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Built-up area supports human settlements and activities, and its spatial distribution and temporal
dynamics have significant impacts on ecosystem services and global environment change. To date, most
of urban remote sensing has generated the maps of impervious surfaces, and limited effort has been made
to explicitly identify the area, location and density of built-up in the complex and fragmented landscapes
based on the freely available datasets. In this study, we took the lower Yangtze River Delta (Landsat Path/
Row: 118/038), China, where extensive urbanization and industrialization have occurred, as a case study
site. We analyzed the structure and optical features of typical land cover types from (1) the HH and HV
gamma-naught imagery from the Advanced Land Observation Satellite (ALOS) Phased Array type L-band
Synthetic Aperture Radar (PALSAR), and (2) time series Landsat imagery. We proposed a pixel- and rule-
based decision tree approach to identify and map built-up area at 30-m resolution from 2007 to 2010,
using PALSAR HH gamma-naught and Landsat annual maximum Normalized Difference Vegetation
Index (NDVImax). The accuracy assessment showed that the resultant annual maps of built-up had rela-
tively high user (87–93%) and producer accuracies (91–95%) from 2007 to 2010. The built-up area was
2805 km2 in 2010, about 16% of the total land area of the study site. The annual maps of built-up in
2007–2010 show relatively small changes in the urban core regions, but large outward expansion along
the peri-urban regions. The average annual increase of built-up areas was about 80 km2 per year from
2007 to 2010. Our annual maps of built-up in the lower Yangtze River Delta clearly complement the
existing maps of impervious surfaces in the region. This study provides a promising new approach to
identify and map built-up area, which is critical to investigate the interactions between human activities
and ecosystem services in urban-rural systems.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Human activities are changing the world’s landscapes in perva-
sive ways to obtain food, fiber, timber and other ecosystem ser-
vices, and these disturbances alter a series of ecological functions
for many ecosystems (DeFries et al., 2004). Artificial impervious
surfaces (cities, towns, and settlements) are the most intensive dis-
turbance to natural ecosystems. Although they cover only a small
fraction (<1%) of the world’s land surface (Schneider et al., 2010),
their expansion has a significant impact on regional temperature
(Kalnay and Cai, 2003; Weng et al., 2011) and rainfall (Miao
et al., 2011; Zhang et al., 2009), biodiversity loss (Guneralp and
Seto, 2013; Seto et al., 2012), public health (Gong et al., 2012),
and the carbon cycle (Seto et al., 2012).

Remote sensing can map impervious surfaces in the urban areas
in a repeat and consistent way (Lu et al., 2014; Weng, 2012). A lit-
erature review (Weng, 2012) summarizes the requirement, meth-
ods, and trends of remote sensing of impervious surface in the
urban areas. Various sensors with different spatial resolutions,
spectral resolutions, and temporal resolutions have been used to
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identify and map impervious surfaces. Coarse spatial resolution
imagery is usually used for mapping impervious surfaces at regio-
nal and global scales, such as the Operational Linescan System
(OLS) from the Defense Meteorological Satellite Program (DMSP)
images. DMSP/OLS data have been widely employed for impervi-
ous surface mapping in the urban areas, as it has the capability
to image nighttime light generated by human settlements and a
long history of data in the archive (Xie and Weng, 2016; Zhang
and Seto, 2011; Zhou et al., 2014). Due to the incompatible prob-
lem in time series, DMSP/OLS data were usually calibrated to track
the spatio-temporal changes of impervious surface (Liu et al.,
2012; Xie and Weng, 2016). Moderate spatial resolution imagery
is rich in spectral and temporal information of land surface and
also used for mapping impervious surface and its dynamics, such
as Moderate Resolution Imaging Spectroradiometer (MODIS)
images (Mertes et al., 2015; Schneider et al., 2009, 2010;
Schneider et al., 2015). Both coarse and moderate spatial resolution
images can track the trend of impervious surface change, while the
mixed pixels are a common issue to estimate the area of impervi-
ous surface. High spatial resolution imagery is another major data
for mapping impervious surface, such as Landsat. As Landsat data-
sets become freely available to the public, 30-m Landsat imagery is
being increasingly used for mapping the expansion of impervious
surface in hot-spot areas (Bagan and Yamagata, 2012; Gao et al.,
2012; Li et al., 2015; Zhang and Weng, 2016) and at country scale
from the 1980s (Kuang et al., 2016; Schneider and Mertes, 2014;
Xian and Homer, 2010). High spatial resolution imagery could lar-
gely reduce the mixed pixels but have relatively low capability to
distinguish the subtypes of impervious surface. Very high spatial
resolution imagery (e.g., IKONOS and QuickBird) contains rich spa-
tial information for feature identification of different types of
impervious surface (Lu et al., 2011a; Lu and Weng, 2009; Myint
et al., 2011). However, these images have limited spectral informa-
tion and are easy to be affected by the shadows caused by topog-
raphy or tall buildings (Dare, 2005; Hsieh et al., 2001). Besides,
hyperspectral data (e.g., Earth Observing-1) provides the potential
to derive detailed information on the nature and properties of dif-
ferent surface materials on the ground, but it also means a diffi-
culty in image processing and a large data redundancy (Weng,
2012). Hyperspectral data may be more effective in extracting end-
members than multispectral imagery, such as the low albedo sur-
face (Weng et al., 2008).

