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The area, spatial distribution and annual dynamics of tropi-
cal forests substantially affect biodiversity, terrestrial carbon 
cycle, hydrology and climate at local, regional and global 

scales1,2. As the world’s largest tropical forest and most biodiverse 
terrestrial ecosystem3, the Amazon Basin is a  priority area for 
global conservation and warrants precise monitoring of anthro-
pogenic impacts. Rapidly changing climate, land use, disturbances 
(for example, fire) and human activity in the Amazon Basin have 
resulted in substantial deforestation over the past several decades4,5.

Several studies have generated maps of forest in the  
Amazon through analyses of space-borne optical images at vari-
ous spatial resolutions, including coarse (≥1 km; for example, 
the Advanced Very High Resolution Radiometer (AVHRR)6 and 
Satellite Pour I’Observation de Ia Terre 4 (SPOT-4) VEGETATION7), 
moderate (≥100 m; for example, Moderate Resolution Imaging 
Spectroradiometer (MODIS)8,9) and fine (≥10 m; for example, 
Landsat10,11) resolutions. However, these Amazon forest maps  
have large uncertainties and have sparked intense debate due to 
image data availability, image data quality (cloud cover, shadows 
and fire-induced atmospheric contamination), mapping algo-
rithms, forest definition, minimum mapping unit, etc.12–14. Forest 
area, spatial distribution, temporal dynamics and annual rates of 
forest loss have been contentious for decades12,15,16. Two recent stud-
ies15,17 reported that both the official Brazilian deforestation dataset 
(PRODES)18 and Global Forest Watch (GFW)11 missed relatively 
large areas of forest loss. For instance, approximately 9,000 km2 of 
forest loss was not reported by the PRODES dataset for 2008–2012 
due to the 6.25-ha minimum mapping unit15. These staggering 
omissions show the need for more accurate annual Amazon forest 
maps and improved analyses of forest area, spatial distribution and 
annual dynamics to support the scientific, legislative and land man-
agement communities who strive to better understand and conserve 
rainforests in Brazil.

Space-borne Synthetic Aperture Radar (SAR) technology has 
made notable progress in the past decade and has also been useful 
in forest mapping13. SAR images, especially the L-band SAR images, 
can penetrate clouds and smoke haze to interact with tree trunks 
and branches and differentiate forests from non-forest biomes13. A 
number of recent studies demonstrated the potential of SAR images 
from the Advanced Land Observing Satellite (ALOS) Phased Array 
Synthetic Aperture Radar (PALSAR) to identify and map forests19,20. 
However, those forest maps produced by using only PALSAR 
images often contained commission errors due to buildings, houses 
and rocks21.

Several studies have reported the potential of combining PALSAR 
and optical images (MODIS, Landsat) to map tropical forests12,13. 
Time-series optical images (for example, MODIS and Landsat) can 
capture the seasonal and interannual variation of vegetation canopy. 
Satellites acquiring daily images have a much higher probability 
of cloud-free observations22. Compared to Landsat with its 16-d 
repeat cycle at 30-m spatial resolution, MODIS sensors onboard the 
Terra and Aqua satellites have a daily repeat cycle at 250-m, 500-m 
and 1-km spatial resolution that offers more cloud-free observa-
tions in a year. MODIS data have therefore been used to track the 
temporal dynamics of various land cover types and transitions in 
the Brazilian Amazon since 2000 (refs. 23–25). We developed the 
Forest-MODIS and Forest-PALSAR/MODIS mapping tools, which 
use time-series image data and algorithms to identify forests and 
applied them to generate forest and evergreen forest maps for the 
pantropical zone26,27, China28, monsoon Asia27 and South America12.

In this study, our first objective was to more accurately map 
annual forest area in the Brazilian Amazon (Supplementary Fig. 1).  
We combined PALSAR images at 50-m spatial resolution (Fig. 1a)  
and MOD13Q1 (Vegetation Indices 16-Day L3 Global 250 m) 
images during 2007–2010, and we used the Forest-PALSAR/
MODIS mapping tool12 to generate annual maps of tropical  
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forests (both evergreen and deciduous) in the Brazilian Amazon 
(Fig. 1a,b). The resultant annual PALSAR/MODIS maps of forests 
at 50-m spatial resolution during 2007–2010 were compared with 
the official forest statistics from PRODES and other available forest 
map products (see Methods). Our second objective was to better 
understand the annual dynamics of forest area loss and gain (defor-
estation, reforestation and afforestation) in the region during 2000–
2017. We generated annual evergreen forest maps for 2000−2017 
(named as MOD100; Fig. 1c) by applying a simple and robust 
Forest-MODIS algorithm (see Methods) to time-series MOD09A1 
(Surface Reflectance 8-Day L3 Global 500 m) data for each year26,27. 
We analysed the resultant annual evergreen forest maps to quantify 
the annual dynamics of forest area loss and gain within the Brazilian 
Amazon, states and protected areas. Finally, we investigated the tra-
jectories of forest area loss and gain as well as their driving factors.

