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Abstract
Northeast China is the main crop production region in China, and future climate change will directly impact crop potential yields,
so exploring crop potential yields under future climate scenarios in Northeast China is extremely critical for ensuring future food
security. Here, this study projected the climate changes using 12 general circulation models (GCMs) under two moderate
Representative Concentration Pathway (RCP) scenarios (RCP 4.5 and 6.0) from 2015 to 2050. Then, based on the Global
Agro-ecological Zones (GAEZ) model, we explored the effect of climate change on the potential yields of maize and paddy
rice in Northeast China during 2015–2050. The annual relative humidity increased almost throughout the Northeast China under
two RCPs. The annual precipitation increased more than 400 mm in some west, east, and south areas under RCP 4.5, but
decreased slightly in some areas under RCP 6.0. The annual wind speed increased over 2 m/s in the west region. The annual
net solar radiation changes varied significantly with latitude, but the changes of annual maximum temperature and minimum
temperature were closely related to the terrain. Under RCP 4.5, the average maize potential yield increased by 34.31% under the
influence of climate changes from 2015 to 2050. The average rice potential yield increased by 16.82% from 2015 to 2050. Under
RCP 6.0, the average maize and rice potential yields increased by 25.65% and 6.34% respectively. The changes of maize
potential yields were positively correlated with the changes of precipitation, wind speed, and net solar radiation (the correlation
coefficients were > 0.2), and negatively correlated with the changes of relative humidity, minimum and maximum temperature
under two RCPs. The changes of rice potential yields were positively correlated with the changes of precipitation (correlation
coefficient = 0.15) under RCP 4.5. Under RCP 6.0, it had a slight positive correlation with net solar radiation, relative humidity,
and wind speed.

1 Introduction

Global concentrations of greenhouse gases (GHG) in the at-
mosphere have significantly increased since the pre-industrial
era (Miao et al. 2013), and anthropogenic emissions of green-
house gases are constantly changing the earth’s climate (Araya
et al. 2015). It is expected to lead to increasing sea level and
temperatures, reducing near-surface permafrost extent,

changes in rainfall regimes, and increasing extreme weather
events (Padgham 2009; Solomon et al. 2007). The general
circulation models (GCMs) included in the Coupled Model
Intercomparison Project Phase 5 (CMIP5) have been generat-
ed and can be used to simulate history and future climate
conditions (Zhou and Wang 2015). The Representative
Concentration Pathways (RCPs) describe four different
twenty-first century pathways of GHG emissions, including
a very slight GHG emission scenario (RCP2.6), two interme-
diate scenarios (RCP4.5 and RCP6.0), and one very high
GHG emission scenario (RCP8.5). The four RCPs indicate
that the increase of global mean surface temperature is likely
to be 0.3 to 1.7 °C under RCP2.6, 1.1 to 2.6 °C under RCP4.5,
1.4 to 3.1 °C under RCP6.0, and 2.6 to 4.8 °C under RCP8.5
by the end of the twenty-first century (2081–2100) relative to
1986–2005 (Pachauri et al. 2014).

Climate change and the potential impact on society are
enormous challenges for mankind, and agriculture is one of
the most sensitive sectors to climate change (Zhou and Wang
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2015). Climate change will substantially affect productivity of
major staple food crops such as maize and rice (Bassu et al.
2014 ; Jones and Thornton 2003; Ruane et al. 2013; Tao and
Zhang 2010) because growth and development of crops are
mainly dependent on sunlight, temperature, and water (Chen
et al. 2013). On the one hand, global warming could alter the
dynamics and intensity of crop damage by pests and diseases,
such as insects and plant pathogens (Cannon 1998; Scherm
2004). On the other hand, a higher atmospheric concentration
of carbon dioxide can improve photosynthesis, enhance bio-
mass accumulation, and increase production (Schmidhuber
and Tubiello 2007). Therefore, the impact of climate change
on crop yield is positive in some agricultural regions and neg-
ative in others (Parry et al. 2004).

Maize, soybean, wheat, and paddy rice are major crops in
Northeast China, and maize has the largest planting area and
production among the three dryland crops. The climate chang-
es can affect crop phenology, growth, and yield, and threaten
sustainable crop production in Northeast China in the future.
Some studies applied the GCMs to analyze the future climate
changes and evaluate the impact of climate changes on crop
growth, but most studies rely on only a few climate models or
one GHG emission scenario, which were unable to guarantee
the accuracy and rationality of climate predicted results
(Kassie et al. 2015; Lu et al. 2018; Meehl et al. 2007; Tao
et al. 2009; Zhou and Wang 2015). For example, Kassie et al.
(2015) only used three GCMs, including CanESM2,
HadGEM2-ES, and CSIRO-MK3-6-0 to explore climate
change impacts and adaptation options for maize production
in the Central Rift Valley of Ethiopia. Lu et al. (2018) also
used three GCMs to study the spatial difference characteristics
on simulation capability of seasonal variation of air tempera-
ture. Although Zhou and Wang (2015) applied 30 GCMs to
analyze the potential impact of future climate change on
single-rice and spring-maize yields in Northeast China, they
only considered the RCP 4.5 scenario. More robust and pre-
cise climate change impact assessment studies are based on
different GCM projections and multiple RCPs (Araya et al.
2015, 2017; Tebaldi and Knutti 2007). For instance, Araya
et al. (2015) assessed the impact of climate changes on maize
yield using climate simulation results from 20 different GCMs
under high and moderate RCP scenarios in southwestern
Ethiopia. After 2 years, they assessed the impact of climate
changes on maize productivity during 2040–2069 in relation
to the baseline (1980–2009) in Kansas using 20 GCMs and
two RCPs. In assessing the crop potential yields, the best
option is to apply process-based crop models, which empha-
size physiological processes of crop growth, such as the
Environmental Policy Integrated Climate (EPIC) model
(Izaurralde et al. 2006; Williams et al. 1989) and World
Food Studies (WOFOST) model (Diepen et al. 2010). Crop
models derived yield predictions based on multiple GCMs
and RCPs can provide more reliable climate change impact