Different approaches were employed to identify and map the
impervious surface based on various remote sensing datasets
(Table 1). Firstly, visual image interpretation can depict the
spatio-temporal patterns of impervious surface based on the single
cloud-free image, but it is time-consuming and needs extensive
labor force (Kuang et al., 2014, 2016, 2013). Secondly, supervised
classification is widely used in the extraction of impervious sur-
face, such as Support Vector Machine (SVM) (Pandey et al., 2013;
Zhang et al., 2016), Random Forest (Li et al., 2015; Zhang et al.,
2014a; Zhu et al., 2012), Spectral Mixture Analysis (Lu et al.,
2011b; Lu and Weng, 2006, 2009; Small, 2005; Weng et al.,
2009), and Maximum Likelihood (Lu et al., 2011a; Myint et al.,
2011). Supervised image classification clusters pixels into known
classes based on training samples and can map certain land cover
types with a high accuracy. Thirdly, unsupervised classification
relies purely on spectral and statistical information of individual
images (Ban et al., 2015; Corbane et al., 2008; Esch et al., 2013;
Zhang and Seto, 2011; Zhou et al., 2014). Fourthly, decision tree
classification can be applied to different regions and will not be
affected by the other pixels, such as thresholding technique (Liu
et al., 2012; Zha et al., 2003), Decision Tree C4.5 (Mertes et al.,
2015; Schneider et al., 2009, 2010; Schneider and Mertes, 2014;
Zhang and Weng, 2016), Decision Tree C5.0 (Gao et al., 2012),
and Regression Tree Model (Xian and Homer, 2010). However,
the resultant impervious surface maps are easy to be affected by
the mixed pixels. Fifthly, object-based classification applies various
segmentation to identify object features for impervious surface
based on the texture and morphological features from very high
spatial resolution images from optical (Hu and Weng, 2011;
Myint et al., 2011; Voltersen et al., 2014) and SAR/LiDAR sensors
(Esch et al., 2010; Gamba et al., 2011), and even coarse spatial res-
olution images (Xie and Weng, 2016). The level of scale to segment
objects and the thresholds for built-up area identification are not
robust and need further assessments in different regions (Myint
et al., 2011; Weng, 2012).

However, none of the above-mentioned products explicitly sep-
arate built-up from impervious surfaces. In this study, built-up pix-
els are defined as the areas covered by 50% or more building
structure (Li et al., 2015; Schneider et al., 2009, 2010). Built-up
areas are the main component of human settlements and the major
place for human activities. Accurate maps of built-up are funda-
mentally important for human settlement design, planning and
management, and for investigating how to balance the trade-off
between urban development and ecosystem services (Yu et al.,
2010). Very high spatial resolution images provide opportunities
for identifying the detailed built-up area from SPOT 5 (Pesaresi
et al., 2008; Syrris et al., 2015), IKONOS and QuickBird (Pesaresi
et al., 2011), QuickBird (Myint et al., 2011; Pesaresi and
Gerhardinger, 2011), heterogeneous set of images (Pesaresi et al.,
2013), and airborne LiDAR (Singh et al., 2012; Yu et al., 2010) based
on textural and morphological features. The broad application of
these very high spatial resolution images is challenging at large
scales due to the huge amount of data and computations involved
as well as data availability issues (Ban et al., 2015). Microwave
remote sensing (e.g., synthetic aperture radar, SAR) is independent
of weather and day/night and can capture the land cover structure
and vegetation biomass. The potential of different SAR datasets (C
and X bands) for urban extent mapping was recently explored
(Esch et al., 2013, 2010; Gamba et al., 2011; Taubenbock et al.,
2011). A recent study reported the use of multi-temporal, dual-
polarization ALOS PALSAR images for built-up mapping (Zhang
et al., 2011). However, relatively large commission and omission
errors exist in their maps, as built-up have similar backscatter
characteristics with forests and other land cover types; therefore
only radar imagery is not sufficient to identify built-up accurately
(Qin et al., 2015). The integration of radar and multispectral optical
imagery shows their value for land cover maps. Multispectral opti-
cal imagery contains land surface reflectance and radar data can
capture the structure features of the land surface. Therefore, the
integration use of both radar and multispectral optical imagery
could combine complementary information and hold great poten-
tial for improving land cover maps, especially for the impervious
surfaces (Corbane et al., 2008; Zhang et al., 2014a; Zhu et al.,
2012). The synergistic combination of radar and optical imagery
reached higher map accuracy than did either radar data only or
optical imagery only and significantly improved the impervious
surface estimation by reducing the confusions with bare land
(Corbane et al., 2008; Zhang et al., 2014a; Zhu et al., 2012).

The objectives of this study are: (1) to develop a new and
robust approach that combines ALOS PALSAR and Landsat images
in a year to identify and map built-up in urban/rural settings at
30-m spatial resolution; and (2) to apply the pixel-based
approach to evaluate the dynamics of built-up over years and
generate annual maps of built-up areas at 30-m spatial resolu-
tion. We selected the lower Yangtze River Delta, China (Landsat
Path/Row: 118/038) as the case study area, where rapid urban-
ization and industrialization has taken place over the past few
decades, and provides an example of the urbanization in China
(Liu et al., 2014). Specifically, we used PALSAR and Landsat
images to track temporal changes of built-up from 2007 to



Table 1
Literature summary of the data source and approaches for the identification of impervious surface and built-up area.

Land cover Approach Coarse
resolution
(DMSP/
OLS)

Medium
resolution
(MODIS)

High resolution Very high resolution

Landsat-like SAR Landsat&SAR IKONOS/QuickBird/SPOT SAR or
LiDAR

Impervious
surface

Image and
spatial
statistics-
based
methods

Visual
interpretation

Kuang et al. (2014, 2016,
2013)

Supervised Pandey
et al.
(2013)

Bagan and Yamagata
(2012), Li et al. (2015), Lu
and Weng (2006), Small
(2005), Weng et al.
(2009)

Zhang
et al.
(2016)

Zhang et al.
(2014a), Zhu
et al. (2012)

Lu et al. (2011a), Lu and
Weng (2009), Myint et al.
(2011)

Unsupervised Zhang and
Seto
(2011),
Zhou et al.
(2014)

Ban
et al.
(2015)

Decision tree Liu et al.
(2012)

Mertes et al.
(2015),
Schneider
et al. (2009,
2010)

Object-based Xie and
Weng
(2016)

Hu and Weng (2011), Myint
et al. (2011), Voltersen et al.
(2014)

Built-up
area

Image and
spatial
statistics-
based
methods

Supervised Singh et al. (2012)

