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a  b  s  t  r  a  c  t

Global  concerns  over  the  emergence  of zoonotic  pandemics  emphasize  the  need  for  high-resolution
population  distribution  mapping  and  spatial  modelling.  Ongoing  efforts  to model  disease  risk  in  China
have  been  hindered  by  a lack  of available  species  level  distribution  maps  for  poultry.  The  goal  of this  study
was to  develop  1 km  resolution  population  density  models  for China’s  chickens,  ducks,  and  geese. We used
an  information  theoretic  approach  to predict  poultry  densities  based  on statistical  relationships  between
poultry  census  data  and  high-resolution  agro-ecological  predictor  variables.  Model  predictions  were
validated by  comparing  goodness  of fit  measures  (root  mean  square  error  and  correlation  coefficient)
for  observed  and  predicted  values  for 1/4  of  the  sample  data  which  were  not  used for  model  training.
Final  output  included  mean  and  coefficient  of variation  maps  for  each  species.  We  tested  the  quality
of  models  produced  using  three  predictor  datasets  and  4 regional  stratification  methods.  For  predictor
variables,  a combination  of  traditional  predictors  for  livestock  mapping  and  land  use  predictors  produced
the best  goodness  of  fit  scores.  Comparison  of regional  stratifications  indicated  that  for  chickens  and
ducks,  a stratification  based  on  livestock  production  systems  produced  the  best  results;  for  geese,  an
agro-ecological  stratification  produced  best  results.  However,  for all species,  each  method  of  regional
stratification  produced  significantly  better  goodness  of  fit scores  than  the  global  model.  Here  we  provide
descriptive  methods,  analytical  comparisons,  and  model  output  for China’s  first  high  resolution,  species
level  poultry  distribution  maps.  Output  will  be made  available  to  the  scientific  and  public  community
for  use  in  a wide  range  of  applications  from  epidemiological  studies  to livestock  policy  and  management
initiatives.

Published by Elsevier B.V.

1. Introduction

Globalization and a growing demand for meat products in
developing regions in recent years have led to rapid expansion
of the livestock sector, particularly pork and poultry meat in
Asia. With these changes come an increased threat of emerging
zoonotic diseases and a need for improved food safety and the
implementation of appropriate biosecurity measures. Epidemio-
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logical efforts, livestock sector planning, and policy development all
require knowledge of livestock distributions and abundance infor-
mation that is often difficult to obtain in a consistent spatial format.
For example, epidemiological modelling of highly pathogenic avian
influenza (HPAI) type H5N1 (hereafter HPAI H5N1) in hot zones
of re-emergence such as China is hampered by a lack of available
data on spatial distributions of its main host, domestic poultry.
HPAI H5N1 first emerged in 1996 in domestic geese of southeastern
China (Xu et al., 1999). From 1997 to 2003, the virus continued to
evolve and in early 2004, an extensive wave of outbreaks erupted
across China and seven additional Asian countries (OIE, 2004). The
virus showed varying degrees of pathogenicity and transmissibility
among chickens, ducks, and geese, with ducks potentially serving
as silent propagators of the virus (Li et al., 2004; Sturm-Ramirez
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et al., 2005). Fourteen years later, HPAI H5N1 has spread from Asia
to parts of Europe and Africa, and remains active in many regions,
including China.

Since HPAI H5N1’s first emergence in 1996, China has reported
nearly 200 outbreaks in poultry and wild birds (primarily the
former), and 39 cases in humans (OIE, 2010; World Health
Organization, 2010). Strong government control efforts, including
mass vaccination programs, a national active surveillance program,
and culling of more than 35 million poultry, have led to a decrease
in the number of outbreaks reported over the past year. The dis-
ease persists, however, with some human outbreaks occurring in
regions without concurrent outbreak reports in poultry, raising
questions as to whether underreporting of outbreaks or asymp-
tomatic viral replication is occurring within the poultry population.
High resolution distribution maps of individual poultry species
would provide important input factors for disease risk modelling
and vaccination strategies. To date, however, no such data have
been available.