assessments (Asseng 2013; Ruane et al. 2013). Therefore, the
highlight of this study is to combine 12 GCMs with the
process-based crop model, Global Agricultural Ecological
Zones (GAEZ) model, to predict future climate and explore
the impact of climate changes on maize and paddy rice yields
in Northeast China. Because the moderate emission scenarios
were more suitable for China’s sustainable development pat-
tern in the future, the two moderate emission scenarios, RCP
4.5 and 6.0, were considered in this study.

Therefore, the objectives of this study were to (1) project
the climate of Northeast China in 2050 based on 12 different
GCMs under two moderate RCPs, RCP 4.5 and 6.0; (2) sim-
ulate the potential yields of maize and paddy rice in base year
(2015) and future year (2050) using the GAEZ model, and
analyze the maize and rice potential yield changes during
2015–2050; and (3) explore the impact of future climate
changes on the potential yields of maize and paddy rice.
Assessing crop potential yield changes resulting from future
climate changes is critical to supply policy makers with infor-
mation to develop appropriate plans in order to reduce the
negative impacts of climate changes and improve the ability
of agricultural systems to meet future food demand and ensure
food security (Lv et al. 2015).

2 Data and methods

2.1 Study area

Northeast China covers Heilongjiang, Jilin, Liaoning, and
the eastern parts of the Inner Mongolia Autonomous
Region (IMAR), extending from 38° 40′ N to 53° 34′ N,
and 115° 05′ E to 135° 02′ E (Fig. 1). Total land area of
Northeast China is about 1.24 million km2. It is surrounded
by many middle and low mountains, such as the Changbai
Mountains in the southeast, the Greater Khingan
Mountains in the northwest, and the Lesser Khingan
Mountains in the northeast (Mao et al. 2012). Three major
plains are located in northeast China, including the
Sanjiang Plain in the northeastern corner, Songnen Plain
in the central part, and Liaohe Plain in the southern part.
The climate is influenced by the East Asian monsoon,
which has four distinct seasons, with a long winter and a
short summer (Gao et al. 2018). The annual temperature
ranges from − 5 to 10.6 °C with the spatial increase from
north to south and ≥ 10 °C annual accumulated temperature
is 2200–3600 °C. The frost-free period is 140–170 days
(Tan et al. 2014). The average annual precipitation ranges
from 1000 mm in the east to 400 mm in the west, which is
concentrated from July to September and represents 70%
of the annual total. The corresponding main soil types in
Northeast China are brown coniferous forest soils in the
cold temperate zone, dark brown forest soil in the warm
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temperate zone, and forest steppe chernozem and meadow
steppe chernozem in the temperate zone (Sun et al. 2006).
Northeast China is mainly occupied by forest and farm-
land, which cover 39.87% and 33.77% of the total area
respectively. Rice and maize are popular in Northeast
China. The actual rice and maize production account for
about 90% of the total grain production (including cereal,
tuber, and soybean) in Northeast China in 2015 by refer-
ring to the Statistical Yearbook of Northeast China
(Table 1).

2.2 Data sources

Climate, soil, terrain, farmland, and irrigation datasets were used
in the GAEZ model. The data sources are detailed below.

Besides, the agricultural statistical data on crop production were
also needed.

2.2.1 Contemporary climate data

Seven kinds of climate variables were considered in this study
to estimate the climate changes, includingmonthlymeanmax-
imum and minimum temperature, cumulative precipitation,
cumulative net solar radiation, mean relative humidity, mean
wind speed at 2 m height, and wet day frequency (the number
of days on which the precipitation exceeds 0.2 mm). The wet
day frequency variable data were needed from 1996 to 2015,
while the other six variables data were needed in 2015. The
contemporary climate data were obtained from the National
Meteorological Information Center (http://www.nmic.cn/).