Results
Annual estimates of forest area in 2007–2010. Forest area esti-
mates from the PALSAR/MODIS forest dataset ranged from 
~3.77 × 106 km2 in 2007 to ~3.75 × 106 km2 in 2010 (Fig. 1a,b). We 
compared the Brazilian Amazon forest maps for 2010 from seven 
data products (Supplementary Fig. 2) to illustrate the differences 
between the forest data products and to explore the potential of 
improving estimates of annual forest area in the Brazilian Amazon 
by integrating optical and SAR imagery and new algorithms (Fig. 2a  
and Supplementary Table 1). The PRODES dataset estimated 
3.28 × 106 km2 forest in 2010. Depending on the percentage of 

tree cover threshold values used, the forest area estimates from 
the GFW dataset11 ranged from 3.71 × 106 km2 (≥60% threshold), 
3.88 × 106 km2 (≥45% threshold), 3.97 × 106 km2 (≥30% threshold) 
to 4.05 × 106 km2 (≥10% threshold) in 2010. Our previous study12 
suggested that a 30–60% tree cover threshold was appropriate for 
estimating forest area from the GFW dataset when compared to 
forest maps derived from the PALSAR microwave images, which 
used a definition of forest (10% tree cover) by the UN Food and 
Agriculture Organization (FAO). The JAXA dataset reported 
3.69 × 106 km2 of forest in 2010. The forest area in 2010 from our 
PALSAR/MODIS forest map was 3.75 × 106 km2 in the Brazilian 
Amazon, approximately ~2% higher than the JAXA dataset, which 
only used the PALSAR images19, ~10% higher than the MODIS land 
cover dataset (MCD12Q1)9, ~12% higher than the European Space 
Agency (ESA) Climate Change Initiative (CCI) land cover dataset29 
and ~15% (470,000 km2) higher than the PRODES dataset18. These 
various forest area estimates highlight the discrepancies between 
the data products (Fig. 2a).

Annual estimates of evergreen forest areas in 2000–2017. We 
used the MOD100 dataset to investigate the spatial distribution 
and annual dynamics of evergreen forests in the Brazilian Amazon. 
Annual evergreen forest area from the MOD100 dataset ranges 
from 3.72 × 106 km2 in 2007 to 3.70 × 106 km2 in 2010, only 1−2% 
lower than the forest area estimates from the Forest-PALSAR/
MODIS dataset (Fig. 2a). A spatial-temporal comparison between 
the MOD100 dataset and the Forest-PALSAR/MODIS dataset in 
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Fig. 1 | Spatial distributions of forests in the Brazilian Amazon during 2000−2017. a, A false-colour composite map of PALSAR HH (Red), HV (Green) 
and HH–HV (Blue) images in 2010. b, A frequency map of tropical PALSAR/MODIS forests in 2007−2010 (frequency values from 0 to 4) derived from 
the Forest-PALSAR/MODIS algorithm. c, A frequency map of MOD100 evergreen forests in 2000−2017 (frequency values from 0 to 18) derived from 
the Forest-MODIS algorithm. d, The net change of MOD100 evergreen forests between 2001 and 2016. e, The first year MOD100 evergreen forest loss 
(deforestation) occurred. f, The first year MOD100 evergreen forest gain (reforestation and afforestation) occurred. AM, Amazonas; PA, Pará; MT, Mato 
Grosso; AP, Amapá; RR, Roraima; AC, Acre; RO, Rondônia; TO, Tocantins; MA, Maranhão. PALSAR and MOD13Q1 (ref. 59) images were combined to 
generate the PALSAR/MODIS forest (b). Time-series MOD09A1 land surface reflectance images60 were used to generate MOD100 forest maps (c–f). 
Credit: Japan Aerospace Exploration Agency (JAXA) retains ownership of the PALSAR dataset used in a and b; USGS/NASA Landsat Programme (b–f).
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2007–2010 demonstrates the robustness of the Forest-MODIS algo-
rithm and the reliability of the MOD100 dataset in the Brazilian 
Amazon (Supplementary Fig. 3 and Supplementary Table 2). We 
also compared the MOD100 dataset with the MCD12Q1, which 
uses MODIS images and defines forest as tree cover >60% with a 
tree height >2 m. The MCD12Q1 reports 3.42 × 106 km2 forests in 
2010. The improvement of the MOD100 dataset over the MCD12Q1 
dataset makes it possible to further investigate annual evergreen for-
est losses and gains in the Brazilian Amazon during 2000–2017.

Annual loss of evergreen forest area. Annual evergreen forest area 
declined from 3.93 × 106 km2 in 2000 to 3.59 × 106 km2 in 2017 (Figs. 
1d and 2a), a net loss of 0.34 × 106 km2 (~20,000 km2 yr–1) or about 
9% of the total evergreen forest area in 2000. To reduce commission 
and omission errors, we excluded the first (2000) and last (2017) 
year and analysed MOD100 annual evergreen forest loss during 
2001–2016. The result showed a cumulative loss of 0.41 × 106 km2 
(Fig. 1e), which was much larger than the estimates from the GFW 
(0.30 × 106 km2) and PRODES (0.18 × 106 km2) datasets. On aver-
age, the MOD100-estimated rate of annual evergreen forest loss 
was 0.027 × 106 km2 yr–1, close to five times the size of the Federal 
District (5,780 km2) in Brazil.