Object-based Florczyk et al. (2016), Myint
et al. (2011), Pesaresi et al.
(2011, 2008, 2013), Pesaresi
and Gerhardinger (2011)

Yu
et al.
(2010)

Pixel and
time series
statistics-
based
methods

This
study
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2010 at individual pixels and generate annual built-up maps in
the lower Yangtze River Delta, China.
2. Material and methods

2.1. Study area

Our study area is located in the lower Yangtze River Delta of
eastern China (Fig. 1) and covers an area of 17,076 km2. This study
area is flat, and the elevation has a range from sea level to 100 m.
This region has a marine monsoon subtropical climate, with hot
and humid summer, cool and dry winter, and warm spring and fall.
The annual mean temperature is 16 �C, with the highest average
temperature in July (27.8 �C) and the lowest average temperature
in January (3.5 �C). The annual average rainfall is 1160 mm, and
60% is concentrated from May to September.

Cropland and built-up land are the dominant land cover types,
and each of them accounts for about 40% of the total land area (Yin
et al., 2011). This study area has the largest megacity in China
(Shanghai), along with some small to medium cities and rural
areas. The built-up land extent has experienced unprecedented
expansion since the ‘‘reform and opening-up policy” in 1978. The
area percentage of built-up land in Shanghai increased from 4%
in 1979 to 42% in 2009 (Yin et al., 2011). The total human popula-
tion increased from 11 million in 1979 to 22 million in 2009, with
the population density from 1838 people/km2 to 3486 people/km2

(Ma and Ma, 2014).

2.2. Landsat and ALOS PALSAR imagery and preprocessing

We collected time series Landsat TM/ETM+ and ALOS PALSAR
images in the study area and carried out image preprocessing
(Fig. 2). For Landsat imagery, the preprocessing included atmo-
spheric correction, the identification of bad quality observations
(Scan Line Corrector (SLC)-off strips, clouds, cloud shadows, and
snow/ice), and calculation of vegetation index, flooding frequency,
and annual maximum NDVI (NDVImax). For ALOS PALSAR imagery,
the preprocessing included converting the digital number (DN)
into backscattering coefficient in decibels, median filter, resam-
pling, and calculation of HH and HV gamma-naught.

2.2.1. Landsat TM/ETM+ images and preprocessing
We downloaded all the available Landsat TM and ETM+ images

(path/row 118/038) from 2006 to 2011 from the USGS EDC web-
site, a total of 73 Landsat TM images and 101 Landsat ETM+
images. The standard Level 1 Terrain-corrected (L1T) images and
other images with different processing levels are all included in
the data processing. About 35 images are available in 2006, 2007
and 2008, and about 20 images in 2009, 2010 and 2011, respec-
tively (Fig. 1b).



Fig. 2. The workflow for tracking and mapping built-up areas in the lower Yangtze River Delta, based on the combination of Landsat TM/ETM+ and PALSAR FBD images.

Fig. 1. The location of the study area and data availability in the lower Yangtze River Delta. (a) False color composition of ALOS PALSAR Fine Beam Dual Polarization (FBD)
data in 2010: Red (HH), Green (HV) and Blue (HH - HV), and the acquired date of PALSAR FBD data from 2007 to 2010. (b) False color composition of Landsat TM image,
acquired on April 18, 2011, with Red (SWIR), Green (NIR) and Blue (Green), and seasonal statistics of the numbers of Landsat TM/ETM+ images from 2006 to 2011. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.2.1.1. Atmospheric correction. The Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) software was used to con-
vert the raw DN values from Landsat images to land surface reflec-
tance. The LEDAPS applies MODIS 6S radiative transfer models to
retrieve top of atmosphere reflectance and land surface reflectance
(Masek et al., 2006; Vermote et al., 1997) using Landsat images and
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ancillary datasets, such as water vapor, ozone, geopotential height,
aerosol optical thickness and digital elevation.

2.2.1.2. Bad quality observations. Bad quality observation detection
is an essential step for the utilization of optical remote sensing
images. In this study, the bad quality observations include SLC-
off strips, clouds, cloud shadows, and snow/ice cover. These bad
quality observations were excluded for data analysis:

(1) SLC-off strips. The SLC onboard Landsat 7 failed after May 31,
2003, which result in SLC-off strips to Landsat ETM+ images.
A SLC-off strips layer (gap_mask) is available to label and
mask no observation pixels in individual Landsat ETM+
images.

(2) Clouds and cloud shadows. Clouds and shadows are a signif-
icant problem for time series analysis of Landsat imagery
(Goodwin et al., 2013), and their detection is an initial step
in the most analysis. Fmask software was applied to develop
clouds and cloud shadows layers for each of the Landsat TM
and ETM+ images (Zhu and Woodcock, 2012).

(3) Snow and ice covers. Snow and ice cover have high reflec-
tance in the visible spectral bands and can potentially affect
the values of vegetation indices, especially for Land Surface
Water Index (LSWI) and Enhanced Vegetation index (EVI)
(Xiao et al., 2006, 2005). We used the Normalized Difference
Snow and Ice Index (NDSI) and reflectance of NIR (NDSI > 0.4
and NIR > 0.11) to generate snow/ice masks for each image
(Hall et al., 1995, 2002).
2.2.1.3. Statistical analysis of good quality observations of time series
Landsat images. The numbers of good quality observations at indi-
vidual pixels from 1-year Landsat TM/ETM+ images vary over
space (Fig. 3a–d). About 98.4%, 98.4%, 98.2% and 97.8% of pixels
had more than 10 good quality observations for 2007, 2008, 2009
and 2010, respectively (Fig. 3i). We calculated the percentage of
good quality observations at the pixel level, i.e., the ratio of good
quality observation numbers to the total observation numbers
within a year (Fig. 3e–h). About 89.9%, 94.0%, 95.8% and 96.4% of
pixels had more than 20% good quality observations for 2007,
2008, 2009 and 2010, respectively (Fig. 3j).