In 2007, the Food and Agriculture Organization of the United
Nations (FAO) released the Gridded Livestock of the World (GLW): the
first standardized, global, sub-national resolution population maps
of livestock species, including poultry (FAO, 2007). An unprece-
dented accomplishment, these raster maps provide 3 arc-minute
resolution livestock density estimates (approximately 5 km at
the equator) based on disaggregation of agricultural census data
(Robinson et al., 2007; Neumann et al., 2009). Until now, these
were the only poultry distribution maps available that encom-
passed the whole of China. However, the temporal, spatial, and
species resolutions available through GLW are not ideal for epi-
demiological modelling of HPAI H5N1 in China. The current version
of the GLW uses poultry data from China in 1990s. Given that poul-
try production increased substantially from the 1990s to 2000s
in China (http://kids.fao.org/glipha/), and HPAI H5N1 modelling
efforts target this same timeframe, it is important to have dis-
tribution models based on updated poultry figures. In addition,
the GLW dataset groups all poultry into one category. As chicken,
duck and geese respond differently to HPAI H5N1 virus infec-
tion (Sturm-Ramirez et al., 2005), and their production systems
have different spatial distributions, mapping poultry distributions
at the species level is important for epidemiological modelling
efforts.

In this study, we aimed to produce 1 km resolution popula-
tion distribution maps for chickens, ducks, and geese across the
extent of China. We  hypothesized that strong statistical rela-
tionships exist between poultry populations and agro-ecological
variables, which in turn could be used to spatially disaggregate
census data. Building from previous work (FAO, 2007), we inves-
tigated quality of model output using remotely sensed predictors
of meteorological data (Hay et al., 2006; Scharlemann et al., 2008)
compared to ones that might offer more intuitive interpretation
such as land cover variables. We  also explored the effects of build-
ing predictive models within varying regional stratifications, and
validated our data using a subset of the observed poultry data.
Finally, in concert with related distribution modelling efforts for
ducks across much of Monsoon Asia (see Van Boeckel et al., this
issue), we compared the efficacy of using data solely from within
China versus that from China and surrounding countries to deter-
mine whether the inclusion of outside data would improve model
results.

The poultry distribution maps produced in this study are valu-
able for a variety of uses including epidemiological modelling,
guiding policy decisions, livestock management, biosecurity and
food safety, conflict resolution, and environmental impacts. We
have made these data freely available through the FAO Grid-
ded Livestock of the World (GLW) website: http://www.fao.org/
AG/againfo/resources/en/glw/home.html.

2. Materials and methods

2.1. Poultry data

We aimed to obtain nationwide county level (administrative
level 3) statistics for the 3 major types of poultry produced in China:
chickens, ducks, and geese. Poultry statistics for China are pub-
lished annually by the National Statistics Bureau (NSB) and the
Ministry of Agriculture’s Animal Husbandry Bureau (AHB). Both
agencies report standard poultry statistics including: number of
individuals sold per year (SOLD), number of individuals existing at
the end of the calendar year (residual poultry; RESID), and meat
and egg production by weight. Annual counts of each poultry type
are collected from farms and households at the township level and
are reported up through county, prefecture, and provincial admin-
istrative units with final submission to the national level. These
data are publicly released as aggregated total poultry figures in
provincial rural and statistical yearbooks (China National Bureau
of Statistics, 2007). Differences between NSB and AHB statistics
are attributed to the level of administrative unit for reporting and
the type of poultry reported: NSB publishes aggregated estimates
of total poultry (all species combined) at the county or prefec-
ture level (levels 3 or 2, respectively) in provincial yearbooks; AHB
publishes both aggregated (total poultry) and species level statis-
tics (chickens, ducks, geese) at the coarser, provincial scale (level
1).

We extracted poultry census data from 96 rural and statistical
yearbooks (printed in Chinese) for years 2003–2005 (reference list
provided in Supplementary Table S1). Data were gathered for each
of China’s 22 provinces, 5 autonomous regions, and 4 municipali-
ties (hereafter referred to as 31 provinces). We  accessed yearbooks
from the National Library of China in Beijing, the National Agricul-
tural Information System of the Chinese Academy of Agricultural
Sciences Agricultural Institute, the China National Knowledge
Infrastructure (http://www.global.cnki.net/grid20/index.htm), and
the United States Library of Congress in Washington, D.C.

Of the standard metrics reported, we  used RESID poultry for
the modelling process for 2 reasons: (a) RESID counts are con-
ducted at the end of the calendar year at peak production prior
to national Spring Festival holidays, and (b) RESID was the most
comprehensive metric reported. In contrast to SOLD poultry, which
comprised mainly poultry raised for meat consumption (broilers),
RESID poultry provides a more complete representation of the poul-
try populations by including egg layers, meat poultry, and backyard
poultry (poultry raised by households for personal consumption).
As defined by the National Statistics Bureau, residual poultry is the
number of poultry held in rural and urban areas at the end of the
calendar year and includes “all size and breeds of poultry, etc. from
rural cooperative economic organizations, state-operated farms,
rural individuals, organizations, groups, schools, industrial/mining
companies, government departments and units and raised by urban
citizens” (China National Bureau of Statistics, 2007).

