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Vegetation growth is one of the important indicators of drought events. Greenness-related vegetation
indices (VIs) such as Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index
(EVI) are often used for the assessment of agricultural drought. There is a need to evaluate the sensitivity
of water-related vegetation indices such as Land Surface Water Index (LSWI) to assess drought and asso-
ciated impacts. Moderate-Resolution Imaging Spectroradiometer (MODIS) derived time series NDVI, EVI
and LSWI data during 2000–2013 were compared for their sensitivity to drought at two tallgrass prairie
sites in the Oklahoma Mesonet (Marena and El Reno). Each site has continuous soil moisture measure-
ments at three different depths (5, 25 and 60 cm) and precipitation data for the study period (2000–
2013) at 5-min intervals. As expected, averaged values of vegetation indices consistently lower under
drought conditions than normal conditions. LSWI decreased the most in drought years (2006, 2011
and 2012) when compared to its magnitudes in pluvial years (2007, 2013), followed by EVI and NDVI,
respectively. Because green vegetation has positive LSWI values (>0) and dry vegetation has negative
LSWI values (<0), much longer durations of LSWI < 0 were found in the summer periods of drought years
rather than in pluvial years. A LSWI-based drought severity scheme (LSWI > 0.1; 0 < LSWI 6 0.1;
�0.1 < LSWI 6 0; LSWI 6 �0.1) corresponded well with the drought severity categories (0; D0; D1: D2;
D3 and D4) defined by the United States Drought Monitor (USDM) at these two study sites. Our results
indicate that the number of days with LSWI < 0 during the summer and LSWI-based drought severity
scheme can be simple, effective and complementary indicator for assessing drought in tallgrass prairie
grasslands at a 500-m spatial resolution.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Drought is a recurring event of Oklahoma’s climate cycle
(Basara et al., 2013; Christian et al., 2015) and poses significant
impacts on various sectors of the economy (OWRB, 2010).
Seasonal drought can occur at any time of the year and the summer
drought that coincides with the growing season can cause ecolog-
ical imbalances and influences surface biophysical parameters
such as vegetation indices, land surface temperature, soil moisture
and evapotranspiration (Ghulam et al., 2007; Reichstein et al.,
2002). This ultimately impacts the productivity of the tallgrass
prairie ecosystem, which can cause billions of dollars in damage
to livestock’s industries depending on its timing, duration and
severity.

Several conceptual definitions of drought have been classified
into four major categories: meteorological, agricultural, hydrologi-
cal and socio-economic droughts (Wilhite and Glantz, 1985).
Understanding the need to quantify drought severity, researchers
have developed several methods to assess and diagnose different
droughts. Meteorological drought indices (Rainfall Anomaly
Index, Bhalme and Mooley Drought Index, Drought Severity
Index, Standardized Precipitation Index) were solely based on
meteorological data such as precipitation and temperature
(Bhalme et al., 1981; McKee et al., 1993; Van Rooy, 1965).
Agricultural drought indices (Crop Moisture Index, the Soil mois-
ture Drought Index, Soil Moisture Deficit Index) considered soil
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moisture and evapotranspiration deficit (Hollinger et al., 1993;
Narasimhan and Srinivasan, 2005; Palmer, 1965), while hydrolog-
ical drought indices (Palmer Hydrological Drought Index, Surface
Water Supply Index, Reclamation Drought Index) were based on
a water balance model (Shafer and Dezman, 1982; Weghorst,
1996).