2.2.1.4. Vegetation indices. We calculated three vegetation indices
(NDVI, EVI, and LSWI) for each Landsat image, which were used
to analyze the spectral and biophysical features of typical land
cover types. NDVI (Rouse et al., 1974) and EVI (Huete et al., 2002,
1997) were used to assess the greenness of land surface. LSWI is
sensitive to leaf water and soil moisture (Xiao et al., 2002a,b).
We calculated inundation frequency per pixel for each year based
on the criteria of LSWI – EVIP 0 (Xiao et al., 2006, 2005). We cal-
culated NDVImax for 2007–2010, respectively (Fig. 4a).

NDVI ¼ qnir � qred

qnir � qred

EVI ¼ 2:5� qnir � qred

qnir þ 6� qred � 7:5� qblue þ 1

LSWI ¼ qnir � qswir

qnir þ qswir

where qblue, qred, qnir and qswir are the land surface reflectance values
of Blue (0.45–0.52 lm), Red (0.63–0.69 lm), NIR (0.77–0.90 lm)
and SWIR (1.55–1.75 lm) band for Landsat TM/ETM+ images.

2.2.2. 25-m ALOS PALSAR ortho-rectified mosaic dataset and
preprocessing

The 25-m PALSAR ortho-rectified mosaic data at Fine Beam Dual
Polarization (FBD) mode from 2007 to 2010 is available from Japan
Aerospace Exploration Agency (JAXA). They were aggregated from
the original observation with minimum response to surface mois-
ture (Shimada et al., 2014). The dataset is organized in latitude-
longitude coordinates and has 4500 columns by 4500 rows per tile.
The dataset includes HH and HV gamma-naught backscatter, local
incidence angle and mask information, and total dates since the
ALOS launch. The local incidence angle ranges from 36� to 40�. The
HH and HV data are slope corrected and orthorectified, radiometri-
cally calibrated, and normalized by the realistic illumination area.

The PALSAR HH and HV DN values (amplitude values) were con-
verted into gamma-naught in decibel using a calibration coefficient
c� ¼ 10� log10hDN2i � 83, which is insensitive to the focus of the
impulse response (Shimada et al., 2009). A 3 by 3 pixel median fil-
ter was applied on PALSAR HH and HV imagery to reduce speckle
noise. We resampled the 25-m PALSAR HH and HV imagery into
30-m imagery (Fig. 4c and d) to match 30-m Landsat imagery using
the nearest neighborhood interpolation.
2.3. Ground reference data for approach training and validation from
very high spatial resolution images

As the landscape is complex and fragmented, relatively small
sizes of Region of Interests (ROIs) are needed in order to reduce
the effect of mixed pixels on ROIs. We generated randomly 2000
60-m � 60-m (2 by 2 pixels at 30-m spatial resolution) rectangles
(ROIs) in the shapefile format, with a minimum distance of 1000 m
between ROIs. These 2000 polygons were converted into kml for-
mat and overlaid to very high spatial resolution images in Google
Earth. The very high spatial resolution images of the main growing
season for each year were selected for land cover type interpreta-
tion. If no image was available in a certain year, the very high spa-
tial resolution images before and after this year were all chosen as
the referenced images. A pixel within a 60-m � 60-m rectangle
was classified as a ROI for built-up area if it has 50% or more area
occupied by building structure. A pixel within a 60-m � 60-m rect-
angle, if occupied by 50% or more non building structure area, was
classified as a non built-up ROI. We then overlaid these annual
training samples spatially and determined the common ROIs over
the four years. In total, 980 pixel ROIs are common (consistent)
from 2007 to 2010, and thus used for approach training (Table 2).
These include 320 built-up pixel ROIs, 104 forest pixel ROIs, 172
cropland pixel ROIs, 80 pond pixel ROIs, and 304 wetland pixel
ROIs, respectively. The spatial distribution of selected ROIs for
approach training is shown in Fig. 5a.

We also generated randomly 3000 60-m � 60-m rectangles to
select ROIs for accuracy assessment of the annual built-up/non
built-upmaps. In total, the built-up ROIs have 276 pixels, 308 pixels,
384 pixels, and 416 pixels, and the non built-up ROIs have 2278 pix-
els, 2326pixels, 3308pixels, and3892pixels in 2007, 2008, 2009and
2010, respectively (Table 2). Thenwe used these ROIs to build a con-
fusionmatrix for accuracy assessment of built-up/non built-upmap
in each year, including overall accuracy, kappa coefficient, producer
accuracy/omission error, and user accuracy/commission error.
2.4. Approaches for identifying built-up area through PALSAR and
Landsat images

Compared with other land cover types, built-up area has three
of the following biophysical features. First, built-up area is covered
by various human-made materials with different colors, shapes,
and spectral characteristics. Second, built-up area is usually mixed
with other land cover types (e.g., trees, shrubs, grassland, and
water bodies), and have low greenness. Third, built-up area has
an obvious 3-dimensional structure above the ground.



Fig. 3. The numbers and percentage of good quality observations at pixel level from 1-year Landsat TM/ETM+ images. (a–d) and (e–h) are the numbers and percentage of
good quality observations of Landsat images in nominal years (3-year moving window), Y2007 (2006–2008), Y2008 (2007–2009), Y2009 (2008–2010), and Y2010 (2009–
2011), respectively. (i) and (j) are the statistics of the numbers and percentage of Landsat good quality observations for 2007, 2008, 2009, and 2010, respectively.

Fig. 4. The spatial distribution of annual maximum NDVI (a), water frequency (b), HH gamma-naught (c), and HV gamma-naught (d) in 2010.
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Fig. 5. Random ground reference for approach training (a) and map accuracy assessment (b) of built-up area at the spatial resolution of 60 m in 2010, acquired from very high
spatial resolution images in Google Earth.

Table 2
Annual ground reference data (ROIs#) for the approach training of built-up area identification and the validation of the resultant built-up/non built-up maps from 2007 to 2010.