The trajectory of annual forest area loss over time has been 
widely used for determining land cover and land-use change, con-
servation policies, management practices and identifying the socio-
economic drivers of annual forest area dynamics2,4,5. The MOD100, 
GFW and PRODES datasets show three distinct phases of deforesta-
tion within the last two decades (Fig. 2b–d): (1) an initial phase of 
increasing forest loss (2001−2004), (2) a phase of decreasing forest 
loss (2005−2013) and (3) a current phase of increasing forest loss 
(2013−2016). All three datasets show a substantial and significant 
(P < 0.05) decreasing trend (Fig. 2b–d) of forest area loss in the sec-
ond phase due to enforcement of public policy and interventions 
in the beef and soya markets5. During 2013-2016, both the GFW 
and MOD100 datasets showed a substantial increase in the defor-
estation rate, 7.5 × 103 km2 yr–1 and 4.8 × 103 km2 yr–1, respectively. 
However, the PRODES dataset shows a much smaller increase of 
0.6 × 103 km2 yr–1.

Hot-spots of evergreen forest area loss. We analysed the MOD100 
dataset and identified evergreen forest loss during 2001−2016 
for individual pixels geographically (Fig. 1e). The hot-spots 
were distributed in the ‘Arc of Deforestation’, which spans the 
Brazilian states of Para (PA, 0.11 × 106 km2), Mato Grosso (MT, 
0.11 × 106 km2), Maranhao (MA, 0.087 × 106 km2) and Rondonia 
(RO, 0.052 × 106 km2) (Fig. 3). The total forest loss in these four 
states accounted for approximately 87% of the total evergreen forest 
area loss in the Brazilian Amazon. Using a 5-km buffer in a geo-
spatial analysis, we found that over 90% of deforestation occurred 
in close proximity to those areas deforested before 2002, which 
indicated the degree of anthropogenic activities driving the spatial 
dynamics of deforestation expansion (forest loss) in the Brazilian 
Amazon (Fig. 4).

The conversion of forests to pasture was associated with 60−80% 
of Amazon deforestation17,30,31. About 62% of the deforested area in 
MT was converted into pasture during 2001−200431. The cattle count 
increased substantially from 48 × 106 head in 2000 to 86 × 106 head 
in 2016 (Supplementary Fig. 4a). Assuming one cow per hectare 
of pasture32, the additional number of cattle may occupy 0.38 × 106 
km2 of pasture, which would account for ~94% of the evergreen 
forest-loss area. MT had the largest increase in cattle (11.4 × 106 
head), followed by PA (10.2 × 106 head), RO (8.0 × 106 head) and 
MA (3.6 × 106 head). Before 2006, the conversion of forests to crop-
lands (for example, soya bean) also contributed to deforestation in 
the Brazilian Amazon5,31. After 2006, croplands were mostly estab-
lished on previously cleared land24. Overall, the four states with the 
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Fig. 2 | Annual dynamics of forest areas in the Brazilian Amazon  
during 2000−2017. a, Annual dynamics of tropical forest areas in 
the Brazilian Amazon during 2000−2017, as estimated from seven 
forest data products: (1) MOD100 (2000–2017), (2) Forest-PALSAR/
MODIS (2007−2010), (3) GFW, 2000, 2010, tree cover ≥45%), (4) 
PRODES (2000−2016), (5) Forest-JAXA (2007−2010), (6) MCD12Q1 
(2001−2013) and (7) ESA CCI (2000−2015). b–d, Annual evergreen 
forest gain and loss during 2001−2016 from the MOD100 dataset 
(b), from the GFW dataset (c) and from the PRODES dataset (d). e, 
Accumulated forest loss and gain during 2001−2016. f, Annual active 
fire and burned area from MOD14A2 and MCD64A1 during 2001–2016. 
Interannual variation of annual forest loss was divided into three periods, 
and for each period we performed a simple linear regression model (dotted 
lines) and reported its R2 and P values (b–d).
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greatest increases in cattle numbers and cropland area also experi-
enced the largest losses of evergreen forests (Supplementary Fig. 4) 
according to the MOD100 evergreen forest dataset.

Driving factors of evergreen forest area loss. We investigated 
the factors driving annual forest losses in the MOD100 dataset 
during 2000–2017 (Supplementary Fig. 5). Annual forest losses 
corresponded well to climate parameters, and the standardized 
cross-correlation coefficients (lag = 0) were −0.89, 0.92 and 0.96 
between annual deforestation rate and annual precipitation, TWSmin 
and active fire area, respectively (Supplementary Fig. 6). This cross-
correlation suggested that annual forest loss was higher in dry years, 
especially during the strong El Niño years (2010 and 2015/2016) 
(Fig. 2b, Supplementary Figs. 5a–c and 7). The deforested area 
in 2010 and 2015/2016 were about 2.3 and 3.7 times higher than 
the deforested area in 2009 and 2013, respectively. However, the 
PRODES dataset did not indicate obvious increases of deforested 
area in 2010 and 2015/2016.

