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Due to increasing global demand for natural rubber products, rubber (Hevea brasiliensis) plantation expan-
sion has occurred in many regions where it was originally considered unsuitable. However, accurate maps
of rubber plantations are not available, which substantially constrain our understanding of the environmental
and socioeconomic impacts of rubber plantation expansion. In this study we developed a simple algorithm
for accurate mapping of rubber plantations in northern tropical regions, by combining a forest map derived
from microwave data and unique phenological characteristics of rubber trees observed from multi-
temporal Landsat imagery. Phenology of rubber trees and natural evergreen forests in Hainan Island, China,
was evaluated using eighteen Landsat TM/ETM+ images between 2007 and 2012. Temporal profiles of the
Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Land Surface Water
Index (LSWI), and near-infrared (NIR) reflectance for rubber trees and natural forest were constructed. The
results showed that rubber plantations are distinguishable from natural evergreen forests in two phenolog-
ical phases: 1) during the defoliation (leaf-off) phase in late February–March, vegetation index (NDVI, EVI,
LSWI) values were lower in rubber plantations than in natural evergreen forests; and 2) during the foliation
(new leaf emergence) phase in late March–April, rubber plantations had similar NDVI and LSWI values but
higher EVI and NIR reflectance values than in natural forests. Therefore, it is possible to delineate rubber plan-
tations within forested landscapes using one to two optical images acquired in the defoliation and/or foliation
period. The mapping technique was developed and applied in the Danzhou Region of Hainan. Phased Array
type L-band Synthetic Aperture Radar (PALSAR) 50-m Orthorectified Mosaic images were used to generate
a forest cover map and further integrated with the phenological information of rubber plantations extracted
from Landsat TM images during the foliation phase. The resultant map of rubber plantations has high accu-
racy (both producer's and user's accuracy is 96%). This simple and integrated algorithm has the potential
to improve mapping of rubber plantations at the regional scale. This study also shows the value of time series
Landsat images and emphasizes imagery selection at appropriate phenological phase for land cover classifi-
cation, especially for delineating deciduous vegetation.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Plantation development by the agroforestry industry, such as the
expansion of Pará rubber tree (Hevea brasiliensis) plantations, has
been a critical driver of land cover change around the world, particu-
larly in the tropics. The Food and Agriculture Organization (FAO) of
the United Nations Global Forest Resources Assessment (FRA) 2010
y and Plant Biology, and Center
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reported that globally rubber plantation extent has steadily increased
by 25% during the past two decades (FAO, 2010). Approximately 97%
of global natural rubber supply comes from Southeast Asia (Li & Fox,
2012). This land use is a primary driving factor for the conversion
from swidden to monocultural cash plantations in montane areas of
mainland Southeast Asia (Fox & Vogler, 2005). This land use change
process has both economic and environmental outcomes. On the
one hand, local farmers can improve financial stability as rubber
plantations provide greater agricultural profit due to the increased
demand for rubber products. Further, rubber plantations tend to have
greater agricultural resiliency compared to traditional cash crops
that are more stressed by adverse weather. On the other hand, the
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expansion of rubber plantations plays an important role in altering
regional environments that substantially affect human well-being and
ecosystem services. For example, large-scale land surface change
affects climate, carbon stocks, and biodiversity (Foley et al., 2005; Li,
Aide et al., 2007; Ziegler, Fox, & Xu, 2009). Rapid expansion of rubber
plantations has occurred in south China due to the increasing demand
for rubber products. The rapid growth of rubber plantations in Hainan
Province and the Xishuangbanna Region of Yunnan Province in China
has received much attention (Qiu, 2009; Zhai et al., 2012; Ziegler et
al., 2009); however, an accurate map of rubber plantation extent
with high accuracy and resolution is still not available in these regions.

A number of studies have used optical remote sensing data to
delineate rubber plantations and these studies can be categorized
into two broad groups. The first group focuses on the use of spectral
signatures with cluster analysis and traditional classifiers to identify
and map rubber plantations. For example, Li et al. (Li, 2011; Li &
Fox, 2011, 2012) applied Mahalanobis typicality method to identify
rubber trees in mainland Southeast Asia by using spectral data from
Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER),
and Landsat imagery. Zhang et al. (2010) used georeferenced field
data and Landsat TM images in May-August of 2008 to conduct a
maximum likelihood supervised classification that achieved an over-
all accuracy of 91% in Hainan Island, China, and the rubber plantation
area was estimated at 4170 km2. However, rubber trees have similar
spectral characteristics compared to natural tropical forest, particu-
larly secondary forest, as observed by single date multispectral data
during peak growing season (Li & Fox, 2011). In addition, spectral
characteristics of rubber trees vary in different regions or seasons,
therefore, traditional spectral-based classifiers are challenging to
repeat, scale, or transfer to other geographical regions. Moreover, fre-
quent cloud coverage in the tropics presents a challenge for optical
data to distinguish general forest, let alone rubber trees.