Table 1 Actual maize and rice production and total grain production in Northeast China in 2015

Province Actual maize and rice production (million tonnes) Total grain production (million tonnes) Rate (%)

Heilongjiang 57.44 63.24 90.83

Jilin 34.35 36.47 94.19

Liaoning 18.71 20.02 93.45

Eastern parts of Inner Mongolia 20.25 22.62 89.52

Northeast China 130.75 142.35 91.85

The “Rate (%)” is the rate of actual maize and rice production to total grain production

Fig. 1 Location of Northeast
China
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These observations were from 99 meteorological stations
distributed throughout Northeast China at a wide range of
elevations. The above seven kinds of variables related to
crop growth were all interpolated to 10 km spatial resolution
raster data by using the ANUSPLIN software based on the
DEM of Northeast China (Hutchinson 1995, 1998a, 1998b).

2.2.2 Future climate data

The future climate data were also needed in this study, includ-
ing the seven climate variables above in 2050. Except wet day
frequency, other six climate variables were derived from two
RCP scenarios, RCP 4.5 and 6.0 in the IPCC’s Fifth
Assessment Report (AR5). Twelve climate models containing
both emission scenarios were used to simulate future climate
scenarios in this study, the details of which are shown in
Table 2. The variables in the 12 climate models were all
monthly average data in 2050, including “hurs” (near-surface
relative humidity), “pr” (precipitation), “rsus” (surface up-
welling shortwave radiation), “rsds” (surface downwelling
shortwave radiation), “sfcWind” (near-surface wind speed),
“tasmax” (maximum near-surface air temperature), and
“tasmin” (minimum near-surface air temperature). The net
solar radiation can be calculated by using “rsds” to minus
“rsus.”

The initial future climate data, NetCDF files, were trans-
ferred to raster data by using Python and Matlab. Due to the
different and low spatial resolutions of the raster data from the
12 climate models, the climate model outputs of six variables
were re-gridded to a resolution of 10 km × 10 km. The down-
scaling method was to transfer the raster data to points, and
then use the ANUSPLIN software to interpolate to 10-km
grid-cell surfaces based on the latitude, longitude, and eleva-
tion of each point. We first analyzed the characteristics of
climate predicted results of 12 climate models in 2050 under
RCP 4.5 and 6.0. Then, to reduce the errors of different

predicted results as much as possible, the simple average
method was applied for multi-model ensemble to obtain the
monthly average data under RCP4.5 and 6.0 respectively. By
comparing the climate predicted results with the climate con-
ditions in 2015, the annual mean climate change maps of six
climate variables during 2015–2050 were obtained.

As wet day frequency was not simulated in the future cli-
mate scenarios, we explored the interannual trend of wet day
frequency in the last 20 years (1996–2015) (Fig. 2). We se-
lected seven representative stations out of 99 meteorological
stations in Northeast China, namely Mohe in the north (N)
area, Harlaer in the northwest (NW) area, Chifeng in the
southwest (SW) area, Anshan in the south (S) area, Tonghua
in the southeast (SE) area, Jiamusi in the northeast (NE) area,
and Baicheng in the central (C) area. As the growing seasons
of maize and paddy rice extend from May to September in
Northeast China, we analyzed the changes of wet day frequen-
cy from May to September in the last 20 years (Zhang and
Huang 2012) (Fig. 2). It can be found that wet day frequency
of sevenmeteorological stations has varied in the last 20 years,
but has largely fluctuated on the horizontal lines no matter
what month it is. Therefore, we used the wet day frequency
in 2015 as the predicted wet day frequency in 2050.

2.2.3 Soil data

The soil data of Northeast China were extracted from the
corresponding grid cell in the 1 km × 1 km Harmonized
World Soil Database (HWSD) including various soil attri-
butes such as soil texture, organic carbon content, soil
acidity, soil drainage ability, and so on, which were devel-
oped by the International Institute for Applied Systems
Analysis (IIASA) and Food and Agriculture Organization
(FAO) (Yuji et al. 2009). The soil data also need to be
processed to 10 km resolution grid.

Table 2 Summary of 12 global climate models from CMIP5 used in this study

No. Climate Model Country Spatial resolution (grids, lon × lat)

1 GFDL-CM3 USA 144 × 90

2 GFDL-ESM2G USA 144 × 90

3 GFDL-ESM2M USA 144 × 90

4 HadGEM2-ES UK 192 × 145

5 IPSL-CM5A-LR France 96 × 96

6 IPSL-CM5A-MR France 144 × 143

7 MIROC5 Japan 256 × 128

8 MIROC-ESM Japan 128 × 64

9 MIROC-ESM-CHEM Japan 128 × 64

10 MRI-CGCM3 Japan 320 × 160

11 GISS-E2-H USA 144 × 90

12 GISS-E2-R USA 144 × 90
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2.2.4 Terrain data

The terrain data, high-resolution raster DEMwith 90 m spatial
resolution, were from the Shuttle Radar Topography Mission
(SRTM) C-band data (Shortridge and Messina 2011). The
DEM data were processed into slope and aspect data and
resampled to 10 km spatial resolution grid.