We employed a standardized protocol for filling gaps in avail-
able poultry statistics (See Fig. 1a and Section 3). In order of priority,
6 methods were used to create a complete set of poultry data for
China: (1) county level RESID poultry; (2) prefecture level RESID
poultry; (3) conversion of county level SOLD poultry to RESID poul-
try estimates; (4) conversion of prefecture level SOLD poultry to
RESID poultry estimates; (5) provincial level RESID poultry; and
(6) conversion of provincial level AHB RESID poultry to NSB RESID
estimates (see Supplementary Fig. S1 for correlations between NSB
and AHB provincial RESID poultry census data). We  then divided
total poultry figures into species estimates (chickens, ducks, and
geese) using provincial species ratios from the 2006 Agricultural
Census (China National Bureau of Statistics, 2008) which have not
yet been released to the public. Poultry census estimates were
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Fig. 1. (a) Methods used for filling data gaps in total poultry across China, (b) methodology for modelling chicken, duck, and goose distributions for China. RESID = residual
poultry at end of year, SOLD = number poultry sold, NSB = National Statistics Bureau, AHB = Animal Husbandry Bureau (see Supplemental Fig. S1 for NSB and AHB relationships).

converted to geospatial format using ArcGIS 9.3 (Environmental
Systems Research Institute, Inc., Redlands, CA, USA).

2.2. The modelling process

We  modeled distributions of domestic chickens, ducks, and
geese in China using the following steps modified from the GLW
processing chain (FAO, 2007) (Fig. 1b): (1) obtain poultry cen-
sus data; (2) fill data gaps, develop species level estimates, and
convert to geospatial format; (3) mask unsuitable areas and cal-
culate adjusted observed densities for each poultry species; (4)
extract dependent (poultry) and independent (predictor) training
and validation data using a stratified random sampling scheme;
(5) establish statistical relationships between dependent poultry
estimates and predictor covariates; (6) create predicted poultry dis-
tribution maps using equations from statistical relationships; and
(7) assess model goodness of fit using sample points omitted from
the training set.

After preparing the poultry census data for input into the mod-
elling process, we calculated observed poultry densities for each
administrative unit by correcting for the area of land unsuitable for
poultry production. Suitability masks for chickens, ducks, and geese
were modified from original GLW monogastric livestock (pigs and
poultry) masks (FAO, 2007). Our suitability masks were restricted
to exclude only the most environmentally unsuitable areas for pro-
duction (e.g., extreme high elevations, tundra, ice, etc.; Table S2)
but did not exclude heavily populated locations as certain phases
of poultry production may  occur in urban areas, such as chick
hatcheries located within city limits.

We  created a stratified random sampling frame that included
one point per polygon (reporting administrative unit) and an aver-
age of 20 points per decimal degree across the extent of China.
Sample points were bootstrapped to create 25 data sets to be used in

assessing model variation. At each sample point, poultry estimates
and predictor covariates were extracted. Seventy five percent of
the points were used for training models and 25% were reserved
for model validation.

We  used an information theoretic approach to choose best
models at iterative steps in a multivariate regression proce-
dure (Burnham and Anderson, 2002; Whittingham et al., 2006).
Dependent variables were log transformed for normality, and
each independent variable was  paired with its quadratic term to
accommodate curvilinear relationships (Rawlings et al., 1998). The
stepwise procedure began with a null model followed by inclu-
sion of the predictor pair defined by the best Akaike Information
Criterion (AIC). The process was successively repeated for each
remaining pair of predictors until one of 2 conditions was  met: (i)
improvement in AIC score for 2 successive models was less than 1%,
or (ii) a threshold minimum number of unique data values was  not
available for each predictor pair entered in the model (i.e., 15 data
points per variable pair). Coefficients from the top regression mod-
els were then applied to the predictor imagery to create predicted
maps of distributions for each species. Means and coefficients of
variation (standard deviation divided by mean) were estimated
from the 25 bootstrapped predictions. Two goodness of fit indi-
cators were used to assess quality of model output: root mean
square error (RMSE) and correlations (COR) between predicted and
observed values. Lower RMSE and higher COR indicated better fits.
Correction by country totals was applied to the final maps.