The second group of studies relies on the temporal signals of optical
images to delineate rubber trees. For example, Normalized Difference
Vegetation Index (NDVI) time series data from MODIS and China's
Feng-Yun-3A (FY-3A) have been used to represent the phenological
signatures of rubber plantations. Recently Chen et al. (2010) and Tan
et al. (2010) utilized the intra-annual temporal profile of rubber plan-
tations to delineate them in Hainan, China. This approach relied on
phenological features of rubber plantations; however, the spatial reso-
lution of MODIS is relatively coarse (250–500 m), which limits its suit-
ability for rubber plantation mapping in fragmented landscapes. The
frequent cloud cover in tropical regions also makes it difficult to con-
struct consistent year-long MODIS time series with reliable data
quality.

Therefore, the difficulty of mapping rubber plantations from optical
images is two-fold: the first difficulty is the effect of frequent cloud
cover on tree delineation; and the second is the similarity of spectral
characteristics between rubber trees and other forest types. In compar-
ison to optical sensors, synthetic aperture radar (SAR) can penetrate
clouds and has advantages in mapping tropical forests, particularly
longer wavelengths (e.g. L-band SAR) that are capable of penetrating
tree canopies (Baghdadi et al., 2009). The Phased Array type L-band
Synthetic Aperture Radar (PALSAR) onboard the Advanced Land Ob-
serving Satellite-1 (ALOS-1) was launched by the Japan Aerospace Ex-
ploration Agency (JAXA) in January 2006 is one such instrument.
Several applications have utilized PALSAR observations to map tropical
forest areas (Almeida et al., 2009; Longepe et al., 2011; Miettinen &
Liew, 2011; Santoro et al., 2010; Walker et al., 2010; Xiao et al., 2010).
In a previous study we combined a forest map derived from PALSAR
50-m orthorectified mosaics with a phenology-based map of rubber
plantations from 250-m multi-temporal MODIS NDVI to generate a
250-m fractional cover map of rubber plantations in Hainan, China
(Dong et al., 2012b). Our previous effort found that the use of
cloud-free PALSAR data supported robust forest mapping and the
integration of PALSAR 50-m forest maps and 250-m MODIS NDVI phe-
nology helped to accurately map fractional cover of rubber plantation
extent (Dong et al., 2012b). However, due to the heterogeneous land-
scapes in Hainan, the phenology information extracted from the
MODIS time series included mixed pixels with signals from other land
cover types, as small holder land management represents a large por-
tion in the region. To overcome the challenge of mixed pixels, the use
of time series Landsat imagery (30-m spatial resolution) could be valu-
able. The relatively fine resolution and free availability of Landsat im-
ages are potential sources of more phenology information at a higher
spatial resolution that can substantially improve product accuracy.
The advantages of multiple temporal Landsat data for land cover classi-
fication, for example, in discriminating temperate deciduous forests
(Homer, Huang, Yang,Wylie, & Coan, 2004), have beenwell established.
A simple and accurate algorithm to map rubber plantations with freely
available Landsat imagery is of extreme value and urgently needed in
complex landscapes across Southern China and Southeast Asia where
rubber plantations continue to expand.

In this study we addressed two questions regarding mapping rub-
ber plantations. First, is Landsat-based phenology analysis robust and
capable of distinguishing rubber plantations from natural evergreen
forests? Second, can delineation of rubber plantations be improved
by combining PALSAR-derived forest mapswith Landsat-based phenol-
ogy? Our objective was to develop and apply a simple, phenology-
based approach for mapping rubber plantations at a finer spatial
resolution at regional scale that enables a rapid and repeated execu-
tion. The Danzhou region of Hainan Island, China was selected as the
study area as this region has the largest rubber plantation area in
Hainan. To achieve this objective we integrated cloud-free PALSAR
and optical Landsat imagery to overcome the technical challenges
faced in previous studies. This study is expected to provide a practical
approach for the continental rubber plantation mapping in Southern
China and Southeast Asia in the near future.

2. Materials and methods

2.1. Study area

The Danzhou region has the highest rubber production in the
Hainan Province, China. According to data from the Hainan Statistical
Yearbook, Danzhou produced 7.4 × 104 tons of rubber in 2011, which
accounted for ~20% of rubber production in Hainan Province. It has a
tropical monsoon climate with an annual mean temperature of
approximately 25 °C and annual accumulated precipitation between
1800 and 2000 mm. The region is located in western Hainan and
the influences of typhoons are relatively small compared with eastern
regions of Hainan. Elevation increases from b50 m in the northwest
to 752 m in the southwest (Fig. 1). Natural forests in Danzhou are
mainly evergreen, while rubber trees show deciduous characteristics.
Defoliation is an adaptation of rubber trees to low temperature and/
or dry monsoon. When rubber trees were introduced in British
Malaysia in the 20th century, the trees were considered unsuitable
for northern parts of the tropics such as Hainan Island. However,
rubber germplasm improvement enhanced the capability to adapt
to frequent typhoons and low winter temperature (Li & Fox, 2012).