Land cover 2007 2008 2009 2010

Training samples Built-up 320 320 320 320
Forest 104 104 104 104
Cropland 172 172 172 172
Pond 80 80 80 80
Wetland 304 304 304 304
Total 980 980 980 980

Validation samples Built-up 276 308 384 416
Non Built-up 2278 2326 3308 3892
Total 2554 2634 3692 4208

Y. Qin et al. / ISPRS Journal of Photogrammetry and Remote Sensing 124 (2017) 89–105 95
2.4.1. Signature analysis of land cover types with Landsat and PALSAR
images

Fig. 6 shows an example of the 2-dimensional scatter plot/den-
sity maps of PALSAR HH and Landsat NDVImax, and PALSAR HV and
Landsat NDVImax in the Yangtze River Delta in 2010. Most of the
water pixels have low HH, HV, and NDVImax values. The other land
cover types hold their specific distribution patterns, while their
HH, HV, and NDVImax boundaries are blurred, which may be con-
tributed to by the mixed pixels in the fragmented landscapes.

For signature analysis of major land cover types, we investi-
gated the relationship between NDVImax and HH, and HV for
each year. We calculated their mean and standard deviation val-
ues and generated eight 2-dimensional scatter plots between
NDVImax and HH, and HV of typical land cover types from
2007 to 2010, respectively (Fig. 7). Built-up and forests show
high backscatter values in both HH and HV due to their strong
corner reflectance. Forests have leaves, branches, stems and
trunks, which can result in relatively more complex structure
and internal reflection environment than those of built-up areas.
Therefore, built-up areas have relatively stronger backscatter in
HH, and weaker backscatter in HV than those of forests. Crop-
lands, wetlands, and ponds have low backscatter values in both
HH and HV. Therefore, HH is selected for mapping built-up area
in this study.



Fig. 6. 2-dimension scatter plots of (a) HH gamma-naught and NDVImax, and (b) HV gamma-naught and NDVImax in the study area in 2010. The white crosses are the mean
values of HH gamma-naught, HV gamma-naught, and NDVImax for typical land cover types.

Fig. 7. The mean value and standard deviation of typical land cover types from Landsat and PALSAR images. (a–d) are 2-dimension scatter plots between HH gamma-naught
and annual maximum NDVI (NDVImax) from 2007 to 2010, respectively. (e–h) are 2-dimension scatter plots between HV gamma-naught and NDVImax from 2007 to 2010,
respectively.
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NDVImax shows good ability to distinguish built-up area from
other typical land cover types (Fig. 7). Built-up have a relatively
low amount of vegetation, and their average NDVImax values are
around 0.4, while forests and croplands have large vegetation
and their average NDVImax values are around 0.8. Thus, NDVImax

is used to further reduce commission errors from forests and crop-
lands, and refine built-up area.

2.4.2. Approaches to identify built-up area
We first excluded the boats and wetlands in the Yangtze

River, as they may have similar backscatter features with built-
up area. We generated an open surface water body map using
time series Landsat images in each year. The algorithm counted
the numbers of observations in which a pixel had LSWI – EVIP 0
out of all the good quality observations and then divided it by
the total number of good quality observations (Dong et al.,
2015; Xiao et al., 2006, 2005). Those pixels with a resultant ratio
value P80% are identified as year-long open surface water body
(Fig. 4b).

PALSAR HH and Landsat NDVImax, representing the structure
and greenness, showed stable features for built-up area during
2007–2010 (Fig. 7a–d) and were selected to map built-up area.
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Built-up areas are featured in high HH backscatter values and low
NDVImax values (�0.6). Built-up are likely to be confused with parts
of forest in HH, but forest has large leaf area index (LAI), often
higher than 3 m2/m2 (Gamon et al., 1995; Turner et al., 1999),
which corresponds to NDVImax values larger than 0.7 (Gamon
et al., 1995; Jiao et al., 2014; Turner et al., 1999). To reduce the con-
fusion error, the lowest 5% of HH gamma-naught and the highest
5% NDVImax values of ground reference for built-up were excluded
at the 95% confidence level. The uniform values of HH and NDVImax

at the 95% confidence level, calculated based on the training data-
sets, were chosen as the thresholds to map built-up area from 2007
to 2010:

ðHH P �9Þ && ðNDVImax < 0:6Þ
A temporal and logical consistency check was applied to reduce

the commission and omission errors of built-up areas (Schneider
and Mertes, 2014). Each pixel from 2007 to 2010 has 16 different
built-up (B) and non built-up (N) permutation over years. The rea-
sonable (NNNN, NNNB, NNBB, NBBB, BNNN, BBNN, BBBN and
BBBB) and irregular (NBNB, NBBN, BNNB and BNBN) permutation
remained to be unchanged, while the consistency filter was applied
to the unreasonable permutation (NNBN? NNNN, NBNN?
NNNN, BNBB? BBBB, and BBNB? BBBB). After this consistency
check, we generated annual maps of built-up areas (PALSAR/
Landsat) in 2007–2010.
2.5. Comparison between the built-up maps and impervious surface
maps generated by multiple data sources and approaches

In this study, another four annual built-up maps (PALSAR/Land-
satSVM) were generated by the image-based SVM approach and the
same input datasets, i.e., PALSAR HH and Landsat NDVImax, as did
our pixel- and rule-based approach. We also collected two other
impervious surface products to compare their consistency and dif-
ferences, including 30-m Globeland30 (Chen et al., 2015) and 1-km
fraction NLCD-China (Liu et al., 2014). Table 3 shows the general
information about the built-up areas and impervious surface maps.
We analyzed the consistency and difference between the built-up
areas and the impervious surface maps.

The Globeland30 impervious surface map in 2010: The
Globeland30 dataset uses a 10 first-level classification scheme,
including artificial surfaces (Chen et al., 2015). Landsat TM/ETM+
images with minimal cloud contamination and the Chinese
Environmental and Disaster satellite (HJ-1) images were used to
produce Globeland30 through a proposed pixel-object-knowledge
(POK-based) classification approach. Each land cover type is deter-
mined in a prioritized sequence and then the results are merged
together. A knowledge-based interactive verification is then car-
ried out to check and improve the classification results. The overall
accuracy of Globeland30 is about 80% and the user’s accuracy of
artificial surfaces is about 87%.