With the advancement of Earth observations from
satellite-based sensors, numerous recent studies have used remote
sensing data for assessing drought impacts (Ghulam et al., 2007;
Peters et al., 2002; Tadesse et al., 2005; Wan et al., 2004). Over
the period of more than 20 years, a number of remote sensing
based vegetation indices (VIs) have been developed from various
spectral band combinations to monitor vegetation (Table 1).
While greenness-related VIs retrieved from remote sensing land
surface reflectance such as Normalized Difference Vegetation
Index (NDVI) and Enhanced Vegetative Index (EVI) have often been
used for vegetation condition monitoring (Diodato and Bellocchi,
2008; Herrmann et al., 2005; Song and Ma, 2011), NDVI derived
indices such as Anomaly Vegetation Index (Weiying et al., 1994)
and the Vegetation Condition Index (VCI) (Kogan, 1995) were used
to relate vegetation dynamics to drought patterns. Similarly, sev-
eral water related satellite-based vegetation indices that estimate
vegetation water content have been used for drought detection
(Chen et al., 2005; Fensholt and Sandholt, 2003; Gao, 1996;
Kimes et al., 1981). Shortwave infrared reflectance (SWIR) and leaf
water content are negatively related due to the large absorption
(Hunt and Rock, 1989; Tucker, 1980) and is contrasted with near
infrared (NIR) band to normalize the effects of other leaf parame-
ters such as internal leaf structure for proper estimation of vegeta-
tion water content (Ceccato et al., 2001; Gao, 1996). Based on the
analysis of reflectance spectra, combination of SWIR and NIR bands
have been reported by numerous studies under different names:
Normalized Difference of Landsat TM bands 4 and 5, ND45
(Kimes et al., 1981); Normalized Difference Infrared Index, NDII
(Hardisky et al., 1983); Shortwave Water Stress Index, SWIS
(Fensholt and Sandholt, 2003); Normalized Difference Water
Index, NDWI (Jackson et al., 2004; Maki et al., 2004) and Land
Surface Water Index, LSWI (Qin et al., 2015; Xiao et al., 2002;
Zhang et al., 2015). These indices have proven to be effective in
monitoring the water content of vegetation. However, NDVI has
Table 1
Drought indicators derived from several spectral indices, thermal products and precipitati

Name of vegetation
indices

Full name Formula

1. Photosynthetic Indices (PIs)
NDVI Normalized difference vegetation

index
(q858 � q650)/(q8

EVI Enhanced vegetation index 2.5 ⁄ (q858 � q650

VCI Vegetation condition index (NDVI � NDVIMIN)/

2. NIR and SWIR based indices
NDWI1240 Normalized Difference Water Index (q858 � q1240)/(q
LSWI Land Surface Water Index (q858 � q1640)/(q
SWISI Shortwave Infrared Water Stress

Index
(q1640 � q850)/(q
(q1240 + q850)

NDWI2130 Normalized Difference Water Index (q858 � q2130)/(q
NMDI Normalized Multiband Drought

Index
(q860 � (q1640 �

3. Combined indices (PIs, LST and precipitation)
VTCI Vegetation Temperature Condition

Index
NDVI, Land Surface

TVDI Temperature Vegetation Dryness
Index

NDVI, LST

SDCI Scaled Drought Condition Index LST, NDVI, Precipit
VCI Vegetation Condition Index (NDVI � NDVIMIN)/
NDDI Normalized Difference Drought

Index
(NDVI � NDWI)/(N
been the most popular and extensively used satellite-based index
for drought monitoring over the past decades. Numerous studies
have analyzed the relationships between NDVI and rainfall across
geographical areas and vegetation types (Bhalme et al., 1981;
Boschetti et al., 2013; McKee et al., 1993; Van Rooy, 1965). In the
central and northern Great Plains grasslands, growing season rain-
fall, growing degree days and potential evapotranspiration exerted
strong control over grassland productivity (Yang et al., 1998).
There was a stronger relationship between NDVI and rainfall than
between NDVI and temperature for the grassland located in the
central and northern Great Plains of the US (Wang et al., 2001).
Like other drought monitoring algorithms (Ji and Peters, 2003;
Liu and Kogan, 1996; Nemani and Running, 1989; Pettorelli et al.,
2005), the Vegetation Drought Response Index (VegDRI) intro-
duced by the United States Drought Monitor (USDM) also used
NDVI in monitoring droughts (Brown et al., 2008). A few recent
publications have reported that water-related vegetation indices
such as LSWI are relatively more sensitive to drought than green-
ness related VIs and presented as a potential drought monitoring
tool (Chandrasekar et al., 2010; Gu et al., 2008; Wagle et al.,
2015, 2014; Zhang et al., 2013). Long term analysis of LSWI over
pluvial, dry and normal years can provide better insight into vege-
tation response to climate variations and complement current
drought monitoring tools to incorporate water related vegetation
index into their models and algorithms.