During these drought years, the data from the Tropical Rainfall 
Measuring Mission (TRMM) and the Gravity Recovery and Climate 
Experiment (GRACE) showed remarkably low annual precipita-
tion and annual TWSmin (Supplementary Fig. 5b), in addition to 
substantial increases in fire activity and burned area (Fig. 2e). We 
also found that in the non-drought years (2006, 2008, 2009, 2011 
and 2013), about 23% of the deforested areas experienced fires in 
the same year that deforestation occurred. In the drought years, 
however, deforested areas often experienced more fire (36%) in the 
same year (Supplementary Figs. 8a,9 and 10). About 70% of ever-
green forests had a fire history before deforestation (Supplementary 
Fig. 8b). Forests in the Amazon can be degraded over time due to 
successive fires, drought and selective logging16,33. These degraded 
forest stands can then become more vulnerable to future drought 
and fire. The relatively dry states (PA, RO, MT and MA) in the ‘Arc 

of Deforestation’ (Supplementary Fig. 5d), corresponded well to 
GRACE TWSmin and fire activity (Fig. 3). Although the wet states 
(AM, AP and RR) in northern Brazilian had relatively small areas 
of deforestation, they also experienced increased deforestation in 
severe drought years.

Annual gain of evergreen forest areas. We defined forest gain as 
non-forested area that was converted into continuous forest for 
≥4 years (ref. 25). During 2001–2013 the MOD100 dataset showed 
a total gain of 0.071 × 106 km2 in evergreen forest area in the 
Brazilian Amazon (Figs. 1f and 2b). This study reported the annual 
dynamics of both deforestation and reforestation in the Brazilian 
Amazon using time-series image data and time-series algorithms. 
Reforestation area, although relatively small, did partially offset 
deforestation by 21% in the Brazilian Amazon during 2001–2013, 
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which indicates that reforestation played an important role in 
reducing net forest loss and carbon emissions.

Annual forest area dynamics within protected areas. In an  
effort to conserve forests in the Brazilian Amazon, protected areas 
(PAs) have increased from 1.09 × 106 km2 in 2000 to 2.32 × 106 km2 
in 2013 (Fig. 5), which accounted for 43% of the total land area 
of the Brazilian Amazon. We analysed annual evergreen forest  
area dynamics within PAs of the Brazilian Amazon during  
2000–2017. PAs sheltered about 50% of the total evergreen forest 
area in the Brazilian Amazon in 2013. Total evergreen forest area  
within PAs decreased slightly from 1.98 × 106 km2 in 2000 to 
1.96 × 106 km2 in 2017 (~1.3% loss over 17 years) (Fig. 5c). This 
small change in forest area clearly demonstrates the critical role 
of PAs in forest conservation. When we analysed annual ever-
green forest maps, the cumulative deforested area within PAs 
was 0.044 × 106 km2, accounting for ~11% of total forest area loss 
(0.41 × 106 km2) and the cumulative reforestation within PAs, 
0.014 × 106 km2, ~20% of total forest area gain (0.071 × 106 km2). In 
comparison, evergreen forest area in non-PAs decreased substan-
tially from 1.95 × 106 km2 in 2000 to 1.64 × 106 km2 in 2017 (Fig. 5c). 
Deforestation within/around PAs occurred throughout the study 
period, rendering them fragmented, isolated and under increased 
threat of further deforestation (Fig. 5b). Previous studies analysed 
deforestation data during 1998–2010 and reported that PAs reduced 
deforestation and carbon emissions34,35. As various socio-ecolog-
ical factors influence illegal (and legal) deforestation in PAs, our  
results could be used to strengthen the governance of PAs in the 
Brazilian Amazon.

Discussion
Our results show large discrepancies between PALSAR/MODIS for-
est product and the Landsat-based forest product (PRODES). We 
investigated to what degree cloud cover and shadow affected optical 
images in terms of the number of good-quality observations in 1 year 
in the Brazilian Amazon (Fig. 6). Analysis of all Landsat images in 
2010 shows that a number of pixels in the Brazilian Amazon do not 
have good-quality observations in 1 year due to cloud cover and 
shadow (Fig. 6). In addition, about 178–210 Landsat images (path/
row) were used in PRODES before 2009 and about 228 Landsat images 
(path/row) have been used since 2009 (Supplementary Fig. 11).  
Approximately 5–15% of the area captured by Landsat images still 
had cloud cover (Supplementary Fig. 11). In comparison, almost 
all MODIS pixels had good-quality observations in 1 year due to 
its daily revisit cycles. Those Landsat pixels with no or few good-
quality observations in 1 year contributed to the smaller estimates 
of forest areas reported by PRODES (Supplementary Fig. 2). For 
those Landsat pixels with no or few good-quality observations in 
1 year, GFW used cloud-free observations in neighbouring year(s), 
which contributed to the uncertainty in annual forest area esti-
mates reported by GFW. We also carried out accuracy assessments 
of these forest data products using common reference datasets (see 
Supplementary Information). The PALSAR/MODIS and GFW 
datasets have similar overall accuracy of ~90% and are higher than 
that of PRODES (~80%) (Supplementary Table 3). The PRODES 
forest had a noticeable omission error (~25%) in forest area esti-
mates in 2010 (Supplementary Table 3). Our PALSAR/MODIS 
forest maps suggested that the Brazilian Amazon may have sub-
stantially more forest area than estimated by the PRODES dataset, 
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which has been widely used in many scientific studies5,8,34 and in 
public policy development.