The NLCD-China impervious surface map in 2010: NLCD-China
datasets were generated almost every five years from the late
1980s to 2010, and the impervious surface is one of six land cover
types (Kuang et al., 2016; Liu et al., 2014). 30-m Landsat TM/ETM+,
the China-Brazil Earth Resources Satellite (CBERS), and HJ-1A
images with minimum cloud coverage in the vegetation growing
season were selected to generate NLCD-China. Geometric correc-
tion was done for all the satellite images using ground control
points, with the relative position error less than two pixels. Four
steps were implemented in the NLCD-China classification projects
(Zhang et al., 2014b). First, interpretation symbols were built for
the typical land use/cover types, according to the field survey. Sec-
ond, the baseline NLCD-China for 1995 was produced. Interpreters
analyzed and identified land use/cover types from Landsat TM
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images in 1994/1995, then digitalized the boundaries and labeled
the properties for each polygon at the scale of 1:100,000. Third,
interpreters compared the satellite images during different periods
and digitalized the land use and land cover changes (LULCC).
Fourth, the NLCD-China in 1995 and the LULCC polygons from
1995–2010 were combined together to produce the NLCD-China
in 2010. The vector data was intersected with a 1 km � 1 km fish-
net, and the area percentages of individual land cover types were
calculated as the values for each gridcell. NLCD-China was vali-
dated with a high accuracy of about 95% for the 6 classes, using
the re-interpretation map of randomly 10% of counties and field
survey photos (Zhang et al., 2014b).
3. Results

3.1. Spatial distribution and area estimation of built-up land from the
30-m PALSAR/Landsat and PALSAR/LandsatSVM built-up maps in the
Yangtze River Delta

Fig. 8 shows the annual PALSAR/Landsat and PALSAR/Land-
satSVM built-up areas at the spatial resolution of 30 m in the
Yangtze River Delta from 2007 to 2010. They have similar spatial
distribution patterns in annual maps of built-up areas. The south-
ern region is dominated by the megacity of Shanghai, with large
areas of urban and peri-urban built-up areas. The northern region
Fig. 8. Annual spatial distribution of PALSAR/Landsat (a–d) and PALSAR/LandsatSVM (e–h)
to 2010.
is part of Yangtze Plain, a major agriculture production region in
China, and the rural built-up areas are widely distributed in a lin-
ear pattern. The areas of the built-up land from the PALSAR/Land-
sat built-up map were about 2565 km2 (15.02% of the total study
area), 2591 km2 (15.17%), 2599 km2 (15.22%) and 2805 km2

(16.42%) from 2007 to 2010, while the area of the built-up land
from the PALSAR/LandsatSVM built-up map were relatively higher,
about 3145 km2 (18.42%), 3254 km2 (19.06%), 3343 km2 (19.58%),
and 3152 km2 (18.46%), respectively.
3.2. Accuracy assessment of built-up maps in the Yangtze River Delta

We calculated the confusion matrix based on the built-up and
non built-up ROIs (Section 2.3) and used them to assess the accu-
racy of the built-up maps (Table 4). Both PALSAR/Landsat and PAL-
SAR/LandsatSVM built-up maps were assessed with high accuracies.
Each PALSAR/Landsat built-up map has an overall accuracy around
98%, and Kappa coefficient close to 0.90 or above from 2007 to
2010. Non built-up category has relatively higher user and pro-
ducer accuracies than those of built-up category. The user accura-
cies of built-up areas are 86.9%, 92.7%, 89.9% and 88.2% from 2007
to 2010, which is slightly lower than their producer accuracies
(91.3%, 95.1%, 92.2% and 93.5%). Compared with PALSAR/Landsat
built-up maps, PALSAR/LandsatSVM built-up maps have slightly
lower overall accuracy (about 96%) and relatively higher commis-
built-up maps at the spatial resolution of 30 m in the Yangtze River Delta from 2007



Table 4
Accuracy assessment of annual built-up maps in the Yangtze River Delta, using the ground reference data selected from very high spatial resolution images in Google Earth.

Year Land
cover

PALSAR/Landsat built-up PALSAR/LandsatSVM built-up

User accuracy/
Commission error (%)

Producer accuracy/
Omission error (%)

Overall accuracy (%)/
Kappa coefficient

User accuracy/
Commission error (%)

Producer accuracy/
Omission error (%)

Overall accuracy (%)/
Kappa coefficient

2007 Built-up 86.90/13.10 91.30/8.70 97.57/0.88 78.79/21.21 94.20/5.80 96.63/0.84
Non
built-up

98.94/1.06 98.33/1.67 99.28/0.72 96.93/3.07

2008 Built-up 92.72/7.28 95.13/4.87 98.56/0.93 79.00/21.00 97.73/2.27 96.70/0.86
Non
built-up

99.35/0.65 99.01/0.99 99.69/0.31 96.56/3.44

2009 Built-up 89.85/10.15 92.19/7.81 98.10/0.90 73.12/26.88 96.35/3.65 95.94/0.81
Non
built-up

99.09/0.91 98.79/1.21 99.56/0.44 95.89/4.11

2010 Built-up 88.21/11.79 93.51/6.49 98.17/0.90 79.13/20.87 96.63/3.37 97.21/0.85
Non
built-up

99.30/0.70 98.66/1.34 99.63/0.37 97.28/2.72

Fig. 9. Spatio-temporal changes of 30-m PALSAR/Landsat (A) and PALSAR/LandsatSVM (B) built-up areas from 2007 to 2010. (a) Built-up in the urban core area, (b) built-up in
peri-urban area, (c) and (d) built-up in rural area. (a1–d1) are the zoom-in PALSAR/Landsat built-up areas. (a2–d2) are the zoom-in PALSAR/LandsatSVM built-up areas. (a3–
d3) are Landsat TM image acquired on April 18, 2011, with the false color composition: R (SWIR), G (NIR), and B (Green). (a4–d4) and (a5–d5) are high spatial resolution
images from Google Earth acquired around 2007 and 2010, respectively.
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sion errors for built-up category (about 21%). The moderate com-
mission errors may come from the mixed pixels in the complex
and fragmented landscapes.