In this pilot and site-level study, we chose two tallgrass prairie
sites in Oklahoma, which are the part of the Oklahoma Mesonet
(McPherson et al., 2007). The objectives of this study were to: (a)
explore the relationship between seasonal and inter-annual rain-
fall variability and dynamics of grassland vegetation growth, and
(b) ascertain the sensitivity of VIs (NDVI, EVI and LSWI) to rainfall
variations. This study further investigates additional drought infor-
mation rendered by LSWI, based on episodic drought events over
time series (2000–2013). Using the drought information generated
from LSWI, a new approach (the number of days with LSWI < 0
during the plant growing season and LSWI-based drought severity
classification) for an assessment of the drought impacts over grass-
lands is proposed in this study. This LSWI-based approach can
potentially provide more insights into drought monitoring over
tallgrass prairie grasslands.
on.
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2. Materials and methods

2.1. Site description

The Marena site is located near Stillwater, OK (97.21694�W,
36.063493�N). This site is collocated with the Marena Oklahoma
In-Situ Sensor Test bed (MOISST), a core calibration/validation site
for NASA’s soil moisture active passive (SMAP) satellite mission.
The site contains relatively homogenous distribution of tallgrass
prairie in sandy clay loam soil with similar grazing management
practices over the years.

The El Reno site is located near El Reno, OK (98.0401�W,
35.5465�N) at the United States Department of Agriculture–
Agriculture Research Service (USDA–ARS) Grazing Research labora-
tory (GRL). The site is an open terrain, slightly sloped from east to
west and is covered by natural tallgrass prairie in silty clay loam
soil. The location and the landscape features of the study sites
are shown in Fig. 1 while the biophysical features of the sites are
presented in Table 2.
2.2. Rainfall and soil moisture data during 2000–2013 from the
Oklahoma Mesonet

The Oklahoma Mesonet is a system designed to measure the
environmental parameters by a network of instruments deployed
on or near a 10 m tall tower. The recorded measurements are
aggregated into observations every five minutes and the observa-
tions are sent out to a central facility every five minutes, 24 h
Marena

Fig. 1. The location (Oklahoma map) and the landscape features of the study sites. The re
interpretation of the references to colour in this figure legend, the reader is referred to
per day year-round (McPherson et al., 2007). Daily precipitation
and soil moisture data from 2000–2013 at the Oklahoma
Mesonet Marena and El Reno stations were downloaded from the
Oklahoma Mesonet website (http://www.mesonet.org/index.php/
weather/daily_data_retrieval). The daily data were aggregated into
8-day periods to match with the temporal resolution of the
Moderate-Resolution Imaging Spectroradiometer (MODIS) derived
VIs. Three different soil moisture data products (soil water poten-
tial, fractional water index and volumetric water content) are
available at the Mesonet website. These soil moisture data prod-
ucts were derived based on the calibrated change in soil tempera-
ture over time after a heat pulse is introduced (Illston et al., 2008).
In our analysis, we used volumetric soil water content (SWC) col-
lected at three different soil profiles (5, 25, and 60 cm depth).
The SWC measured by Mesonet is a point measurement, but it is
representative from a magnitude and temporal variability stand-
point at scales of up too several hundred meters or field scale
(Basara and Crawford, 2002; Illston et al., 2008).
2.3. MODIS images and vegetation indices during 2000–2013

Daily images are acquired by the MODIS sensors on-board the
Terra and Aqua satellites. Seven spectral bands: red (620–
670 nm), NIR1 (841–876 nm), blue (459–479 nm), green (545–
565 nm), NIR2 (1230–1250 nm), SWIR1 (1628–1652 nm), and
SWIR2 (2105–2155 nm) are available for the study of vegetation.
In this study, we used the 8-day composite land surface reflectance
(MOD09A1) data from February 2000 to December 2013 for one
El Reno

d boarder line represents the size of a MODIS pixel at 500-m spatial resolution. (For
the web version of this article.)

http://www.mesonet.org/index.php/weather/daily_data_retrieval
http://www.mesonet.org/index.php/weather/daily_data_retrieval


Table 2
Overview of the study sites.

Site Latitude Longitude Elevation (m) Mean annual rainfall (mm) Mean annual temperature (�C) Major vegetation Soil type

Marena 36.063493 �N 97.2169 �W 327 802 14 Tallgrass prairie Sandy clay loam
El Reno 35.5465 �N 98.0401�W 419 794 15 Tallgrass prairie Silty clay loam
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Fig. 2. The variability of annual rainfall at study sites over time (2000–2013). The anomaly of rainfall is calculated as percentage change from a 14-year average rainfall.
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Fig. 3. Inter-annual variation of: soil water content at different soil depths (a and b) and growing season (March–October) vegetation indices (c and d). The vertical bars
represent the total growing season rainfall.
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MODIS pixel (500 m � 500 m spatial resolution) centered on the
study sites. The dataset was extracted from the data portal at the
Earth Observation and Modeling Facility (EOMF) at the University
of Oklahoma (http://eomf.ou.edu/visualization/gmap/). Land sur-
face reflectance (q) from blue, green, red, NIR1, and SWIR1 bands
were used to calculate three spectral indices as follows:
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the designation of drought types based on LSWI values and seasons.
NDVI ¼ qNIR1� qred
qNIR1þ qred