2.2.5 Farmland data

The farmland data in this study were extracted from the
land use database of 2015 developed by the Chinese
Academy of Sciences (with a mapping scale of 100,000)
(http://www.resdc.cn/). The land use database was
obtained from manual visual interpretation at Landsat
Operational Land Imager (OLI) images in 2015. Through
field verification, the interpretation precision was more
than 90%, which could satisfy the accuracy requirement

of 1:100,000 mapping (Liu et al. 2002, 2005). The land
use data were divided into six major categories, including
farmland, woodland, grassland, water bodies, built-up
land, and unused land. The farmland was also divided into
dryland and paddy field. Generally, maize was planted in
dryland and rice in paddy field. As the input of farmland
data in the GAEZ model is the last step and the resolution
is arbitrary, the farmland data need to be processed to dry-
land and paddy field ratio data with 1 km spatial resolution
grid in this study.

2.2.6 Irrigation data

The irrigation data in 2015 were the irrigation area ratio data
of each city in Northeast China from the Statistical Yearbook
of Northeast China. The irrigation data also need to be proc-
essed to 1 km spatial resolution grid in this study.

Fig. 2 Wet day frequency at 7 representative meteorological stations from May to September in the last 20 years

Assessing the impact of climate changes on the potential yields of maize and paddy rice in Northeast China... 171

http://www.resdc.cn/


2.2.7 Agricultural statistical data on crop production

The agricultural statistical data on actual crop production of
2015 (Table 1) were also needed, deriving from the Statistical
Yearbooks of Heilongjiang, Jilin, Liaoning, and Inner
Mongolia in 2015.

2.3 Methods

2.3.1 Simulation of the GAEZ model

The GAEZ model was used to simulate the crop potential yield
in this study, and was developed by the Food and Agricultural
Organization (FAO) of the United Nations and the International
Institute for Applied System (IIASA) (Fischer et al. 2002, 2008).
TheGAEZmodel calculates crop productivity potential based on
photosynthetic potential, light and temperature potential, climate
production potential, and land production potential step by step
(Liu et al. 2018). It employs simple and robust crop models and
provides standardized crop-modeling and environmental
matching procedure to identify crop-specific limitations of pre-
vailing climate, soil and terrain resources under assumed levels
of input and management conditions (Pu et al. 2018). In this
study, the GAEZ model simulated the rice and maize potential
yields in 2015 and 2050. Pu et al. have given a detailed descrip-
tion of the calculation procedures and validation of the GAEZ
model (Pu et al. 2019).

So how do climate factors impact crop growth? In the GAEZ
model, seven kinds ofmonthlymean climate variables impacting
crop potential yields include relative humidity (RH), cumulative
precipitation (P), mean maximum and minimum temperature
(Tmax and Tmin), net solar radiation (SRn), wind speed (WS),
and wet day frequency (WDF). Evapotranspiration was an im-
portant factor for crops to obtain biomass and yield. GAEZmod-
el calculates reference evapotranspiration (ET0) according to the
Penman-Monteith equation firstly (Monteith 1981; Smith 1992).
The WS, RH, SRn, Tmax, and Tmin were used for the estima-
tion of ET0. Then, the maximum evapotranspiration (ETm) and
actual evapotranspiration (Eta) were calculated according to spe-
cific attributes of each crop and daily precipitation. WDF was
used to derive daily precipitation events from monthly totals (P).
Meantime, Tmin, Tmax, and P were also major determinants of
crop growth and development. In GAEZ, the effects of temper-
ature and precipitation were characterized in each grid-cell by
thermal regimes, including thermal climates, thermal zones,
length of temperature growing periods, temperature sums, and
temperature profiles (Fischer et al. 2012).

2.3.2 Impact of future climate changes on the potential yields
of maize and paddy rice

After simulating the potential yields of maize and paddy rice
in 2050 under RCP 4.5 and 6.0, and the potential yields in

2015 using the GAEZ model, the temporal and spatial chang-
es of maize and rice potential yields during 2015–2050 were
obtained. Except climate variables, the other factors, including
soil, terrain, farmland, irrigation and input and management
level, should be unchanged in this study, so that ensuring crop
potential yield changes were only affected by climate changes.
Due to the lack of wet day frequency simulation in future
climate models, the wet day frequency also remained un-
changed from 2015 to 2050 in this study. To explore the im-
pact of climate changes from 2015 to 2050 on maize and rice
potential yields, the correlation matrixes were established and
the correlation coefficients illustrated the correlativity be-
tween crop potential yield changes and climate changes.