3.3. Built-up expansion in the Yangtze River Delta from 2007 to 2010

We used the annual PALSAR/Landsat and PALSAR/LandsatSVM
built-up maps to identify their spatio-temporal changes during
2007–2010, respectively (Fig. 9). According to the PALSAR/Landsat
built-up maps, built-up area continued to increase under the influ-
ence of economic development and increasing population, with an
average increase of 80 km2 per year. Built-up areas showed obvi-
ous spatio-temporal change patterns. Firstly, the extent of most
built-up area is stable, especially in the urban core areas (Fig. 9a),
which usually has the priority to be developed with a high density
of built-up. Secondly, the spatial changes of built-up areas were
characterized by outward expansion (urban sprawl), mainly
located in the peri-urban areas (Fig. 9b). Thirdly, some of rural
built-up were out of detection because of the low coverage of
built-up in mixed pixels (Fig. 9c and d). The PALSAR/LandsatSVM
showed similar spatio-temporal change patterns of built-up area
in the Yangtze River Delta.

4. Discussion

4.1. A comparison of built-up area identification approaches: image-
based SVM versus pixel- and rule-based decision tree

Both the pixel- and rule-based approach and the image-based
SVM approach were employed to identify and map annual built-
up area from 2007 to 2010 in the Yangtze River Delta. The pixel-
and rule-based decision tree approach has relatively simple, expli-
cit and intuitive classification structure, and no assumption about
the distribution of input dataset (Friedl and Brodley, 1997). Built-
up areas have similar spectral, spatial and texture features
(Weng, 2012). The thresholds for built-up identification in PALSAR
HH and Landsat NDVImax are consistent from 2007 to 2010, based
on their feature analysis from the ground reference data (Fig. 7).
Fig. 10. Spatial comparison between PALSAR/Landsat built-up ma
Image-based SVM is derived from statistical learning theory and
separates land classes with a decision surface that maximized
the margin between classes. SVM has three major disadvantages
(Suykens et al., 2003): (1) high algorithmic complexity, (2) exten-
sive memory requirements, and (3) certain risk that some pixels
may not fit the user-defined classes.

The training/validation strategy and remote sensing input data-
sets could affect the efficiency and accuracy for identifying and
mapping built-up areas. Urban and rural landscapes are frag-
mented and complex in the Yangtze River Delta. Very high resolu-
tion images, such as IKONOS and QuickBird, were used as the
reference to select random training and validation samples. Some
of these very high resolution images acquired in different time
have position offset over one Landsat pixel caused by imperfect
geometric calibration and orthorectification, which would cause
some uncertainty to the training and validation samples. Due to
the heterogeneity of landscapes and 30-m spatial resolution of
Landsat and PALSAR images, mixed pixels with less than 50%
built-up area are common in urban landscapes, which has been
recognized as a major problem for the pixel- and rule-based
approach to estimate built-up areas (Weng, 2012). Compared with
the pixel- and rule-based approach, the SVM-based approach cap-
tures relatively more built-up area in the rural and peri-urban area
with low-density built-up but has much larger commission error
(Table 4 and Figs. 10 and 11).

PALSAR/Landsat built-up maps had good agreement with PAL-
SAR/LandsatSVM built-up maps from 2007 to 2010. Fig. 10 showed
the spatial comparison between PALSAR/Landsat built-up maps
and PALSAR/LandsatSVM built-up maps. The urban core areas have
a high density of built-up and not much vegetation coverage, and
both pixel-based decision tree and image-based SVM work well
for built-up identification and present good consistency. In total,
about 96.5%, 95.9%, 95.3% and 97.1% of built-up and non built-up
were identified by both the pixel- and rule-based approach and
the image-based SVM for 2007, 2008, 2009 and 2010, respectively
(Fig. 10). The SVM overestimated the built-up area by about
585 km2 (3.4% of the total area), 680 km2 (4.0%), 770 km2 (4.5%)
and 418 km2 (2.4%), in comparison to the pixel- and rule-based
ps and PALSAR/LandsatSVM built-up maps from 2007 to 2010.



Fig. 11. Zoom-in regions of the spatial comparison between PALSAR/Landsat built-up and PALSAR/LandsatSVM built-up from 2007 to 2010.
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decision tree approach for 2007, 2008, 2009 and 2010, respectively.
These overestimated pixels were mainly located at the edge of
urban areas, or in peri-urban and rural areas (Fig. 11), contributed
to by the mixed pixels of built-up and other land cover types. In
addition, PALSAR/Landsat and PALSAR/LandsatSVM built-up areas
changed from 2383 ± 60 km2 to 2573 ± 47 km2 and from
2578 ± 75 km2 to 2546 ± 59 km2 from 2007 to 2010 after area
adjustment (Olofsson et al., 2014), and the built-up maps identified
by SVM does not show the continuity of built-up expansion.