2.2. PALSAR data and pre-processing

PALSAR 50-m Orthorectified Mosaic data were used to generate a
forest map. The PALSAR mosaic data are freely available through the
ALOS Kyoto and Carbon Initiative (ftp://ftp.eorc.jaxa.jp/pub/ALOS/
ftp/KC50/). The data have been geometrically rectified using a 90-m
digital elevation model (DEM) and geo-referenced to geographical
latitude and longitude coordinates (Longepe et al., 2011). Detailed al-
gorithms and data processing including calibration and validation
were reported in Shimada et al. (2008), Shimada and Ohtaki (2010).

ftp://ftp.eorc.jaxa.jp/pub/ALOS/ftp/KC50/
ftp://ftp.eorc.jaxa.jp/pub/ALOS/ftp/KC50/


Fig. 1. The location of Danzhou City in the Hainan Province of China and its topography. Danzhou is a major agroforestry region with the highest density of rubber plantation on
Hainan Island. The red triangles show the locations of reference photos from our field trips in 2011 and 2012. The yellow polygons show the distribution of the ROIs for the vali-
dation of PALSAR-based land cover map and the resulting rubber plantation map. The photos on the right side show rubber plantations in northern, central and southern parts of the
study area. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Table 1
A list of Landsat TM/ETM+ images used in this study. All the images are with the same
orbit number (Path/Row 124/47), and have relative limited cloud cover in the study
area. Cloud coverage values and SLC-off strips are not processed as we used the
samples (12 rubber plantation samples and 13 natural forest samples) outside the
striping for phenology analysis.

Acquired date DOY Sensor Acquired year

January 6 6 Landsat 7 ETM+ 2008
February 25 56 Landsat 7 ETM+ 2009
February 28 59 Landsat 7 ETM+ 2010
March 5 65 Landsat 7 ETM+ 2012
March 10 70 Landsat 7 ETM+ 2008
March 16 75 Landsat 5 TM 2007
March 24 83 Landsat 5 TM 2010
April 1 91 Landsat 7 ETM+ 2010
May 8 129 Landsat 7 ETM+ 2012
June 1 152 Landsat 7 ETM+ 2009
July 6 187 Landsat 7 ETM+ 2010
August 20 232 Landsat 7 ETM+ 2009
September 21 262 Landsat 7 ETM+ 2009
October 31 304 Landsat 5 TM 2009
December 10 344 Landsat 7 ETM+ 2009
December 13 347 Landsat 7 ETM+ 2010
December 26 360 Landsat 7 ETM+ 2009
December 29 363 Landsat 7 ETM+ 2010
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We obtained 50-m mosaics with Fine Beam Dual polarization (FBD)
observational mode between July-Oct. 2009, which has two polariza-
tions (HH and HV). The HH and HV polarization data were converted
from amplitude into the normalized radar cross-section backscatter
(dB) according to the following equation (Rosenqvist, Shimada, Ito,
& Watanabe, 2007):

σ0 dBð Þ ¼ 10� log10DN
2 þ CF ð1Þ

where σ0 is the backscattering coefficient, DN is the digital number
value of pixels in HH or HV; and CF is the absolute calibration factor
of -83. Besides HH and HV polarization images, two composited im-
ages (the ratio and difference of HH and HV) were also generated,
since these indices have been shown to be valuable for land cover
classification (Dong et al., 2012a; Miettinen & Liew, 2011; Wu,
Wang, Zhang, Zhang, & Tang, 2011).

2.3. Landsat data and pre-processing

In order to capture the phenological characteristics of rubber trees
and other land cover types, 18 standard level-one terrain-corrected
(L1T) products of Landsat TM and ETM+ images (path/row 124/47)
circa 2009 (from 2007 to 2012) were obtained from the USGS Earth
Resources Observation and Science (EROS) Data Center (Table 1).
Radiometric and geometric corrections have been conducted, and the
overall geometric fidelity has also been fitted using ground control
points and a digital elevation model in Level 1 T Landsat products
(NASA Goddard Space Flight Center, 2011).We conducted atmospheric
correction and acquired surface reflectance by using the Landsat Eco-
system Disturbance Adaptive Processing System (LEDAPS) routine,
which uses theMODIS 6S radiative transfer approach to retrieve surface
reflectance (Masek et al., 2006; Vermote et al., 1997). Three vegetation



Fig. 2. The workflow for mapping rubber plantation based on 50-m PALSAR
orthorectified mosaic product and 30-m Landsat images. PALSAR-based forest/tree
mapping and Landsat-based phenology feature extraction of rubber trees are
conducted independently. Three groups of ground truth data are used: (a) the points
of interest (POIs) are used for the phenology phase extraction (13 natural forest
ones and 12 rubber plantation ones) by using multi-temporal Landsat images,
(b) the training regions of interest (ROIs) are used to acquire the phenology feature
of rubber plantation based on the Landsat images in the foliation stage, and (c) the
validation ROIs are used for accuracy assessments of land cover classification and the
rubber plantation map.
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indices were calculated using the surface reflectance, including NDVI
(Tucker, 1979), Enhanced Vegetation Index (EVI) (Huete, Liu, Batchily,
& vanLeeuwen, 1997; Huete et al., 2002), and Land Surface Water
Index (LSWI) (Xiao, Zhang, Hollinger, Aber, & Moore, 2005; Xiao et al.,
2004) with the following equations,

NDVI ¼ ρNIR−ρred

ρNIR þ ρred
ð2Þ

EVI ¼ 2:5� ρNIR−ρred

ρNIR þ 6� ρred−7:5� ρblue þ 1
ð3Þ

LSWI ¼ ρNIR−ρMIR

ρNIR þ ρMIR
ð4Þ

where ρ
blue

, ρ
red
, ρ

NIR
, and ρ

MIR
are the surface reflectance values of the

Band 1 (Blue, 0.45–0.52 mm), Band 3 (Red, 0.63–0.69 mm), Band 4
(near-infrared, NIR for short hereafter, 0.76–0.90 mm) and Band 5
(Shortwave-infrared, 1.55–1.75 mm) in Landsat TM/ETM+ sensors,
respectively.