3 Results

3.1 Characterization of future climate changes
during 2015–2050 as projected by assemble
of climate models

3.1.1 Climate prediction of 12 climate models in 2050
under RCP 4.5 and 6.0

To explore the characteristics of future climate predicted re-
sults of 12 climate models in 2050 under RCP 4.5 and 6.0, six
annual mean climate variables of 12 climate models in 2050
were calculated including mean relative humidity (RH), cu-
mulative precipitation (P), mean surface wind speed (WS),
meanmaximum temperature (Tmax), meanminimum temper-
ature (Tmin), and cumulative net solar radiation (SRn), and
were presented in the box plots (Fig. 3). It can be clearly seen
that the predicted results of 12 climate models were very dif-
ferent regardless of the climate variables and RCP scenarios.
The annual RH were 64.84–83.40% under RCP 4.5 and
64.19–84.33% under RCP 6.0 in 12 climate models, and the
values under RCP 6.0 were more aggregate than that under
RCP 4.5. As for the annual P, although the value range under
RCP 4.5 was larger than that under RCP 6.0, it was much
more aggregate than that under RCP 6.0. The value range of
the annual WS under RCP 4.5 was a little larger than that
under RCP 6.0, and the values were a little more diffuse than
that under RCP 6.0. The value ranges of the annual Tmax
were close between RCP 4.5 and 6.0, but the values were
more aggregate under RCP 4.5. The biggest annual Tmin
under RCP 4.5 in 12 climate models was 1.82 °C, which
was much higher than 0.33 °C under RCP 6.0. The smallest
Tmin were close under two RCPs. The annual SRn were
3574.28–4599.71 MJ/m2/a under RCP 4.5 and 3695.91–
4485.87 MJ/m2/a under RCP 6.0, and the values were more
diffuse under RCP 4.5. In short, 12 climate models predicted
different results of six climate variables. It was difficult to
determine which predicted result was the most accurate
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among 12 climate models, so the multi-model ensemble was
used to reduce the errors of different predicted results as much
as possible. We averaged simply the predicted results of 12
climate models and used the results as climate conditions in
2050.

3.1.2 Climate changes from 2015 to 2050 under RCP 4.5
and 6.0

After obtaining the average predicted results of the six
climate variables of 12 climate models, the climate change
characteristics from 2015 to 2050 are shown in Fig. 4. The
climate changed a lot from 2015 to 2050. The change
trends of the same variables were almost consistent under
RCP 4.5 and 6.0 (Fig. 4a–l). From Fig. 4a and b, it can be
seen that the changes of RH were similar under two RCPs.
It increased almost throughout the Northeast China from
2015 to 2050, and the RH in the western region increased
more than that in the eastern region. As for the annual P, it
increased more under RCP 4.5 than that under RCP 6.0
from 2015 to 2050 (Fig. 4c, d). Spatially, the P increased
in most areas of Northeast China under RCP 4.5, and de-
creased slightly in some areas under RCP 6.0. Besides, the

P increased more than 400 mm in some west, east, and
south regions under RCP 4.5. The change of annual WS
was almost the same under two RCPs (Fig. 4e, f). It was
obvious that the changes of WS were related to longitude
closely, which increased gradually from east to west (Fig.
4g, h). In the west region, it even increased over 2 m/s.
Figure 4g and h showed the changes of annual Tmax. We
can see that the Tmax increased more under RCP 4.5 than
that under RCP 6.0. In the west and north regions, the
Tmax decreased, but increased in the other regions. Even
in the northeast and southeast regions, the Tmax increased
more than 2 °C. The annual Tmin increased much more
under RCP 4.5 than that under RCP 6.0 (Fig. 4i, j). Under
RCP 4.5, it almost increased in the whole region, but de-
creased in most center and northeast regions under RCP
6.0. It was also of interest that the changes of Tmax and
Tmin were closely related to the terrain. We can see that
the Tmax and Tmin increased more in the higher areas, and
increased less or even decreased in the flat plain areas. As
for the annual SRn, it varied significantly with latitude
(Fig. 4k, l). The lower the latitude, the more the SRn in-
creased. In the south region, the SRn increased more than
1200 MJ/m2/a under two RCPs.
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Fig. 3 Comparison of six climate
variables of 12 climate models in
2050 under RCP 4.5 and 6.0
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3.2 Maize and rice potential yields in 2050 and yield
changes during 2015–2050

3.2.1 Maize potential yields in 2050 and yield changes
under two RCPs

Using the GAEZmodel, this study simulated the maize potential
yields in Northeast China in 2015 and 2050 based on the climate
data in 2015, climate projection results in 2050, soil data, DEM

data, farmland and irrigation data of 2015 under two RCPs, and
then calculated the maize potential yield changes during 2015–
2050 (Figs. 5 and 6). The total maize potential production in
Northeast China in 2050 under RCP 4.5 was 324.26 million
tonnes (Fig. 5a). As the crop production is equal to yield times
crop planting area, and the dryland area was 35.60million ha, the
average maize potential yield was 9108.87 kg/ha. In Fig. 5a the
potential yield in the center region was much higher than that in
the other regions. The potential yield in the center region was

Fig. 4 Changes of six climate variables from 2015 to 2050 under RCP
4.5 and 6.0. a RH-RCP4.5 change. b RH-RCP6.0 change. c P-RCP4.5
change. d P-RCP6.0 change. e WS-RCP4.5. f WS-RCP6.0. g Tmax-

