high-rise buildings; 
36.78 ◦C) than for LCZ8 (mid-rise buildings; 37.16 ◦C) and LCZ9 (low- 
rise buildings; 37.10 ◦C). In addition, the average LST of LCZ10 (in-
dustrial buildings) was similar to that of LCZ5 and LCZ6. 

3.3. LCZ thermal comfort 

In this study, thermal comfort was simulated for LCZ1–9, the zones 
that encompassed the majority of the population in the study area. 
Measurements for analysis were recorded three times in a day and were 
characterized by large outdoor human flows (Table 6); the dark blue to 
red colors in Table 6 indicate the changes in the PMV values from low to 
high. Under the same conditions, different building layouts exhibited 
different levels of thermal comfort. The airflow velocity decreased in the 
built-up areas, which was not conducive to heat diffusion and led to high 
PMV values. The PMV values were near zero when buildings were more 
sparsely distributed. In addition, some of the solar radiation was blocked 
by the surrounding opaque buildings and did not reach the ground in the 
internal space of the building groups. Therefore, the LSTs on the shadow 
sides of tall buildings were lower than those on the sunlit sides, thereby 
increasing the thermal comfort. As illustrated in Fig. 6, the PMV values 
varied at different times within the same LCZ; however, the overall 
change was negligible. At 10:00 h, the thermal comfort levels ranged 
from slightly warm to warm. At 14:00 h and 18:00 h, the thermal 
comfort levels were predominantly neutral to slightly warm. Further-
more, the PMV value declined with a decrease in the BH. The lowest 
PMV was consistently in LCZ7, between neutral and slightly cool, 
because the high-rise buildings blocked some of the incoming solar ra-
diation. Low-density building layouts also lead to a lower LST because 
they can dissipate heat over time. Therefore, during urban construction, 
controlling the BD or increasing the BH can improve the regional 

Fig. 4. Spatial distribution of LST.  

Table 5 
LST numerical statistics.  

District LST min/◦C LST max/◦C LST mean/◦C 

Jinshui 25.02 51.28 36.36 
Erqi 27.86 52.43 36.07 
Guancheng 21.09 54.11 37.33 
Zhongyuan 27.42 50.83 37.78 
Huiji 25.06 47.44 35.28  
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thermal environment and increase the thermal comfort of residents. 

4. Discussion 

4.1. Determining human settlement environments 

The NPP-VIIRS data employed in this study exhibited a higher res-
olution than that of the DMSP-OLS remote sensing data (Shen et al., 
2019). The NPP-VIIRS brightness values are influenced by architectural, 
climatic, and social factors (e.g., GDP). Therefore, they reflect urban 
characteristics and expansion trends (Levin and Zhang, 2017; Shen 
et al., 2019). When using NTL data to extract built-up areas, the 
boundary range is delimited by selecting the point of an abrupt intensity 
change (Zhou et al., 2015) or using the town range of the TM/ETM +
data as a reference for the nightlight image and adjusting the threshold 
for demarcation (Imhoff et al., 1997). Because of insufficient universal 
mutation detection and empirical threshold methods, this study 
employed a data comparison method to extract the boundary of human 
settlement environments. 

4.2. Factors influencing the thermal environment of human settlements 

A change in the urban thermal environment can profoundly affect 
the comfort of human habitation (Qiao et al., 2013; Wang et al., 2016). 
Peng et al. (2016) found that built-up areas and bare land exhibited 
significant detrimental impacts on the thermal environment, whereas 
ecological land mitigated the impact of UHIs. Yang et al. (2019b) 
analyzed the influence of building forms on the LST under different wind 
conditions and demonstrated that the urban building pattern is a critical 
driving factor of climate change, with compact high-rise buildings 
increasing the LST, particularly in LCZ4, LCZ7, and LCZ8. Guo et al. 
(2020b) explored the driving factors of the LST at the community scale 
and found the LST was more influenced by spatial variables (e.g., land 
use) than the building form. This study found that although the LSTs of 
building LCZs were significantly higher than those of natural land cover 
LCZs, the LSTs of compact low-rise buildings were higher than those of 
high-rise buildings with an open or sparse layout(Xie et al., 2022). 
Additionally, identifying cooling factors could help improve urban 
ecology (Yue and Xu, 2013; He et al., 2019; Ke et al., 2021), and vege-
tation has different effects on LST depending on the LSZ (Luo et al., 
2021). We used the NDVI to reflect the vegetation coverage, focusing on 
the correlation between the vegetation coverage and LST for various 
LCZs. There was a significant negative correlation between the NDVI 
and LST, and the correlations were different among LCZA–D. Fig. 7 
shows a scatter plot with excluded and randomly sampled outliers. The 
correlation was the strongest in LCZA (r = − 0.80), followed by LCZD 

and LCZC (r = − 0.79 and − 0.74, respectively), and the minimum cor-
relation was in LCZB (− 0.62). 

4.3. Limitations 

This study focused on the distribution of thermal environment under 
different LCZ combinations from the regional perspective and reflected 
the impacts of varying thermal environmental conditions on the human 
body using the thermal comfort index, primarily considering buildings 
and vegetation. However, the influencing factors of thermal environ-
ment are comprehensive and include surface water, anthropogenic heat, 
and various meteorological conditions. Thus, future research should 
include these factors. 

5. Conclusions 

Changes in urban LSTs have a direct impact on human comfort levels 
(Kleerekoper et al., 2012; Zheng et al., 2020). In this study, we applied 
the GIS spatial analysis method, combined with Landsat-8, NTL, and 
meteorological data, to explore the LST characteristics of human set-
tlement environments in Zhengzhou. Furthermore, the urban thermal 
environment in different LCZs was simulated using ENVI-met software, 
PMV thermal comfort index was calculated for each LCZ, and the cor-
relation between vegetation-type LCZs and LST was analyzed. The 
following major conclusions were formed:  

(1) The total residential area of Zhengzhou is 316.26 km2, and all 
LCZ types were distributed in human settlements in the study 
area. Among the different LCZs identified in Zhengzhou, LCZ1–10 
(building LCZs) accounted for the highest proportion (52.72%), 
while LCZF accounted for the lowest proportion (1.17%).  

(2) LST of the building LCZs was significantly higher than that of the 
natural land cover LCZs, with the highest LST (37.98 ◦C) observed 
in compact low-rise buildings (LCZ3) and the lowest LST 
(32.46 ◦C) observed in water areas (LCZG). Generally, the more 
compact the building distribution, the higher the LST. However, 
high-rise buildings blocked solar radiation and reduced the LST 
for the LCZs in their shadows.  

(3) For building LCZs under the same conditions, thermal comfort 
levels were predominantly slightly warm to warm at 10:00 h, but 
they were typically neutral and slightly warm at 14:00 h and 
18:00 h. The PMV value was consistently low for sparsely 
distributed high-rise buildings (LCZ7), with an average value of 
− 0.16 at 18:00 h, which was the closest to neutral thermal 
comfort. In addition, the correlation between LST and NDVI was 

Fig. 5. Box plots with LSTs within each LCZ.  
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different among LCZA–D, with the highest correlation coefficient 
being − 0.80 (LCZA) and the lowest being − 0.62 (LCZB). 

Therefore, increasing the green area and optimizing the layout of 
buildings by accounting for the height and density of buildings to 
improve the local climate and increase the comfort of residents should 
be considered in urban construction. 
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Fig. 6. Line diagram of PMV change in LCZ1-9 at 10:00 h (a), 14:00 h (b), 18:00 h (c), and mean of PMV (d).  

Fig. 7. LST and NDVI scatter plots in LCZA–D.  
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