2.4. Ground reference data for algorithm training and product validation

2.4.1. Geo-referenced field photos (points of interest)
We conducted field surveys of rubber plantations and other land

cover types in 2011 and 2012. Using a Casio Exolim EX-H20G GPS
camera, 482 geo-referenced field photos in the study area were col-
lected for training and validation of the classification routine. All
field photos capture specific information about land cover types and
the sampling strategy focused on rubber plantations. The locations
of these ground truth samples are shown in Fig. 1. All the field photos
are stored and managed in the Global Geo-Referenced Field Photo Li-
brary (http://www.eomf.ou.edu/photos/), which is a data portal that
is open to the public and the science community. Users can upload,
manage, and download field photos in the platform. As of October
2012, there were 1,200 photos available for Hainan Island (Fig. 1).
We processed all the field photos in the study area as kml files,
which we hereinafter refer to as points of interest (POIs); all these
POIs were geo-linked with Google Earth to help digitize regions of in-
terest (ROIs) for algorithm training and product validation (Fig. 2).
Although this study used Landsat and PALSAR imagery from circa
2009 for mapping rubber plantations, the ground truth data from
2011 to 2012 are suitable as rubber trees grow for many years with
consistent seasonal phenology.

2.4.2. Regions of interest (ROIs) for algorithm training and product
validation

Although we collected abundant geo-referenced field photos, the
pixel samples where the photos are located are not sufficient for
both algorithm training and rigorous map validation. We used high
spatial resolution imagery within Google Earth to extrapolate the
POIs into ROIs. The field photos provide reference information for
the interpretation and digitalization of ROIs in Google Earth. This
approach was used in our previous studies and proved to be effective
(Dong et al., 2012a, 2012b). Some previous studies have also used
Google Earth for validation of land classification considering its geo-
metric accuracy and the fine spatial resolution of imagery (Benedek
& Sziranyi, 2009; Cohen, Yang, & Kennedy, 2010; Huang et al., 2010;
Montesano et al., 2009; Potere, 2008).

By cross-validating the Google Earth images and the geo-
referenced field photos in the study area, a group of ROIs was devel-
oped as training samples for the phenology feature analysis of rubber
plantations and natural evergreen forests. This included 14 rubber
ROIs (884 pixels), and 15 natural evergreen forest ROIs (2,441 pixels).
The separability scores of the ROIs were calculated by using the
Jeffries-Matusita (J-M) distance (Eq. (5)) (Richards & Jia, 1999)
between the two ROIs with all bands as inputs.

JMij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1−e−að Þ

q
ð5Þ

where JMij is the J-M distance between signatures i and j, and a is the
Bhattacharyya distance, which is calculated using the following equa-
tion:

a ¼ 1
8

Ui−Uj

� �T Ci þ Cj

2

� �−1

Ui−Uj

� �
þ 1
2
Ln

1=2 Ci þ Cj

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cij jXjCj

q
j

2
64

3
75 ð6Þ

where i and j represent the two classes of interest, T is transpose, Ci is
the variance-covariance matrix of signature i, Ui is the mean vector of
signature i, and |Ci| is the determinant of Ci. The J-M distance value of
the ROI pairs was larger than 1.9. As a commonly used rule, a J-M
distance value above 1.9 means the separability between the two
classes is good (Richards & Jia, 1999). Therefore, the rubber plantation
and natural forest ROIs in this study have good separability and are
reasonable for use as training samples.

Another group of ROIs for product validation with five main land
cover types were generated, namely: rubber plantation, natural for-
est, cropland, water, and built-up land. As the Google Earth imagery
in the area spanned from 2000 to 2012 and some images were out
of date in the study area, we only created the ROIs with imagery
from circa 2009 to match the acquisition period of Landsat imagery.
Image dates, phenology, and ROI size were also considered during

http://www.eomf.ou.edu/photos/
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the process of ROI creation. A total of 113 polygon ROIs (~29,000
pixels) were created to conduct thorough accuracy assessments for
not only PALSAR-based land cover classification, but also the further
PALSAR/Landsat-based rubber plantation map using confusion
matrix, including 33 rubber ROIs (5470 pixels), 29 natural evergreen
forest ROIs (10,229 pixels), 29 cropland ROIs (4288 pixels), 6 water
ROIs (4789 pixels), and 16 ROIs (4586 pixels) for other land cover.
The ROIs are widely distributed in the study area (Fig. 1).