RCP4.5. h Tmax-RCP6.0 change. i Tmin-RCP4.5 change. j Tmin-
RCP6.0 change. k SRn-RCP4.5 change. l SRn-RCP6.0 change
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more than 6000 kg/ha, and even exceeded 10,000 kg/ha in some
center areas. In the other regions, such as thewest, east, and south
regions, the yield was less than 4000 kg/ha. Figure 5b showed
the maize potential yield change during 2015–2050 under RCP
4.5. The maize potential production increased by 82.84 million
tonnes from 2015 to 2050, and the average potential yield in-
creased by 34.31% (2327.10 kg/ha) (Fig. 5b). Therefore, the total
maize potential production and yield increasedwith the impact of
climate changes during 2015–2050. Spatially, themaize potential
yield increased almost in the whole region, which increased by

more than 1500 kg/ha especially in the center and northwest
areas. The potential yield increased by 1000–1500 kg/ha in the
northeast area, and less than 1000 kg/ha in the southeast area.

Under RCP 6.0, the total maize potential production in 2050
was 303.30 million tonnes and the average potential yield was
8520.04 kg/ha, which were all less than that under RCP 4.5
(Fig. 6a). The spatial distribution of maize potential yield under
RCP 6.0 was similar with that under RCP 4.5. The potential
yield in the center region was much higher than that in the other
regions. The yield in the center region was more than 6000 kg/

Fig. 4 continued.
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ha, and in the other regions, such as the west, east, and south
regions, the yield was less than 4000 kg/ha. The total maize
potential production increased by 61.88 million tonnes from
2015 to 2050, and the average maize potential yield increased
by 1739.27 kg/ha (25.65%) (Fig. 6b). As for the spatial distri-
bution of maize potential yield change from 2015 to 2050, it
can be seen that in the north area, it decreased during 2015–
2050. In the center and northwest areas, it increased by more
than 1000 kg/ha, and even more than 1500 kg/ha in the south-
west area. In the other areas, the maize potential yield grew up
by less than 1000 kg/ha.

3.2.2 Paddy rice potential yields in 2050 and yield changes
under two RCPs

In paddy field, the total rice potential production in Northeast
China in 2050 under RCP 4.5 was 39.84 million tonnes
(Fig. 7a). The paddy field area was 6.36 million ha, so the aver-
age rice potential yield was 6264.08 kg/ha. The potential yield in
the northeast region, where the Sanjiang Plain was located, was
more than 6000 kg/ha,much higher than that in the other regions.
In the other regions, such as the west, east, and south regions, the
yield was less than 4000 kg/ha. Under the impact of climate

Fig. 4 continued.
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changes, the rice potential production and yield increased under
RCP 4.5 (Fig. 7b). The total rice potential production increased
by 5.73 million tonnes during 2015–2050 under RCP 4.5, and
the average potential yield increased by 901.88 kg/ha (16.82%).
In most areas, the rice potential yield increased, and even in-
creased by more than 500 kg/ha in the northeast area. In the
center area of Heilongjiang Province, it grew up by more than
1000 kg/ha.

The total rice potential production in 2050 under RCP 6.0was
36.28 million tonnes, and the average rice potential yield was

5703.45 kg/ha (Fig. 8a). The rice potential production and yield
under RCP 6.0 were also less than that under RCP 4.5. The
potential yield in the place where the Sanjiang Plain was located
was also more than 6000 kg/ha. In the other regions, such as the
west, east, and south regions, the yield was less than 4000 kg/ha.
The rice potential production increased by 2.17 million tonnes
under RCP 6.0 from 2015 to 2050, and the average potential
yield increased by 340.25 kg/ha (6.34%) (Fig. 8b). In most areas,
the rice potential yield increased by less than 500 kg/ha, but in the
northeast area, it decreased.

Fig. 5 Maize potential yield in 2050 and yield change from 2015 to 2050 under RCP 4.5. a Maize potential yield. b Maize potential yield change

Fig. 6 Maize potential yield in 2050 and yield change from 2015 to 2050 under RCP 6.0. a Maize potential yield. b Maize potential yield change
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3.3 Impacts of future climate changes on maize
and paddy rice yields

Two correlation matrixes were established to analyze the im-
pact of climate changes on maize and rice potential yields
during 2015–2050 using the “Band Collection Statistics” tool
in ArcGIS, and the correlation coefficients in the forms
showed the correlativity between maize and rice potential
yield changes and climate changes under two RCPs
(Tables 3 and 4). The absolute value of the correlation

coefficient is approximately 1, indicating that the correlation
between the two layers is stronger. When the correlation co-
efficient is greater than 0, the two layers are positively corre-
lated and vice versa. In the two forms, ΔYm and ΔYr repre-
sented the maize and rice potential yield changes, and ΔRH,
ΔP, ΔWS, ΔTmax, ΔTmin, and ΔSRn were the changes of
RH, P, WS, Tmax, Tmin, and SRn from 2015 to 2050 respec-
tively. From Table 3,ΔYm was positively correlated withΔP
(0.21), ΔWS (0.25), and ΔSRn (0.40), meaning that increas-
ing precipitation, wind speed, or net solar radiation was good