Environmental and demographic conditions relevant to poultry
production vary widely across the extent of China. We  therefore
performed regression models within stratification zones chosen
to reflect regional differences in association with poultry pro-
duction. Model predictions for four stratification schemes were
compared: (i) global livestock production systems (LPS), (ii) data
driven ecozones (EZ) using unsupervised classification of Moder-
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Table  1
Predictor variables used in China poultry distribution modelling. Three groups were compared: (1) Gridded Livestock of the World predictors (GLW; FAO, 2007), (2) a set of
land  use and anthropogenic predictors (LU), and (3) the GLW and LU predictors combined (GLW + LU).

GLW predictors

MODIS channels TFA processed channels 03, 07, 08, 14, 15, 35: mx,  mn,  d1, d2, d3, da, a1, a2, a3, p1, p2, p3, produced by SEEG, University of Oxford
1kgrumpdens Alpha version kilometer resolution human population density for 2000 from GPW GRUMP, at Columbia University
1kgrumpdensb Beta version kilometer resolution human population density for 2000 from GPW GRUMP at Columbia University
green0301c1rc MODIS phenology datasets, greenup band 1, January 2003, Boston University, Dept Geography (see text)
green0301c2rc MODIS phenology datasets, greenup band 2, January 2003, Boston University, Dept Geography (see text)
senes0301c1rc MODIS phenology datasets, senescence band 1, January 2003, Boston University, Dept Geography (see text)
wd1kslp Slope, GTOPO30 dataset
1kaglgprc Length of growing period, derived from FAO LGP layers using statistical modelling by ERGO
1kthlgprc Length of growing period, derived from LGP layers produced by Thornton, using statistical modelling by ERGO
rmsuitdeg Distance in decimal degrees to land suitable for ruminants, derived by ERGO
mgsuitdeg Distance in decimal degrees to land suitable for Monogastrics, derived by ERGO
1krdsdeg Distance in decimal degrees to major roads – using landscan road layer, derived by ERGO
1kwatdeg Distance in decimal degrees to sea, major lakes and rivers, derived by ERGO
glurdeg Distance in decimal degrees to GRUMP alpha urban areas, derived by ERGO
2kprecyr1k Annual precipitation, synoptic period to 2000, produced by Worldclim
acc50k Travel time to major cities (>50,000) European Commission GEM
V590ELC MODIS SRTM elevation product, sea level corrected
V590EL MODIS SRTM elevation product

LU predictors

Land cover Forest, grassland, open water, vegetated wetland, rice paddy, cropland, developed, urban
Cropping intensity Yan et al. (2010) and Yan et al. (in review)
Human population Tian 2005
Elevation Shuttle radar topography mission
Slope GTOPO30

GPW GRUMP = gridded population of the world global rural urban mapping project; ERGO = environmental research group Oxford; SEEG = spatial epidemiology and ecology
group.

ate Resolution Imaging Spectroradiometer (MODIS) remote sensing
variables and Shuttle Radar Topography Mission (SRTM) digital
elevation models, (iii) China Agro-ecological Regions (CAR), and
(iv) a combination of the first three (All.BestRSE). The LPS regions,
updated from those initially developed by Sere and Steinfeld (1996)
and mapped by Thornton et al. (2002), represent 14 classes of
livestock production based on grassland, mixed farming, and land-
less systems. The EZ regions consist of 4 hierarchical levels of
clustering for Asia: EZ5, EZ12, EZ25, and EZ50 which represent
5, 12, 25, and 50 cluster classes using MODIS channels 3, 7, 8,
14, and 15, and SRTM data (see Van Boeckel et al., this issue for
details). For the EZ stratifications, we built prediction maps at the
pixel level, using regression coefficients of the EZ with the lowest
residual squared error (hereafter referred to as EZ.BestRSE strati-
fication). The CAR stratification, adapted from Verburg and Chen
(2000),  is a modification of the commonly used China agricultural
regionalization by Crook (1993).  CAR divides China into 8 regions
based on agriculture, economics, environment, and provincial level
administrative boundaries. Modifications from Crook (1993) con-
sisted of removing the densely populated Sichuan province from
sparsely populated Tibetan Plateau and including it with Yun-
nan and Guizhou provinces. The final stratification, All.BestRSE,
chooses, pixel by pixel, the stratification with the lowest residual
squared error from the stratifications described above. Examples of
All.BestRSE, EZ.BestRSE, CAR, and LPS stratifications are displayed
in Supplementary Fig. S3.  We  set model conditions to perform
regressions within each stratification zone, however, if criteria of a
minimum of 15 unique dependent estimates per variable pair were
not met, coefficients from a single country level model were then
used to create predictions within that zone.