2.5. PALSAR-based forest cover mapping

In our previous study, we used PALSAR 50-m mosaics to generate
a map of forest and non-forest in Southeast Asia (Dong et al., 2012a).
As Hainan Island belongs to the Southeast Asia region and has the
same tropical landscapes, we used the same approach to generate
the forest/non-forest map in 2009 in Hainan Island, China. The four
land cover types, including water, forest, cropland, and others, have
different PALSAR backscatter signatures. For example, forests have
higher backscatter values than water and cropland. According to the
backscatter differences of the four land cover types, a land cover
map in Danzhou was generated (Fig. 3) with the same approach
reported in our previous publication (Dong et al., 2012a).

This PALSAR-based 50-m forest mapwas used as a mask to overlay
with the phenology information of rubber trees in an effort to pro-
duce a rubber plantation map. The 50-m forest mask was extracted
from the land cover classification result (Fig. 3); and resampled to
30-m to match the Landsat spatial resolution. Both rubber plantations
and natural evergreen forests belong to the general forest class as
mapped by the PALSAR-based approach (Dong et al., 2012a).

2.6. Landsat-based phenology analysis

Rubber trees in Hainan are sensitive to cold temperatures and de-
foliate in winter, which is a unique characteristic that is different from
natural forests and other cash forests such as lichee and longan (Chen
et al., 2010). That is the reason that the rubber plantations in Hainan
Island have deciduous characteristics while the rubber plantations in
equatorial regions don't.
Fig. 3. The 50-m land cover map in 2009, derived from PALSAR 50-m orthorectified
mosaic images. It has four land cover types (forest, cropland, water, built-up land)
and unclassified category.
Temporal profiles of three vegetation indices (NDVI, EVI and
LSWI) from 18 Landsat images were constructed to examine the phe-
nology of rubber plantations and natural evergreen forests (Fig. 4).
Twelve representative sites were selected for rubber plantations and
another thirteen sites for natural evergreen forests. Multiple years
of images from 2007 to 2012 (15 images from 2008 to 2010) were
collected to represent the seasonal variations of the three vegetation
indices and NIR reflectance as it is difficult to acquire temporal
Landsat TM images in this region due to frequent cloud cover and
data availability. Scan Line Corrector (SLC) issues were circumvented
by extracting pixels outside of striping lines.

Based on the intra-annual temporal analysis of vegetation indices,
we found that rubber and natural evergreen forests are distinguish-
able by Landsat imagery in two periods: (1) late February to March
(defoliation period) and (2) late March to April (foliation period).
The detailed phenology description is given in Section 3.1.

2.7. Rubber plantation delineation by integrating PALSAR and Landsat

For regional mapping, Landsat TM images in either defoliation or fo-
liation stages can support rubber plantation identification. As there
were no good-quality images available in the defoliation stage, we
used images in the foliation phase for rubber plantation delineation.
Two Landsat 5 TM L1T images (Path/Row 124/46 and 124/47) in
March 24, 2010 (in the foliation stage of rubber trees, Fig. 4) were
used for the case study in Danzhou. This imagery in the foliation
phase clearly shows the rubber plantations (Fig. 5a), which appear
light green in the false color composite map (R/G/B = Band 5/4/3).
We found that images from unique phenological phases have better
performance than those from other periods, for example, rubber plan-
tations and natural evergreen forests have similar optical characteris-
tics in an image acquired in June (Fig. 5b). The three vegetation
indices (NDVI, EVI, and LSWI) and the six spectral bands were stacked
for phenology feature extraction of rubber plantations.

The rubber plantation map was generated by combining the
PALSAR-based forest layer and the phenology feature of rubber
trees (Fig. 2). The 30-m forest map derived from PALSAR images has
been described in Section 2.5. The phenological feature map of rubber
plantations at 30-m resolution was extracted based on the results of
statistical analysis of band reflectance and vegetation indices in the
defoliation stage (see Section 3.1). These two maps were combined
by using the intersection tool in ArcGIS software.

2.8. Validation and comparison

The resultant map of rubber plantations at 30-m spatial resolution
was evaluated by using a confusion matrix based on the ROIs for vali-
dation. In addition, the 30-m rubber plantation map in this study was
compared with the rubber fractional map from our previous study in
Hainan Island by integrating PALSAR and MODIS (Dong et al., 2012b).
The rubber plantation areas and the spatial distributions in the entire
Danzhou were compared; also, Pearson's correlation was conducted
between two rubber plantation fractional maps from a random sample
of pixels (n = 3556). For the comparison, the PALSAR and Landsat-
based binary rubber plantation map was aggregated into fractional
map to match the PALSAR and MODIS-based rubber plantation
fractional map.