Fig. 8 Paddy rice potential yield in 2050 and yield change from 2015 to 2050 under RCP 6.0. a Rice potential yield. b Rice potential yield change

Fig. 7 Paddy rice potential yield in 2050 and yield change from 2015 to 2050 under RCP 4.5. a Rice potential yield. b Rice potential yield change
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for maize growth under RCP 4.5. The maximum correlation
coefficient betweenΔYm andΔSRn was 0.40, indicating that
the increase of net solar radiation contributed the most to the
growth of maize potential yield. ΔYm was negatively corre-
lated with ΔRH (− 0.16), ΔTmax (− 0.02), and ΔTmin (−
0.34), but the correlation coefficients between ΔYm and
ΔTmax were close to 0, meaning that the increase of mean
maximum temperature had little impact on maize potential
yield under RCP 4.5. The increase of Tmin will greatly reduce
the maize potential yield. ΔYr was positively correlated with
the changes of ΔP (0.15), but almost not affected by the
changes of mean maximum temperature and net solar radia-
tion. The increase of RH, WS, and Tmin will reduce the rice
potential yield. There was also a clear correlation between
different climate variables. For example, there were strong
negative correlations betweenΔRH andΔTmax (− 0.54), be-
tween ΔP and ΔTmin (− 0.53), and between ΔTmin and
ΔSRn (− 0.52). However,ΔWS andΔSRn had a strong pos-
itive correlation (0.57).

Under RCP 6.0, ΔYm was positively correlated with ΔP
(0.21), ΔWS (0.27), and ΔSRn (0.43), and negatively corre-
lated with ΔRH (− 0.13), ΔTmax (− 0.03), and ΔTmin (−
0.32) under RCP 6.0 (Table 4).ΔYm andΔSRn had a strong
positive correlation and the correlation coefficient was 0.43.
ΔYm and ΔTmin had a clear negative correlation and the
coefficient was − 0.32. As for ΔYr, it had a slight positive
correlation with ΔSRn (0.10), ΔRH (0.06), and ΔWS

(0.07), and slight negative correlation with ΔTmax (− 0.15).
There were also strong negative correlations between ΔRH
and ΔTmax (− 0.46), between ΔP and ΔTmin (− 0.48), and
between ΔTmin and ΔSRn (− 0.53). ΔWS and ΔSRn had a
strong positive correlation (0.62).

4 Discussions

4.1 Uncertainty of predicting future climate

A major uncertainty in this study is the prediction of future
climate conditions resulted from different emission scenarios
and climate models. Although in order to eliminate the errors
of the predicted results in different climate models as much as
possible, we selected the predicted results of 12 climate
models containing both emission scenarios (RCPs) and used
the simple average method, other climate scenarios are likely
to give different characteristics of future climate. Therefore the
uncertainty of future climate change is still a significant source
of uncertainty in this paper (Alcamo et al. 2007).

The climate variable in 2050, wet day frequency, had to be
assumed to remain unchanged from that in 2015 in this study
since the wet day frequency variable was not simulated in the
future climate model in CMIP5. Although it was verified in
Part 2.3.1 that the wet day frequency fluctuated on the hori-
zontal lines, replacing the predicted wet day frequency in

Table 3 Correlation matrix under RCP 4.5

ΔYm ΔYr ΔRH ΔP ΔWS ΔTmax ΔTmin ΔSRn

ΔYm 1.00 – − 0.16 0.21 0.25 − 0.02 −0.34 0.40

ΔYr 1.00 − 0.18 0.15 − 0.12 0.02 −0.19 0.00

ΔRH 1.00 − 0.03 0.10 − 0.54 0.22 − 0.36
ΔP 1.00 − 0.05 0.00 −0.53 0.38

ΔWS 1.00 − 0.32 −0.26 0.57

ΔTmax 1.00 0.28 0.11

ΔTmin 1.00 − 0.52
ΔSRn 1.00

Table 4 Correlation matrix under RCP 6.0

ΔYm ΔYr ΔRH ΔP ΔWS ΔTmax ΔTmin ΔSRn

ΔYm 1.00 – − 0.13 0.21 0.27 − 0.03 − 0.32 0.43

ΔYr 1.00 0.06 − 0.01 0.07 − 0.15 − 0.01 0.10

ΔRH 1.00 − 0.20 0.16 − 0.46 0.29 − 0.24
ΔP 1.00 − 0.11 0.10 − 0.48 0.32

ΔWS 1.00 − 0.28 − 0.27 0.62

ΔTmax 1.00 0.29 0.03

ΔTmin 1.00 − 0.53
ΔSRn 1.00
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2050 with that in 2015 may cause the errors in daily precipi-
tation, because the wet day frequency was used to divide the
total monthly precipitation into daily rainfall, thus leading to
errors in crop potential yields. Therefore, future study will
need to focus on finding better algorithms to estimate the
future wet day frequency, so simulation of future crop poten-
tial yield will be more accurate.