ð1Þ

EVI ¼ qNIR1� qred
qNIR1þ 6 � qred� 7:5qblueþ 1

ð2Þ

LSWI ¼ qNIR1� qSWIR1
qNIR1þ qSWIR1

ð3Þ

To understand the relative sensitivity of these three VIs to
drought, we computed the deviation (absolute values) of the max-
imum values (NDVImax, EVImax, and LSWImax) of VIs each year with
reference to 14-year mean maximum VIs.

2.4. United states drought monitoring (USDM) data

The USDM is a composite drought index that includes many
indicators based on measurements of climatic, hydrologic and soil
conditions in order to provide weekly maps of drought conditions
(Svoboda et al., 2002). The drought categories (D0, D1, D2, D3 and
D4) for the study sites were extracted from the weekly drought
maps published by the USDM (http://droughtmonitor.unl.edu/
MapsAndData/). The corresponding NDVI and LSWI values to the
USDM defined drought categories were identified from MODIS data
and plotted against each other to define the LSWI-based drought
classifications. This relationship between the USDM classified
drought categories and MODIS-derived VIs were analyzed only
for the Summer months (June–August) of each year from 2000–
2013.
3. Results

3.1. Inter-annual variation of rainfall, soil water content and
vegetation indices-identifying drought years

Annual precipitation varied substantially during 2000–2013 at
both sites with an annual average precipitation of 802 mm
(±220) at the Marena site and 794 mm (±182) at the El Reno site.
Dry and pluvial years were determined based on the 14-year
(2000–2013) average annual precipitation and the associated stan-
dard deviation. Years with standardized score values greater than
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sum of its average and one standard deviation (negative side) were
labeled as drought years, whereas years with standardized score
greater than sum of its average and one standard deviation (posi-
tive side) were identified as pluvial years (Fig. 2). From this analy-
sis, the years 2001, 2006, 2011, and 2012 were identified as
drought years at both Marena and El Reno sites. In addition,
2003 also was a drought year at the El Reno site. Additionally,
2007 and 2013 were identified as pluvial years for both sites. For
both sites, two episodic drought years (2006 and 2012) were com-
pared with two episodic pluvial years (2007 and 2013).

Fig. 3(a) and (b) shows SWC at various depths (5, 25, and
60 cm). The growing season average SWC of drought years (2006
and 2012) was approximately 20–25% (5 and 25 cm depths) and
25–30% at 60 cm whereas SWC at three depths ranged from 27%
to 44% in pluvial years (2012 and 2013). At El Reno, SWC at the
60 cm depth was relatively higher than that of Marena for all years.

Fig. 3(c) and (d) shows inter-annual variation of seasonal mean
VIs (NDVI, EVI, and LSWI). NDVI and EVI had relatively smaller
variations compared to the variation observed in LSWI. The aver-
age NDVI, EVI and LSWI values during the growing season were
Table 3
Summary of the start of growing season (SOS), ending of growing season (EOS), duration (in
sites over the study period (2000–2013).

Year Marena E

SOS
(Tmin > 5 �C)

Duration of
LSWI < 0
(spring)

Duration of
LSWI < 0
(summer)

Summer
rainfall
(mm)

EOS
(Tmin < 5 �C)

S
(

2000 21-March 24 10 394 07-October 2
2001 02-April 40 23 203 09-October 0
2002 10-April 40 8 281 11-October 0
2003 11-April 32 0 225 24-October 1
2004 15-April 16 0 312 29-October 1
2005 04-April 48 8 362 20-October 1
2006 29-March 56 53 164 17-October 2
2007 18-April 24 0 570 20-October 1
2008 16-April 24 0 297 14-October 2
2009 15-April 32 8 353 07-October 2
2010 10-April 16 8 265 27-October 1
2011 17-April 24 76 124 17-October 0
2012 11-March 56 34 191 24-October 1
2013 26-April 24 0 325 15-October 2

Cumulative summer rainfall (mm)
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Fig. 6. Relationship between duration of negative LSWI and cumulative rainfall during su
summer rainfall thresholds.
consistently lower (NDVIavg < 0.55, EVIavg < 0.35 and LSWIavg < 0)
in drought years (2006 and 2012) in comparison with pluvial years
(2007 and 2013). Both sites showed consistently lower values of
VIs in drought years. However, VIs at the Marena site were more
sensitive to drought than those at the El Reno site.