3. Results

3.1. Forest map derived from PALSAR 50-m orthorectified mosaic
imagery

The resulting PALSAR-based land cover map has a high accuracy
based on the ROIs for validation. The overall accuracy was 87% and
kappa coefficient was 0.80. The both user's accuracy and producer's



Fig. 4. The temporal profiles of time series Landsat NDVI, EVI, LSWI and near-infrared (NIR) reflectance for (a) rubber plantations, and (b) natural forests. Twelve points of interest
(POIs) were extracted for rubber plantations and 13 POIs for natural forests. The points and error bars show their average and standard deviation (SD) values. Rubber plantations
and natural forests are evidently different in two typical phenology phases: defoliation (the brown long and narrow boxes) and foliation (the green long and narrow boxes). The
four field photos in different periods (March 16, 2008, April 24, 2012, September 10, 2012, and November 16, 2011 from left to right) show the intra-annual changes of rubber trees'
canopy. The photos were not taken in the same regions but they were all close to the selected points. It is clear that the leaves of rubber trees fall off greatly in late February and
early March, and the canopy recovers rapidly in April. The high SD values from June to October show data quality is poor in the period due to frequent cloud covers.
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accuracy of the forest category were higher than 93% (Table 2). There-
fore, the forest map can serve as a reliable base map for rubber planta-
tion delineation. The categories of cropland and other land cover had
lower accuracies than those of forest and water; for example, the
other land cover category had a low user's accuracy (71%) and
producer's accuracy (64%) due to the complex backscatter of built-up
areas. However, this is not of concern as the focus is forest in this study.

3.2. Phenological phases of deciduous rubber trees as observed from
Landsat

Fig. 4 shows the seasonal dynamics of three vegetation indices and
NIR reflectance from rubber plantations and natural evergreen
forests. In the peak period of the plant growing season (e.g., mid-
summer), rubber plantations had similar level of vegetation indices
to that of natural evergreen forests. In the late winter season, rubber
trees defoliated substantially in late February or early March (see the
photos in Fig. 4). The canopy density decreased to a low level by as
much as 20% or less which was reported in an earlier study (Chen
et al., 2010). Rubber trees underwent rapid foliation and canopy
recovery from late March to April. Rubber plantations had higher NIR
and EVI values than natural evergreen forests in the foliation stage
(Fig. 4), which suggests that rubber plantations can be separated
from natural evergreen forests.

The spectral signature analyses based on the training ROIs and the
image acquired during the foliation stage (Fig. 5a) showed that rubber
trees and natural evergreen forests have different phenological charac-
teristics during this period (Fig. 6). NIR reflectance values were higher
in rubber plantations (0.347 ± 0.027) than in natural evergreen for-
ests (0.245 ± 0.019). Similarly, EVI values were also higher in rubber
plantations (0.595 ± 0.056) than in natural evergreen forests
(0.437 ± 0.038). The other VIs examined (NDVI, LSWI) had less ability
to separate rubber plantations from natural evergreen forests. NIR
performed a larger separability than EVI (Fig. 6). Therefore, we used a



Fig. 5. The false color composition map (R/G/B = Band 5/4/3) of Landsat TM5 images (a) — March 23, 2010, and (b) — June 19, 1995. The below zoom-in images of a small area
show that rubber plantation is readily visible as light green patches in the foliation stage image (a), but rubber plantation and natural forest are indistinguishable in (b) which
is in neither defoliation nor foliation stage. Several classes of interest were marked in the zoom-in images, including rubber (‘A’), natural forest (‘B’), built-up land (‘C’), and
water (‘D’).
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NIR reflectance > 0.29, the mean value of the lower rubber NIR reflec-
tance value (0.347 - 0.027) and the higher forest NIR reflectance value
(0.245 + 0.019), as the threshold value for phenological feature ex-
traction of rubber plantations.

3.3. The rubber plantation map and accuracy assessment

By combining the PALSAR-based forest mask (Fig. 7a) and
Landsat-based rubber phenology (Fig. 7b), a rubber plantation map
was generated (Fig. 7c). The rubber plantation area in Danzhou City
Table 2
Accuracy assessment of the land cover classification map based on PALSAR 50-m mosaic
data in this study. The validation samples of the “forest” category include both natural
forest and rubber plantation, and the samples of the “others” category are mainly
built-up land.

Class Ground truth samples (pixels) Total
classified
pixels

Prod.
acc.

Forest Cropland Water Others

Classified
results

Forest 14,960 252 0 938 16,150 93%
Cropland 61 2868 199 351 3479 82%
Water 0 39 4584 19 4642 99%
Others 678 1129 6 3278 5091 64%

Total ground truth pixels 15,699 4288 4789 4586 29,362
User acc. 95% 67% 96% 71%

Overall accuracy is 87%; kappa coefficient is 0.80.
was estimated at 594 km2 in 2009, which was slightly higher than
the estimate (590 km2) in 2007 from a previous study (Cao, 2008).
There was no precise reference data available in 2009 for comparison;
however, the rubber plantation area was estimated to be more than
600 km2 as the private rubber plantations continued to grow rapidly
in recent years (Xu, 2010). In this study, omission of young rubber
trees might exist, as young rubber trees have overlapping spectral
characteristics with the background landscape (Li & Fox, 2012).

The resulting rubber plantationmap has a high accuracy according
to the confusion matrix by using the ground truth ROIs. The overall
accuracy is 92% and the kappa coefficient is 0.88 (Table 3). The inter-
pretation accuracy of rubber plantations is high with both user's and
producer's accuracies at 96%.

3.4. Comparison with the rubber plantation map derived from PALSAR
and MODIS imagery

The PALSAR/Landsat-based rubber plantation map and the
PALSAR/MODIS-based rubber plantation map have high consistency
in spatial distribution, as shown in Fig. 8a and b; however the
PALSAR/Landsat-based map from this study has more detail in spatial
distribution. For example, a zoom-in analysis (Fig. 8d-f) shows that
the PALSAR/Landsat-based rubber plantation map provides higher
spatial configuration and spatial detail compared to that of the
PALSAR/MODIS map, especially in the regions where the PALSAR/
MODIS map has a low rubber density.