4.2. A comparison between the maps of built-up area and the maps of
impervious surfaces

Built-up, with an obvious 3-dimensional structure above the
ground, is a subset of impervious surfaces and has a smaller area
and spatial extent than those of impervious surfaces. We aggre-
gated these built-up and impervious surface maps from original
spatial resolutions into 1-km fraction maps using nearest neigh-
borhood resampling algorithm. Fig. 12 showed the spatial distribu-
tions of the built-up maps from PALSAR/Landsat and PALSAR/
LanddsatSVM, and the impervious surface maps from GlobeLand30
and NLCD-China at the spatial resolution of 1-km in 2010. Gener-
ally, all these four built-up and impervious surface maps showed
a similar spatial pattern. Both the GlobeLand30 and NLCD-China
were generated by interactive visual interpretation of single Land-
sat TM/ETM+ images, therefore, they had a reasonable estimation
of impervious surface area, except for the rural area and peri-
urban area with low-density built-up and impervious surface areas
(Chen et al., 2015; Liu et al., 2014). The impervious surface areas
estimated by the GlobeLand30 (3151 km2) and NLCD-China



Fig. 12. Spatial distribution of built-up and impervious surface maps at the spatial resolution of 1-km in 2010. (a) PALSAR/Landsat built-up map, (b) PALSAR/LandsatSVM built-
up map, (c) Globeland30 impervious surface map, and (d) NLCD-China impervious surface map. Linear relationships between PALSAR/Landsat built-up map and Globeland30
(e) and NLCD-China (f) impervious surface maps, and between PALSAR/LandsatSVM built-up map and Globeland30 (g) and NLCD-China (h) impervious surface maps.

Fig. 13. Spatial differences between built-up maps and impervious surface maps at the spatial resolution of 1-km in 2010. The difference between PALSAR/Landsat built-up
map and Globeland30 (a) and NLCD-China (b) impervious surface maps. The difference between PALSAR/LandsatSVM built-up map and Globeland30 (c) and NLCD-China (d)
impervious surface maps. (e) is the area histogram distribution of (a–d).
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(3167 km2) are larger than PALSAR/Landsat built-up area
(2805 km2) and similar to PALSAR/LandsatSVM built-up area
(3152 km2). Significant linear relationships exist between PAL-
SAR/Landsat and PALSAR/LandsatSVM built-up maps and the Glo-
beland30 and NLCD-China impervious surface maps (Fig. 12e–h).
At the 1-km pixel scale, the areas of GlobeLand30 and NLCD-
China impervious surface were about 105% and 105% of the area
of PALSAR/Landsat built-up, and about 98% and 99% of the area
of PALSAR/LandsatSVM built-up, respectively.

In the urban core, the area fraction of the built-up map was
reasonably lower (�0.1) than those of impervious surface maps
(Fig. 13). In the peri-urban and rural area, the area fraction of
PALSAR/LandsatSVM built-up maps had relatively larger estimation
(P0.2) than those of impervious surface maps in about 10% of the
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total area, while only about 5% for the PALSAR/Landsat built-up
map (Fig. 13). The spatial comparison between our built-up
map and the impervious surface maps clearly provide insight
for the improvement of the impervious surface maps in the
future.
4.3. Potential of our pixel- and rule-based decision tree approach for
identifying and mapping built-up area

Recent studies have been focusing on urban and impervious
surface expansion and their impacts on carbon emission (Seto
et al., 2012), biodiversity loss (Guneralp and Seto, 2013; Seto
et al., 2012) and climate change (Kalnay and Cai, 2003; Miao
et al., 2011; Weng et al., 2011; Zhang et al., 2009). However, the
area, spatial distribution and density information of built-up along
urban-rural areas have been hardly investigated. The pixel-based
decision tree approach proposed in this study has the potential
to map built-up in both urban and rural settings at the spatial res-
olution of 30 m, which enables people to investigate the spatial
patterns of built-up in the urban/rural landscapes. Accurate built-
up maps could be used to estimate population density in different
communities. Use of these maps could help to investigate their
pressure on the environment, which will deepen our understand-
ings about effects of human activities on both climate and global
environment change (He et al., 2014; IPCC, 2007; Kalnay and Cai,
2003; Sellers et al., 1997).

From the perspective of optical remote sensing, built-up in
urban cores are often difficult to distinguish from barren land
and sparse vegetation classes, while built-up in peri-urban and
rural areas are easily confused with vegetation classes (Friedl
et al., 2010). We extended the identification features for built-up
from spectral space to both spectral and structure spaces. PALSAR
HH gamma-naught and Landsat NDVImax presented stable and sim-
ilar features for built-up over years, even though they were
acquired in different months (Fig. 7). The potential of their combi-
nation was proven for built-up identification in the Yangtze River
Delta. Based on the literature review, urban areas showed similar
features of PALSAR HH backscatter in different climate regions,
including boreal zone (Lonnqvist et al., 2010; Thiel et al., 2009),
temperate zone (this study), subtropical zone (Chen et al., 2016)
and tropical zone (Dong et al., 2012; Qin et al., 2015), respectively.
Similar and slightly different thresholds from greenness (NDVImax)
and structure (HH gamma-naught) are expected to be effective for
identifying and mapping built-up in other regions.

In this study, the 30-m Landsat and ALOS PALSAR imagery
works well for large patches of built-up but has limited ability to
map small and scattered built-up in rural areas (Fig. 9). Finer spa-
tial resolution imagery is needed to refine these mixed pixels and
further calibrate the built-up maps. 10-m spatial resolution images
would be suitable for mapping built-up in the complex urban-rural
landscape (Lu et al., 2011b), such as Sentinel-2 multispectral
images and ALOS-2 PALSAR-2 Fine model L-band images.
5. Conclusions

Accurate estimation of the area, spatial distribution, and the
density of regional built-up are fundamental information for
human settlement design, planning, and management. We pro-
posed a novel approach to map spatial and temporal patterns of
built-up through the integration of 30-m Landsat and 25-m ALOS
PALSAR imagery. We used a combination of structure, greenness
and water coverage information to map built-up area. The results
showed that the proposed pixel- and rule-based decision tree
approach can identify built-up area reasonably well in both urban
and rural areas from 2007 to 2010, and improvement was achieved
over image-based SVM approach. The average annual increase of
built-up areas was about 80 km2 per year. The built-up maps could
refine current impervious surface products generated by optical
images and prompt their improvement. The application of this pro-
posed approach in large regions needs further validation, including
additional case studies in hotspots of urbanization across the
world. Annual built-up maps at fine spatial resolutions are needed
for better understanding the interaction between human activities
and natural ecosystems.
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