GLW distribution models have traditionally been created using
anthropogenic variables such as human density, distance to roads,
etc., in combination with remotely sensed surrogates of meteoro-
logical data (e.g., middle infrared, land surface temperature, etc.)
as predictors. We  were interested in comparing capabilities of a
predictor set using the GLW approach versus one that includes
interpreted remote sensing variables such as land use (e.g., crop-

land, wetland, grassland, etc.). The incentive for using the latter
group is the potential to draw more intuitive conclusions between
significant predictor variables and poultry predictions. Thus, we
ran models using 3 predictor datasets: GLW, LU, and the combined
set GLW + LU (Table 1). The main difference between the GLW and
LU sets was  the inclusion of Fourier transformed MODIS data for
GLW (Scharlemann et al., 2008) (see Van Boeckel et al., this issue
for details) and land use variables for LU (Liu et al., 2002).

Goodness of fit indicators, RMSE and COR, were compared in an
analysis of variance (ANOVA) to determine optimal predictor sets
and regional stratification schemes. Data were reviewed for confor-
mity to the assumptions of normality and homogeneity of variance.
Histograms of RMSE and COR appeared normal for each of the
predictor datasets and stratifications. Since sample sizes between
levels were identical in the one-way ANOVA, we  assumed the over-
all F test and multiple comparison tests were robust to departures
from the unequal variance assumption (Neter et al., 1996).

Finally, to assess the value of including poultry and agro-
ecological relationships from countries surrounding China, we
compared goodness of fit scores for China versus those from a
related study that models duck distributions across Monsoon Asia
(see Van Boeckel et al., this issue). The modelling methodology
in Van Boeckel et al. (this issue) is similar to that used in this
study (although overall proposed hypotheses differ) and includes
data from 14 countries: China, Cambodia, Bhutan, Thailand, Lao,
Vietnam, Myanmar, Bangladesh, India, Nepal, Korea, Malaysia,
Philippines, and Indonesia.

3. Results

We  targeted NSB data for model development because of the
finer scale at which they are reported (mainly county and prefec-
ture versus provincial level for AHB). Of 3 years of data investigated,
year 2004 was most complete (86% complete versus 82 and 78% for
years 2003 and 2005, respectively), and thus was used for model
input. We  implemented a multi-level methodology for creating
complete RESID estimates from the data available (Fig. 1a). We
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Table 2
Data availability and method description for deriving 2004 residual poultry statistics for each of 31 provinces of China. Provinces denoted with asterisk indicate use of
Ministry  of Agriculture Animal Husbandry data (AHB); all others derived from National Statistics Bureau data (NSB).

Method Data availability Method description Applicable provinces

1 RESID county level data Use county RESID Beijing, Jiangsu, Zhejiang, Anhui, Fujian, Henan, Hunan,
Guangdong, Ningxia

2  RESID prefecture level data Use prefecture RESID Hebei, Heilongjiang, Jiangxi, Shandong, Shaanxi
3  SOLD county level data Multiply by conversion for county RESID estimate Tianjin, Hubei, Chongqing*
4  SOLD prefecture level data Multiply by conversion for prefecture RESID estimate Inner Mongolia, Shanghai*, Hainan*, Sichuan*, Qinghai*
5 RESID provincial level data Use provincial RESID Shanxi, Gansu
6 No NSB data at any level Use AHB RESID data (provincial scale) Liaoning, Jilin, Guangxi, Guizhou, Yunnan, Xizang, Xinjiang

applied methods 1–4 to approximately ¾ of the provinces (22 of 31)
that had county and prefecture level data (Table 2). The remaining
nine provinces had provincial level data; here we  applied methods
5 and 6. Method 6 uses AHB data for those provinces lacking NSB
data (based on high correlation between the 2 data sets: r-square
value of 99.4%, see Supplemental Fig. S1).