To understand the relative sensitivity of VIs to drought, the
deviation in the maximum values of VIs (NDVImax, EVImax and
LSWImax) for each year were compared to long term (2000–2013)
mean of maximum VIs (Fig. 4). The largest negative LSWI anomaly
was observed in drought years (2006 and 2012) at both sites,
although the magnitudes of decrease varied between sites. LSWI
showed the largest deviations in drought and pluvial years com-
pared to NDVI and EVI. For Example, LSWImax was reduced by
�0.36 (66%) and �0.32 (59%) at the Marena site, and by �0.18
(43%) and �0.2 (62%) at the El Reno site in 2006 and 2012, respec-
tively. The change in EVImax in drought years was greater than that
of NDVImax. In 2006 and 2012, drought reduced the EVImax by
almost two folds compared to NDVImax. At the Marena site, the
drought reduced NDVImax by �0.04 (7%) whereas EVImax was
reduced by �0.09 (17%) and �0.07 (14%) in 2006 and 2012,
days) of land surface water index (LSWI < 0) during Spring and Summer for the study

l Reno

OS
Tmin > 5 �C)

Duration of
LSWI < 0
(spring)

Duration of
LSWI < 0
(summer)

Summer
rainfall
(mm)

EOS (Tmin < 5 �C)

1-March 42 0 250 05-October
2-April 42 16 135 13-October
6-April 56 24 151 10-October
3-April 80 24 172 24-October
5-April 56 8 283 02-November
3-April 16 0 309 22-October
9-March 56 40 214 17-October
7-April 24 0 655 20-October
0-April 24 0 356 21-October
1-April 24 16 260 21-October
0-April 24 0 314 25-October
6-April 88 32 153 18-October
1-March 72 42 102 24-October
6-April 8 0 434 15-October
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respectively. Similarly at the El Reno site, NDVImax was reduced
only by �0.02 (4%) and �0.06 (10%) whereas EVImax was reduced
by �0.04 (10%) and �0.09 (19%) in 2006 and 2012, respectively.

3.2. Seasonal dynamics of rainfall, soil water content and vegetation
indices – identifying Spring drought and Summer drought within a
year

Fig. 5 represents the schematic diagram of air temperature,
NDVI, and LSWI dynamics during the drought and pluvial years.
During pluvial years, the duration of LSWI > 0 period was longer
and LSWI values were positive throughout the growing season.
Air temperature over a certain threshold (>5 �C) in the spring
determines the start of the growing season (late March-early
April). After greening up in spring, the rate of vegetation growth
depends on available SWC. If the plant available SWC is not suffi-
cient then the vegetation experiences stress. As such, LSWI < 0 dur-
ing the Mar-May period was designated as Spring drought.
LSWI < 0 during the Summer period (June–August) was defined
as Summer drought, while LSWI < 0 during the late growing season
(September–October) was defined as Fall drought (Fig. 5 inset
Table). Thus, a year could have Spring, Summer and/or Fall
droughts as per the rainfall received for that period of that year.

Duration of negative LSWI (LSWI < 0) during summer (June, July
and August) was longer in drought years than pluvial and normal
years (Table 3). For example, LSWI values were negative for 56
and 42 days during summer months in 2006 at the Marena and
El Reno sites, respectively. Further, LSWI values were negative for
72 days during the summer of 2011 at the Marena site. In contrast,
LSWI values never fell below zero in the summer of pluvial years
(2007 and 2013) at both sites. These results indicate the potential
of LSWI to track water status of vegetation during dry summers.
Interestingly, the duration of negative LSWI values during summer
showed a definite pattern when plotted with the cumulative sum-
mer rainfall (Fig. 6). For those years with summer rainfall less than
certain thresholds (230 mm for Marena site and 250 mm for El
Reno site), duration of negative LSWI values increased linearly as
Drought Class Description  PDSI 
0 

D0 
non-drought 
abnormally dry 

-0.49 or
-0.5 to -

D1 drought-moderate -2.0 to -
D2 drought-severe -3.0 to -
D3 
D4 

drought-extreme 
drought- exceptional -4.0 or l
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0
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Fig. 7. Relationship between: NDVI and LSWI for individual pixels of the grassland stud
categories defined by USDM, Palmer Drought Severity Index (PDSI) and LSWI-based dro
the cumulative summer rainfall decreased. However, the relation-
ship collapsed when the summer rainfall exceeded the threshold.
The years with summer rainfall over the threshold had zero or only
one 8-day period with LSWI < 0.