Three publications reported the underestimation of forest area 
loss in the PRODES data and likely casual factors15,17,36. The larger 
estimate of evergreen forest loss from the MOD100 dataset accentu-
ates the likelihood of underestimates in other existing data products, 
specifically PRODES. The PRODES forest product had high omis-
sion errors of about 40% and 28% in 2000 and 2010, respectively 
(Supplementary Table 3), which can be attributed, to a large degree, 
to the spatial extent of satellite images to identify forest and the fact 
that Landsat images have a number of pixels with no good-quality 
observations in 1 year (Supplementary Fig 11). PRODES forest data 
has a minimum mapping unit of 6.25 ha, thus it would not account 
for forest loss in small patches15,36. Compared with GFW and 
MOD100, PRODES underestimated forest-loss area by 67–127%. 
Landsat 7 Enhanced Thematic Mapper Plus (ETM +) images used 
in the GFW forest-loss dataset also had a fair number of pixels with 
no or few good-quality observations in 1 year. For example, about 
13.5% of forest area had less than three good-quality observations 
in 2010 (Fig. 6). The phenological characteristics of many land 
cover types could be similar for some time periods in the Brazilian 
Amazon37, and thus a limited amount of good-quality observations 
in 1 year could result in an underestimation of forest-loss area. 
About 27% of forest-loss area in the PRODES dataset was not iden-
tified in the GFW dataset during 2001–201315. In comparison, the 
MOD100 product used all the observations in 1 year (full or dense 
time-series) from MOD09A1, which has six or more good-quality 
observations over 99% of the pixels (Supplementary Fig. 11).

Our results reported forest area gain in the Brazilian Amazon. 
Various forest restoration projects were carried out in the Brazilian 

Amazon, most of which focused primarily on commercial planta-
tions, such as eucalyptus, pine and rubber38. Compared to native 
forests, commercial plantations usually have small species rich-
ness and simple canopy structure, which have very limited values 
for biodiversity conservation39–42. The largest tropical reforestation 
project in recent history was launched in late 2017 by Conservation 
International, the Brazilian Ministry of Environment, the Global 
Environment Facility, the World Bank and the Brazilian Biodiversity 
Fund with the aim to plant 73 × 106 trees in the Brazilian Amazon 
by 2023. Under the Paris Climate Agreement, Brazil has commit-
ted to restoring or reforesting 0.12 × 106 km2 of land by 2030. Our 
approaches for mapping the spatio-temporal changes of forests could 
identify the areas with successful and unsuccessful reforestation 
efforts and provide valuable information for reforestation projects.

In conclusion, this study demonstrates the potential of  
time-series microwaves, optical images and algorithms to char-
acterize forest areas in the Brazilian Amazon. The resultant data-
sets could have important implications for not only land-use 
policy, management and conservation, but also our understanding of  
the terrestrial carbon cycle, hydrology and climate. Recent develop-
ment and policy changes in Brazil, such as the changes to the forest 
code—the proposed one-sentence constitutional amendment (PEC-
65)—and the large-scale construction of dams and highways prob-
ably threaten environmental protection policies and efforts that aim 
to conserve the forest in the Brazilian Amazon43,44. If the Brazilian 
government’s deforestation target is to be met (0.004 × 106 km2 yr–1)30,  
concrete efforts must be made to improve our capacity for moni-
toring, reporting and verifying deforestation and reforestation, 
and to reverse the sharply increasing trend in forest loss over the  
past few years.
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Methods
Remote sensing data. PALSAR data. The PALSAR onboard the ALOS satellite was 
launched on 14 January 2006. The annual 50-m PALSAR mosaic products are in 
the Fine Beam Dual (FBD) polarization mode (HH and HV dual polarizations) 
and have been slope-corrected, orthorectified and radiometrically calibrated19,45. 
HH means that microwave energy was transmitted and received in the horizontal 
direction by the antenna and HV means that microwave energy was transmitted 
in the horizontal direction and received in the vertical direction. We converted 
the digital number (DN) values into gamma-naught backscattering coefficient in 
decibels (γ°) using a calibration coefficient (equation (1)).

γ ¼ 10 ´ log10<DN
2 > þCF ð1Þ

where CF is the absolute calibration factor of –83. We further calculated PALSAR 
difference (equation (2)) and ratio (equation (3)) layers as:

Difference ¼ HH�HV ð2Þ

Ratio ¼ HH=HV ð3Þ

A number of studies have reported that PALSAR backscattering coefficients are 
sensitive to tree structure and can be used to generate annual maps of forests12,19,27,28 
and to estimate forest above-ground biomass in different climate regions46–48.

MOD13Q1 Normalized Difference Vegetation Index (NDVI). The MODIS/Terra 
MOD13Q1 data are a composite product with the best quality pixel in each 16-d 
window from daily observations. MOD13Q1 products include the NDVI and 
Enhanced Vegetation Index (EVI)49. The MOD13Q1 NDVI and EVI products are 
computed from atmospherically corrected bi-directional surface reflectance, which 
has been masked for water, clouds, heavy aerosols and cloud shadows. NDVI is 
calculated as a normalized ratio between the red and near-infrared (NIR) surface 
reflectance. A 16-bit vegetation index quality is provided in the dataset, and only 
good-quality observations were used in this study.