Fig. 6. Signature analysis of (a) the reflectance of spectral bands and (b) the vegetation
indices (NDVI, EVI and LSWI) for rubber plantations and natural forests based on the
Landsat 5 images in March, 2010. Rubber plantation and natural forests have distinctive
values in NIR and EVI.

Fig. 7. (a) The forest layer with a 30-m resolution, which was derived from the 50-m
PALSAR-based land cover map (Fig. 3) and then resampled into Landsat scale; (b) the
spatial distribution of the unique phenology feature (near-infrared reflectance > 0.29)
of rubber plantations in foliation stage by using the selected image in certain phenology
phase (March 24, 2010). (c) The resultant rubber plantation map with 30-m resolution
by combining the forest layer (a) and the rubber phenology feature (b).
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The correlation coefficient between these twomaps from a sample
of pixels is 0.88 (p b 0.001, n = 3556). The PALSAR/MODIS-based
rubber plantation map has an area estimate of 711 km2, which is
approximately 20% larger than that of PALSAR/Landsat-based map
from this study (594 km2). The regression analysis between these
two maps also shows the discrepancy between these maps (Fig. 8c).
The difference is likely to be caused by sub-pixel level spectral
mixture issues in the MODIS-based analysis. The study area in this
paper has complex landscapes and most land parcels are in small
size. A MODIS pixel (250-m resolution) is more likely to contain
several land cover types than does a TM pixel (30-m resolution),
and the phenology information from MODIS imagery is thus compli-
cated by the issue of mixed pixels. The use of phenology information
from Landsat imagery clearly resulted in higher accuracy in mapping
rubber plantations.

4. Discussion

4.1. Primary findings and potential for regional rubber mapping

The results from this study showed that the finer spatial resolution
Landsat imagery provides more spatial details about the extent and
spatial configuration of rubber plantations than MODIS imagery
(Dong et al., 2012b; Li & Fox, 2012). The distinct difference in phenol-
ogy between rubber plantations and natural evergreen forests in the
study area occurs in two specific phenological phases (Fig. 5). These
two phenological phases are unique and can be used to delineate rub-
ber plantations from natural evergreen forests simply by selecting and
using strategic images in one of these two phenological phases. In de-
foliation phase (February to Early March) rubber plantations have a
canopy with little or no green leaves and low NDVI/EVI/LSWI values
due to defoliation, while evergreen forests have only slight change in
canopy coverage with high VI values. In foliation phase (Late March
to April) rubber trees have rapid foliation (new leaf emergence) and
canopy recovery. During this phase new leaves have higher spongy
mesophyll content, which results in high reflectance in near infrared
bands. In comparison, natural evergreen forest has relatively lower



Table 3
Accuracy assessment of the rubber plantation map by integrating PALSAR-based forest
base map and Landsat-based phenology feature in this study. The validation samples of
the “others” category are the sum of the “cropland”, “water” and “others” categories
used in Table 2.

Class Ground truth samples
(pixels)

Total
classified
pixels

Prod.
acc.

Rubber Natural
forest

Others

Classified
results

Rubber 5225 220 13 5458 96%
Natural
forest

135 9386 1110 10,631 88%

Others 110 623 12,540 13,273 94%
Total ground truth pixels 5470 10,229 13,663 29,362
User Acc. 96% 92% 92%

Overall accuracy is 92%; kappa coefficient is 0.88.
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NIR values because the canopy is composed of leaves of different ages
and more mature leaves have lower NIR values.

This work showed that deciduous rubber plantations can be iden-
tified and mapped rapidly and effectively with images acquired in
designated phenological phases (defoliation or foliation). That led to
a higher resolution rubber plantation map by using PALSAR and
Landsat in a certain phenological phase (e.g., the end of March in
this study). Once the defoliation or foliation periods of rubber are de-
fined for a given region and temporal window, single date imagery
can support the rubber plantation mapping at regional scale. That
can transform the ‘temporal’ analysis into the ‘static’ analysis, and
greatly simplify rubber plantation mapping. This study emphasizes
the utility of phenology-based image selection for land cover classifi-
cation, especially for dynamic or deciduous vegetation. We also found
that the presence of cloud cover is frequent from June to October and
there are few good-quality images available in Hainan (Fig. 2). The
approach detailed here can overcome this obstacle as the defoliation
and foliation stages are not concordant with the cloudy period.
Fig. 8. Comparison between (a) the rubber plantation map by using the PALSAR/Landsat-b
approach (Dong et al., 2012b). (c) The scatterplot of two rubber plantation fractional map
acquired by aggregating the binary rubber map (a) to an area percentage map at MODIS-scal
of the linear fitting line in (c) is y = 1.08x (R2 = 0.77, p b 0.001, n = 3556). (d) The zoom
PALSAR/Landsat-based rubber map has a higher accuracy and resolution than that form M
(extracted from Fig. 5a).
Landsat-based phenological analysis provides finer spatial infor-
mation than MODIS, because MODIS pixels (250-m or 500-m) often
contain mixed types of land covers. In our previous MODIS-based
study, temporal profiles of NDVI, LSWI, and EVI showed an evident
decrease in the defoliation stage (late February and early March);
particularly, the LSWI value of evergreen forest is always higher
than 0 for the whole year while that of deciduous rubber plantation
is lower than 0 in some periods of a year (Xiao, Biradar, Czarnecki,
Alabi, & Keller, 2009). However, MODIS data cannot detect the rapid
recovery of rubber trees in the foliation stage due to mixed land
cover types within 250-m or 500-m pixels (Dong et al., 2012b),
while Landsat can capture a more specific intra-annual phenology at
30-m spatial resolution (Fig. 4).