The relationship between NDVI and LSWI for summer months
(June–August) over the 14-years is presented in Fig. 7. Each point
in the plot represents the weekly observation of drought severity
designation for the study area as determined from USDM drought
maps (http://droughtmonitor.unl.edu/MapsAndData/). The
descriptions of the drought intensity defined by the USDM are listed
Fig. 7 inset table. Results illustrated that VIs values were much
lower (NDVI < 0.6 and LSWI < 0) during higher intensity droughts,
identified as D2, D3 and D4 by the USDM, whereas NDVI and
LSWI values were higher (NDVI > 0.6 and LSWI > 0) in lower inten-
sity and non-drought conditions, identified as D1 (moderate) and
D0 (dry) by the USDM. Based on LSWI values during the summer
months, drought was classified into non-drought or dry
(LSWI > 0.1), moderate (0 < LSWI 6 0.1), severe (�0.1 < LSWI 6 0)
and extreme-exceptional drought (LSWI 6 �0.1) corresponding to
USDM’s 0 or D0, D1, D2 and D3 or D4 categories, respectively.

4. Discussions

Globally, all ecosystems will be impacted to a greater extent by
the climatic extremes in future because most of the global climate
models predicted more extremes in the climates such as
multi-year droughts (Field et al., 2014). Previous studies reported
the sensitivity of the U.S. Southern Great Plains grassland to
extreme drought events during the historic droughts of the
1930s and 1950s (Albertson et al., 1957; Albertson and Weaver,
1944). Both pure and mixed prairies were seriously depleted by
those historic droughts and a long delay occurred in the recovery
of the vegetation. The negative impacts of two episodic droughts
of 2006 and 2012 over tallgrass prairie were apparent in our study
as documented by the lower values of NDVI, EVI and LSWI (Fig. 3).
Sensitivity of grassland vegetation to drought, when monitored
through several VIs, showed varied degrees of response. LSWI
 LSWI-D values and drought class 
 more 
1.99 LSWI > 0.1 
2.99 0 <LSWI ≤ 0.1 
3.99 -0.1 < LSWI ≤ 0 

ess LSWI ≤ -0.1 

El Reno

NDVI
.3 0.4 0.5 0.6 0.7 0.8 0.9

y sites for June–August over a 14-year study period (2000–2013). Drought severity
ught categories (inset table).

http://droughtmonitor.unl.edu/MapsAndData/
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was the most sensitive indicator of vegetation condition followed
by EVI and NDVI. For example, NDVImax was 0.63 (7% less than
14-year average, 0.69), the EVImax was 0.39 in 2012 (14% less than
14-year average, 0.45) and the LSWImax was 0.22 (59% less than
14-year average, 0.56) in 2012 at the Marena site.