MOD09A1 data and vegetation indices. The MOD09A1 (v.006) data product has 
seven land surface spectral bands and contains 1-d observations within an 8-d 
period. The MOD09A1 has a 16-bit surface reflectance data quality description. 
We used the MOD09A1 standard data quality flags to identify observations 
covered by cloud (cloudy and mixed), internal cloud, cloud shadow, high aerosols, 
high cirrus or snow. We treated those observations with the above-mentioned 
quality flags as bad observations and excluded them from the time-series data 
analysis. In addition, we also treated those observations with blue band surface 
reflectance value >0.20 as bad observations and excluded them from data analysis. 
Over 99.9% of the MOD09A1 dataset had two or more good-quality observations 
in the Brazilian Amazon (Supplementary Fig. 12). We calculated three vegetation 
indices: NDVI (equation (4)), EVI (equation (5)) and Land Surface Water Index 
(LSWI) (equation (6))50 using blue, red, NIR (841–875 nm) and shortwave-infrared 
(SWIR) (1628–1652 nm) bands.

NDVI ¼ ρNIR � ρred
ρNIR þ ρred

ð4Þ

EVI ¼ 2:5 ´
ρNIR � ρred

ρNIR þ 6 ´ ρred � 7:5 ´ ρblue þ 1 ð5Þ

LSWI ¼ ρNIR � ρSWIR

ρNIR þ ρSWIR
ð6Þ

where ρblue, ρred, ρNIR and ρSWIR represent land surface reflectance values from 
MOD09A1 blue, red, NIR and SWIR bands, respectively.

Precipitation data from TRMM. We calculated annual precipitation during 2001–
2016 using observations from TRMM, a joint mission between NASA and JAXA. 
We used the precipitation from the TRMM 34B2 product with a 3-h temporal 
resolution and a 0.25-degree spatial resolution51.

TWS data from GRACE. The 1° GRACE Tellus Monthly Mass Grids provide 
monthly gravitational anomalies, which have units of ‘Equivalent Water Thickness’, 
indicating the deviations of mass in terms of the vertical extent of water in 
centimetres52,53. We calculated annual TWS from the 1° GRACE (GRACE TWSmin) 
Tellus Monthly Mass Grids dataset from 2002 to 2016 in the Brazilian Amazon.

Active fire and burned area data. The active fire and burned area data were from 
MOD14A2 (Terra Thermal Anomalies & Fire 8-Day Global 1 km, v.006)54 and 
MCD64A1 (MODIS Burned Area Monthly Global 500 m, v.006)55, respectively. We 
selected active fire with nominal and high confidence levels and burned areas with 
sufficient valid data in the reflectance time-series in this study. We then generated 
annual active fire and burned area binary maps if the active fire and burned areas 
occurred in 1 year in the Brazilian Amazon, respectively.

Multiple forest maps. PALSAR/MODIS forest maps (2007–2010). We used the 
FAO’s forest definition in our forest mapping studies: forest as a land parcel 
(≥0.5 ha) covered by 10% or more tree cover with tree height ≥5 m at their 
maturity. We developed a new and robust decision tree approach that combined 
PALSAR images (50 m) and MOD13Q1 NDVImax images (250 m) to identify 
and map forests. We used this to generate annual maps of forests at 50-m spatial 
resolution in China28, monsoon Asia27 and South America12. The resultant annual 
PALSAR/MODIS forest maps have been evaluated with extensive ground reference 
data interpreted from in situ global positioning system-based field photos and 
Very High Resolution (VHR) images and compared with other forest products 
and national forest inventory data. In this study, we used annual maps of forests in 
South America during 2007–2010 from the Forest-PALSAR/MODIS approach12, 
and the Brazilian Amazon boundary map was used to subset the South American 
forest maps.

MOD100 evergreen forest maps (2000–2017). We used three freely available 
datasets as the input datasets for algorithm training in 2010: (1) the Global 
Land Cover Validation Reference Dataset (GLCVRD), (2) MCD12Q1 land 
cover product and (3) ESA CCI land cover product. The GLCVRD dataset 
was produced from analyses of VHR images (QuickBird-2, WorldView-1/2, 
IKONOS-2 and GeoEye-1) acquired mostly in 2010 and based on a stratified 
random sampling design56–58. There are 18 sites in the Brazilian Amazon and 
each of them covers an area of about 5 × 5 km2 at a 2-m spatial resolution 
(Supplementary Fig. 13). The GLCVRD has five land cover types (Tree, Water, 
Barren, Other Vegetation and Ice & Snow) and two non-land cover types (Cloud 
and Shadow). We grouped the five land classes into two layers (tree, non-tree) 
and the two non-land cover types into one class (bad observations) for each 
site’s map and converted their universal transverse mercator projection into an 
‘equal-area projection’ (that is, South_America_Albers_Equal_Area_Conic). We 
aggregated the tree, non-tree and bad observations layers into the same spatial 
resolution as MOD09A1 (500 m) and calculated their percentage area fraction 
within individual pixels. We excluded those pixels with more than 1% area of bad 
observations, and a total of 966 pixels at MODIS 500-m spatial resolution were 
selected for algorithm training. For those areas covered by the GLCVRD dataset, 
we selected evergreen forest and non-evergreen forest training samples within 
evergreen forest and non-evergreen forest boundaries derived from MCD12Q1 
and ESA CCI land cover products.