In this study, we used PALSAR data to extract a tree/forest base map
by using a physical approach. Landsat images were not used in the pro-
cess of forest mapping. The reason is that the PALSAR based forest map
is more operational for a large area application, while Landsat and
spectral-based approaches are limited when used for other regions or
seasons (times). In addition, a single PALSAR L-band backscatter
image has proven useful in mapping rubber, oil palm, coconut andwat-
tles plantations (Miettinen & Liew, 2011), and the input of this infor-
mation would improve the capability to delineate rubber plantation
in future studies.

4.2. Uncertainty analysis

Rubber trees in the study area (northern tropical zone) have
distinct defoliation and foliation phases, which are common charac-
teristics of deciduous forests. The phenology of rubber trees in differ-
ent latitudes could have some temporal inconsistencies with the
findings described here. Also, inter-annual shifts in phenological
phases caused by climate variability might alter the required data
acquisitions for delineating rubber plantations. Other factors such as
slope, aspect, or rubber variety also might be different in other
regions. Therefore, the thresholds used in this study might need
ased approach and (b) the rubber plantation map by using the PALSAR/MODIS-based
s from a random sample of pixels. The PALSAR/Landsat-based area percentage map is
e. The rubber area estimates from both results are significantly correlated. The equation
-in image extracted from (a), and (e) the zoom-in image extracted from (b), showed
ODIS/PALSAR, by referring to (f) the false color composite map of Landsat TM image
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adjustments in other regions. As Southeast Asia has the largest propor-
tion of rubber plantations in the world (FAO, 2010), a systematic inves-
tigation about regional phenology differences of rubber trees will help
to realize rubber plantation mapping at the continental scale.

In addition, this study focuses on mature rubber plantations. Young
rubber plantations (≤5 years according to the experiences of local
experts from the Rubber Research Institute in Danzhou City) could be
missed due to differences in spectral characteristics (Benedek &
Sziranyi, 2009), as the canopy of young rubber trees is small and
most young rubber plantations are surrounded by other vegetation or
bare land. That could be one reason that our rubber plantation area
estimate is lower than the official statistic. Comparison studies of spec-
tral characteristics of rubber plantations at different ages should be
considered in the future.

4.3. Ground truth data

Effective ground truth samples are a critical concern in land cover
and land use change studies. However, the reliability of ground refer-
ence data is often ignored to some extent in the accuracy assessment
of land cover mapping and change detection, which can be a source
of considerable error and misinterpretation (Foody, 2010). Field
campaigns and high resolution imagery are common approaches to
acquire ground truth data. Usually, an extensive field survey is unreal-
istic due to cost and logistical constraints. Very high resolution imagery
(b1 m) is expensive and users tend to use less than ideal data for
reference purposes (Foody, 2010). Note that every year thousands of
researchers in the scientific communities (ecologists, geographers, bio-
logical surveyors, and so on) carry out field visits for different purposes
or projects, and many repeated field surveys have been conducted
without data sharing. One reason for the information sharing gap is
the lack of an effective data portal to organize and manage spatial
datasets. In this study, we showcased an application of the Global
Geo-Referenced Field Photo Library (Xiao, Dorovskoy, Biradar, &
Bridge, 2011). The abundant high quality field photos (>50,000 until
December of 2012) in the Field Photo Library are expected to provide
effective support for many research fields such as land cover and land
use change, biogeography, and others.

5. Conclusion

Southeast Asia, especially southern China, has undergone an in-
tensive land use conversion from natural tropical rainforests to indus-
trial forests or plantations in recent decades. Rubber trees are one of
the most important industrial forest species. However, an accurate
rubber plantation map is still unavailable, which limits our under-
standing of environmental and ecological effects of rubber expansion
and forest management. In this study, we explored the capability of a
simple and phenology-based strategy in rubber plantation mapping
in Hainan, China, a hotspot of rubber plantation expansion, by inte-
grating a forest map from PALSAR data and rubber tree phenology
features from Landsat imagery. We found that the unique phenologi-
cal characteristics of rubber plantations can be retrieved in two
critical phenological phases: the defoliation and foliation stages.
Furthermore, the Landsat imagery in these key phenological phases
can effectively support rubber plantation mapping at 30-m spatial
resolution at a regional scale, which facilitates rubber plantation de-
lineation and mapping in sub-tropical and northern parts of tropical
regions. However, other factors, such as the spatial heterogeneity of
regional phenology, should also be considered and incorporated
when the approach used in this study is employed in other regions.
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