Years with abundant rainfall (2007 and 2013) were character-
ized by the positive LSWI throughout the entire season, while
LSWI values decreased below zero and remained negative during
the summer droughts in 2006 and 2012. This finding is in agree-
ment with the results reported by Wagle et al. (2014) for El Reno
tallgrass prairie sites in Oklahoma. The sharper drop in LSWI values
in drought years revealed that the grassland vegetation had lost a
greater amount of water than the greenness because loss of chloro-
phyll and leaves is a rather slow process compared to water loss
from stomata via transpiration during drought (Chaves et al.,
2003). Therefore, LSWI can give a stronger vegetation drought sig-
nal than that of NDVI or EVI. Chandrasekar et al. (2010) also
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Fig. 8. Seasonal soil moisture dynamics between dry and wet years and sensitivity of ND
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reported that LSWI responded more directly to the water status
of the vegetation than did NDVI and EVI. Negative LSWI during
the summer not only indicated the drought but also reflected the
relative persistency of summer droughts. The longer the period
of LSWI < 0, the lesser the amount of rainfall was received by the
ecosystem and vice versa, indicating relative drought persistency
or duration (Fig. 6). For example, LSWI < 0 in 2011 (Marena site)
lasted for a longer period than in 2006 (72 and 32 days, respec-
tively), which indicates more persistent summer drought in 2011
than in 2006. Rainfall events correlate with the soil moisture
regimes and LSWI being the sensitive index provided an earlier sig-
nal of declining SWC than did NDVI and EVI. For instance, at the
Marena site, LSWI dropped below zero indicating droughts during
late June (DOY 170) of 2006 (Fig. 8e) when the SWC dropped below
12% whereas the NDVI reduced late during mid-July (DOY 200)
only when SWC dropped below 12% for a substantial period of time
(Fig. 8a). However, most of the models and drought monitoring
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algorithms for the last two decades (Hartmann et al., 2003; Ji and
Peters, 2003; Liu and Kogan, 1996; Nemani and Running, 1989;
Pettorelli et al., 2005) have widely used NDVI as a drought index.

Updating the climate based drought indicators such as Palmer
Drought Severity Index (PDSI) and Standardized Precipitation
Index (SPI), USDM has introduced the VegDRI in 2007 (Brown
et al., 2008). This drought-monitoring indicator provides a measure
of drought severity by integrating satellites observation, local
weather report and experts reviews. The USDM employs NDVI
observations that are more characteristic features of plant green-
ness and was found to be relatively less sensitive to drought com-
pared to EVI and LSWI in our study. Our study (14 years) over the
grassland based on sensitivity of VIs to past drought revealed that
LSWI could not only monitor the drought occurrence but also des-
ignate drought into different intensity categories (Fig. 7).
Traditionally, USDM has used PDSI to classify drought into differ-
ent classes (D0, D1, D2, D3 and D4). Such climate based drought
monitoring and classification approaches have coarse spatial reso-
lutions and do not better represent vegetation status since the
interpretation depends heavily on point based meteorological
measurements (Brown et al., 2008). We attempted to describe
drought severity categories quantitatively based on LSWI values
of vegetation which is relatively more precise and useful because
it is a pixel based finer resolution and vegetation specific calcula-
tion and is more related to water status of vegetation than green-
ness. The classification of drought categories are simply grouped
based on two dimensional spaces of NDVI and LSWI plots where
each point represents the weekly observation of drought severity
designation for the study area as determined from USDM (Fig. 7).
In our study, we found that higher negative values of LSWI repre-
sent a higher intensity drought. For example, when LSWI was �0.1
or smaller we defined it as extreme drought, comparable to D3 and
D4 (extreme and exceptional) categories by USDM, while
moderate-severe droughts were identified when LSWI values ran-
ged greater or equal to zero to less than �0.1 corresponding to D1
and D2 drought categories of USDM classification. Overall, good
vegetation growth exhibited higher LSWI values, which decreased
with drought and ultimately became negative when drought
became more extreme. Therefore, by using the information ren-
dered by LSWI during the drought, we can quantitatively investi-
gate the drought impacts on vegetation that can contribute
toward the development of more robust tools for monitoring
drought stress in vegetation.

5. Conclusion

We used 14 years of MODIS-derived VIs, Mesonet soil moisture
and rainfall data at Marena and El Reno tallgrass prairie sites to
study the impact of drought events on grassland phenology and
growth through analyzing sensitivity differences of vegetation
indices to drought. Specifically, the drought events (2006 and
2012) that occurred in the last 14 years negatively impacted the
growth of the vegetation. When three VIs were compared, LSWI
decreased the most in drought years followed by EVI and NDVI,
indicating that LSWI was the most sensitive indicator to the
drought events. The number of days with LSWI < 0 was found
higher during the summer droughts of 2006 and 2012, showing
the ability of LSWI to track drought. Based on this finding, a new
approach of drought assessment, counting number of days with
LSWI < 0 and LSWI-based drought severity classification, is pro-
posed in this study. LSWI values were more negative for the period
of intensity drought categories (D2, D3 and D4) defined by USDM,
demonstrating that LSWI could be used to describe the hydrologi-
cal condition of the tallgrass prairie as an effective additional VI for
drought assessment. However, a more thorough evaluation of this
approach as a drought monitoring tool for widely distributed
grasslands and other vegetation types is required and will be the
subject of future research.
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