A unique physical feature of evergreen forests is that they have green leaves all 
year. Conversely, deciduous forests usually have few or no green leaves during the 
dry season or winter season, leaving soils and tree trunks to be observed by space-
borne sensors. We developed and reported a new, simple and robust algorithm 
that generated annual maps of tropical evergreen forests in the pantropical zone 
and monsoon Asia based on the canopy phenology from analyses of time-series 
water-related LSWI and greenness-related EVI calculated from the MOD09A1 
product26,27. The Forest-MODIS algorithm is well documented in our previous 
studies26,27. First, we counted the number of good-quality observations that had no 
cloud (cloudy and mixed), internal cloud, cloud shadow, high aerosols, high cirrus 
or snow (equation (7)). Second, of those good-quality observations, we counted 
the number of observations with LSWI ≥ 0 (equation (8)). Third, we calculated the 
percentage of observations with LSWI ≥ 0 out of all good observations in 1 year 
(equation (9)). Fourth, we calculated the minimum EVI values in those good-
quality observations in 1 year (equation (10). In this study, we applied this Forest-
MODIS algorithm (PCTLSWI ≥ 0 = 100% and EVImin ≥ 0.2; ref. 26) (Supplementary 
Fig. 14) to MOD09A1 time-series data in individual years during 2000–2017 and 
generated annual maps of evergreen forest in the Brazilian Amazon (Fig. 1c) in the 
web-based cloud computing platform Google Earth Engine. Our Forest-MODIS 
algorithm is sensitive to evergreen forest loss (Supplementary Fig. 15) and gain 
(Supplementary Fig. 16).

NGood�quality observation ¼
Xn

i¼1

Oið Þ ð7Þ

MLSWI 0 ¼
Xm

j¼1

Oj
� 

ð8Þ

PCTLSWI 0 ¼
MLSWI 0

NGood�quality observation
´ 100 ð9Þ

EVImin ¼ min O1;O2; ¼ ;Oi; ¼ ;Onð Þ ð10Þ

0 ≤ n ≤ 46, 0 ≤ m ≤ 46.
where NGood-quality observation, MLSWI ≥ 0, PCTLSWI ≥ 0 and EVImin are the number of good-
quality observations, the number of observations with LSWI ≥ 0 from good-
quality observations, the percentage of observations with LSWI ≥ 0 out of all good 
observations in one year and the minimum EVI (EVImin) values of those good-
quality observations in one year, respectively. 𝑂1, 𝑂2, O𝑖, Oj, and O𝑛 are the 1st, 2nd, 
ith, jth and nth individual observation in one year, respectively.
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Deforestation is the process of converting forest into non-forest. Reforestation 
is the process of non-forest being reforested or afforested. Short-rotation industrial 
plantation (for example, eucalypt) usually has a cycle of 4–6 years25, thus we 
defined reforestation as an area converted from non-forest into forest for at least 
4 years. We developed an approach to identify and map evergreen forest change 
(deforestation and reforestation) in the Brazilian Amazon based on the annual 
MOD100 evergreen forests. This approach includes three steps: (1) we masked out 
those MOD100 pixels lacking any good-quality observation, (2) we applied a three-
observation moving window filter and reduced random errors in the MOD100 
evergreen forest maps and (3) we identified and mapped the location and date for 
deforestation (equation (11)) and reforestation (equation (12)) based on the refined 
MOD100 evergreen forest maps during 2001–2016.

Deforestationkþ1 ¼
MOD100k ¼ F;

MOD100kþ1 ¼ NF;

MOD100kþ2 ¼ NF

8
><
>:

9
>=
>;

ð11Þ

Reforestationkþ1 ¼

MOD100k ¼ NF;

MOD100kþ1 ¼ F;

MOD100kþ2 ¼ F

MOD100kþ3 ¼ F

MOD100kþ4 ¼ F

8
>>>>>><
>>>>>>:

9
>>>>>>=
>>>>>>;

ð12Þ

where MOD100 is the evergreen forest maps, F and NF are the abbreviations for 
evergreen forest and non-evergreen forest, respectively, and k = 2001,…, 2016.

JAXA forest maps (2007–2010, 2015–2016). The 25-m annual JAXA forest 
maps19 were produced using PALSAR FBD polarization mode data from June 
to September during 2007−2010 and 2015−2016. Data pre-processing includes 
speckle reduction, ortho-rectification and slope correction and intensity 
equalization between neighbouring strips. In general, a decision tree algorithm was 
used to generate the JAXA forest maps. First, a 5 × 5 pixel median filter was used 
to reduce noise in images, followed by a multi-resolution segmentation. Then, 15 
region-specific HV threshold values were determined to identify forest pixels based 
on the ground references and cumulative distribution functions. We aggregated the 
25-m JAXA forest maps to 500-m resolution for comparison with MODIS-based 
forest maps.