4.2 Uncertainty of the GAEZ model

Actually, the GAEZ model used in this study has some limi-
tations. First, because the spatial resolution of initial future
climate data in the GCMs was rough and spatial resolution
of climate data input to the GAEZ model should be 10 km ×
10 km, the initial future climate data were downscaled and
interpolated using the Anusplin software. Although compared
with other interpolation methods, the surfaces obtained by the
Anusplinmethodweremore realistic, it was still hard to obtain
completely accurate spatial distribution maps. This increased
the uncertainty of future climate conditions in small regions,
and further increased the uncertainty of crop potential yield in
small regions. It would be a long way to explore more ideal
interpolation method to reduce the results errors as much as
possible.

Second, as future climate scenarios cannot predict extreme
climate conditions and the input climate data to the GAEZ
model should be monthly average data, the GAEZ model
has not been able to simulate crop potential yield under ex-
treme weather. Extreme weather, especially extreme tempera-
ture and precipitation, may have large effects on crop growth.

Third, this study used only one crop model (GAEZ) to
simulate crop potential yields. The parameters of the particular
crop type or the process of calculating crop yield may vary in
different models, which may cause small differences. Some
scholars reported that ensembles of many models could give a
better estimate of crop yields than using only one model
(Asseng 2013; Martre et al. 2015). Multi-crop model and
multi-GCM ensemble projections are recommended for stud-
ies of impact of climate changes on crop yields (Araya et al.
2015).

4.3 Advantage of impact of future climate changes
on crop potential yields analysis method

In general, crop potential yield was largely affected by various
variables, including climate variables, soil quality, terrain, ir-
rigation condition, farmland area and distribution, and human
input and management. However, the objective of this study is
to analyze the impact of future climate changes on crop po-
tential yields. Therefore, to prevent the other factors except
climate variables from affecting crop yields, these factors had
to remain unchanged during the study period. This is called
“control variate method.” By using this method, the results in

this study could directly show the impact of future climate
changes and were relatively accurate.

5 Conclusions

In this study, six future climate variables in 2050 under RCP
4.5 and 6.0 were simulated using 12 climate models in
CMIP5, and the predicted results were very different from
12 climate models. Hence, the multi-model ensemble, a sim-
ple average of the predicted results of 12 climate models, was
used to reduce the errors of different predicted results as much
as possible. The change trends of the same variables were
almost consistent under RCP 4.5 and 6.0 during 2015–2050.
The annual RH increased almost throughout the Northeast
China from 2015 to 2050, and increased in the western region
more than that in the eastern region. The annual P increased
more than 400 mm in some west, east, and south areas under
RCP 4.5, but decreased slightly in some places under RCP
6.0. The annual WS change was related to longitude closely,
which increased gradually from east to west. The annual SRn
change varied significantly with latitude and increased gradu-
ally from north to south. The changes of annual Tmax and
Tmin were closely related to the terrain.

The maize and rice total potential production and total av-
erage yields all showed an increasing trend under two RCPs
with the impact of climate changes from 2015 to 2050. Under
RCP 4.5, the total maize potential production in Northeast
China in 2050 was 324.26 million, and the average potential
yield was 9108.87 kg/ha. From 2015 to 2050, the maize po-
tential production and average potential yield increased by
82.84 million tonnes and 2327.10 kg/ha (34.31%) respective-
ly. The maize potential yield increased by more than 1500 kg/
ha in the center and northwest areas, much more than that in
the other areas. Under RCP 6.0, the total maize potential pro-
duction in 2050 was 303.30 million tonnes, 61.88 million
tonnes more than in 2015. The average potential yield was
8520.04 kg/ha in 2050, increasing by 20.41% from 2015 to
2050. The total rice potential production and average potential
yield in 2050 were 39.84 million tonnes and 6264.08 kg/ha
respectively under RCP 4.5. The rice potential production
increased by 5.73 million tonnes during 2015–2050, and the
average potential yield increased by 901.88 kg/ha (16.82%).
Under RCP 6.0, the total rice potential production in 2050 was
36.28 million tonnes, and the average potential yield was
5703.45 kg/ha. The rice potential production increased by
2.17 million tonnes from 2015 to 2050, and the average po-
tential yield increased by 6.34%.

Under two RCPs,ΔYm was positively correlated withΔP,
ΔWS, andΔSRn, meaning that increasing precipitation, wind
speed, or net solar radiation would promote the maize growth,
and negatively correlated with ΔRH, ΔTmax, and ΔTmin.
ΔYr was positively correlated with ΔP, but almost not
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affected by ΔTmin and ΔSRn under RCP 4.5. Under RCP
6.0, ΔYr had a slight positive correlation with ΔSRn, ΔRH,
and ΔWS, and slight negative correlation with ΔTmax.

It is very significant to evaluate crop responses to future
climate changes. Although current assessment system cannot
avoid the uncertainty about future climate conditions and the
accuracy of crop models, and the farmland, irrigation condi-
tions, even the soil characteristics may change in 2050, our
study still can provide a general indication and guidance of the
impact of climate changes in Northeast China. The results are
valuable for guiding adaption efforts, providing reference in-
formation for policy makers and ensuring food security in the
future.
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