PRODES forest dataset (2000–2016). The PRODES project at the Brazilian National 
Institute for Space Research (INPE) has been mapping annual deforestation 
since 1988 and providing annual remaining forest area estimates for the Brazilian 
Amazon since 2000. Visual interpretation of Landsat images was used to generate 
annual deforestation maps during 1988–1999. The digital image classification 
approach18 was used to generate annual deforestation maps from 2003 to 2005. 
The TerraAmazon platform has been used since 2005, which allows PRODES 
analysis to be more uniform. In general, three steps are used to generate the 
PRODES products. First, images are selected to be as cloud-free as possible 
with an acquisition date closest to the reference date (1 August)18. The images 
are then masked to exclude non-forest and previous deforestation, using the 
previous year’s analysis results. Finally, interpreters delineate deforested polygons 
(shapefile format) in the intact forest of the previous year. In this study, we used 
the annual forest cover areas during 2000–2017 (Supplementary Table 1) and 
annual deforestation area statistics in the Brazilian Amazon during 2001–2016, as 
reported by the INPE. To estimate the total forest area in the Brazilian Amazon, we 
generated a cloud-free and a maximum spatial extent of forest (Supplementary  
Fig. 2) using the annual PRODES forest maps during 2007−2010.

GFW forest dataset (2000–2016). Tree cover product in 2000 and 2010, annual 
forest loss from 2000 to 2016 and total forest gain from 2000 to 2012 are generated 
in GFW through the analysis of time-series Landsat ETM + and Operational Land 
Imager (OLI) images taken during the growing season11. Landsat ETM + images 
from multiple years around 2000 and 2010 were used to retrieve 30-m GFW tree 
cover for 2000 and 2010 through a decision tree algorithm based on the training 
datasets, selected percentile values and the slope of the linear regression of band 
reflectance value versus image date. We calculated GFW forest maps for 2000 and 
2010 (Supplementary Fig. 2) as well as forest loss based on a tree cover ≥10%.

MCD12Q1 land cover dataset (2001–2013). MCD12Q1 (Land Cover Type Yearly 
L3 Global 500 m Sinusoidal (SIN) Grid) land cover product has five different land 
cover classification systems. We used the International Geosphere–Biosphere 
Programme (IGBP) classification9. The IGBP classification map was produced 
using a supervised classification algorithm. The input datasets include a training 
dataset and the phenology and temporal variability features of land cover types 
extracted from 500-m aggregated 32-d average nadir Bidirectional Reflectance 
Distribution Function (BRDF)-adjusted land surface reflectance (NBAR), EVI, 
land surface temperature (LST) and annual metrics (minimum, maximum and 
mean values) for EVI, LST and NBAR bands. Post-processing refinements were 

applied to create the final land cover product, including sample bias correction 
and spatial explicit prior probability adjustments. IGBP classification map includes 
five forest types, including evergreen needleleaf forest, evergreen broadleaf forest, 
deciduous needleleaf forest, deciduous broadleaf forest and mixed forest, which we 
merged into a single forest layer (Supplementary Fig. 2).

ESA CCI land cover (2000–2015). The 300-m ESA CCI land cover maps use the 
Land Cover Classification System developed by the FAO29. First, a unique baseline 
land cover map is generated using 7-d time-series medium resolution imaging 
spectrometer imagery during 2003–2012. Independently from this baseline, land 
cover changes are detected at 1 km based on the AVHRR time-series between 
1992 and 1999, SPOT-VEGETATION time-series between 1999 and 2013 and 
PROBA-V data for years 2013, 2014 and 2015. The last step consists of back-dating 
and updating the 10-year baseline land cover map to produce the 24 annual land 
cover maps from 1992 to 2015. We used five forest classes in this study: (1) tree 
cover, broadleaved, evergreen, closed to open (>15%), (2) tree cover, broadleaved, 
deciduous, closed to open (>15%), (3) tree cover, needle-leaved, evergreen, 
closed to open (>15%), (4) tree cover, needle-leaved, deciduous, closed to open 
(>15%) and (5) tree cover, mixed leaf type (broadleaved and needle-leaved) 
(Supplementary Fig. 2).

Accuracy assessment and inter-comparison of forest area data products. We 
carried out substantial accuracy assessment and inter-comparison of forest area 
data products (see Supplementary Information). The MOD100 forest dataset in 
2000 and 2010 had an overall accuracy of ~97% (Supplementary Tables 3 and 4), 
based on the same reference dataset used in accuracy assessment of PALSAR/
MODIS, PRODES and GFW. The MOD100 forest-loss dataset had an overall 
accuracy of ~98% (Supplementary Table 5). The MOD100 forest gain dataset had 
an overall accuracy, user’s accuracy and producer’s accuracy of 99.18% (±0.27), 
48.72% (±16.22) and 87.06% (±16.36), respectively (Supplementary Table 5).

Data availability
The PALSAR/MODIS forest and MOD100 forest data that support the findings 
of this study are available from the corresponding author upon request and will 
be made available to the public. The other datasets are publicly available online 
(Supplementary Table 6).
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