Observed densities (census data), model predictions, and coef-
ficient of variation are shown in Fig. 2a, b, and c, respectively.
Observed densities were highest for chickens, and considerably
lower for ducks and geese (111.2, 27.4, and 6.7 thousand per km2

maximum, respectively). Geographically, maximum densities were
higher in southern and eastern China than the remote northern
and western regions (northern and western regions defined as CAR
zones 5 and 6, see Supplemental S3c). Duck densities in particular
were highest in southeastern China where lowland tropics and rice
agriculture is prevalent. Chickens were most ubiquitous, with high
densities across most of southern and eastern China, and moder-
ate to low densities across remote regions of the north and west.
Model uncertainty (COV) tended to be highest in the remote west-
ern regions of China where poultry numbers are lower.

Goodness of fit measures indicate that of the 3 predictor data
sets, GLW + LU performed best (Fig. 3): one-way ANOVAs for
RMSE and COR between predicted and observed values were both
P < 0.001, and Tukey’s pairwise comparisons were all P < 0.005.
Goodness of fit measures for stratification methods were less dis-
tinct. We  compared RMSE and correlation coefficients for each
species, using the best predictor dataset only (GLW + LU). Of the 6
ANOVAs (RMSE and COR each for chickens, ducks, and geese) all but
one (COR for ducks) were significant at P < 0.05, however, Tukey’s
pairwise comparisons did not indicate a single best stratification
method for any of the species (Fig. 4). LPS and All.BestRSE tended
to score better for chickens; LPS, All.BestRSE, and CAR for ducks;
CAR and All.BestRSE for geese, however, we found that all strat-
ifications chosen for analysis performed significantly better than
the country model (Fig. S5): one-way ANOVA and Tukey’s pairwise
comparisons were all P < 0.001. Since each stratification method
performed significantly better than the global model and without
clear statistical difference among stratifications, we chose the strat-
ification with the best mean goodness of fit scores for each species
(see Fig. 4) to present our final output (Fig. 2b), which was LPS for
chickens and ducks, and CAR for geese.

Predictor variables Elevation, Precipitation, and Evapotranspira-
tion were consistently ranked among the top 5 predictors for each
species (Table 3) based on mean Delta AIC score (the amount by
which the AIC score of the best model was increased after remov-
ing the predictor). Other top predictors included Area Suitable
for Monogastrics, Nighttime Land Surface Temperature, Enhanced
Vegetation Index, Daytime Land Surface Temperature, and Middle
Infra-red readings. The predicted poultry densities were gener-
ally positively associated with Precipitation, Evapotranspiration,
Daytime Land Surface Temperature, Middle Infra-red, and Area
Suitable for Monogastrics; they were generally negatively asso-
ciated with Elevation, Nighttime Land Surface Temperature, and
Enhanced Vegetation Index. The majority of predictors included in

top ranked models by AIC were from the GLW set, however, impor-
tant LU predictors included rice paddy for ducks and geese; and
Elevation, open water, developed land, and cropland area for all
three species.

We  compared the effects of including training data from coun-
tries surrounding China (Cambodia, Bhutan, Thailand, Lao, Vietnam,
Myanmar, Bangladesh, India, Nepal, Korea, Malaysia, Philippines,
and Indonesia) versus restricting the analysis to using training
data from within China. Goodness of fit indicators (RMSE and COR)
were better for analyses restricted to China (Fig. 5) suggesting that
the relationship between predictor variables and observed poul-
try densities within China are different from those of surrounding
countries.

4. Discussion

The results of this work indicate that agro-environmental vari-
ables can be used to predict spatial poultry distributions in China.
The process predicted density patterns that are consistent with
known distribution patterns, for example high chicken densities
across much of eastern China, particularly the Yellow River Basin
and high duck densities in southeastern China and the Sichuan
Basin. Geese were least abundant, but exhibited consistent pat-
terns, with highest densities in Sichuan and parts of Guangdong.
Validation measures between observed and predicted values indi-
cated good fits based on RMSE and correlations. In comparison to
goodness of fit values reported in the related Van Boeckel et al.
(this issue) paper on duck distribution modelling in Monsoon Asia,
goodness of fit scores for ducks within China ranked better than
those produced for most other countries.

We observed statistically significant differences in goodness of
fit scores among predictor data sets but not among regional strati-
fications. Each of the regional stratification methods we compared
provided better goodness of fit scores than the country-wide model.
However, because a clear best stratification scheme was  not statis-
tically evident, we chose the one with the best mean score for each
species. This was  the Livestock Production Systems (LPS) approach
for chickens and ducks, and China agro-ecological (CAR) approach
for geese. The combined approach (All.BestRSE) produced the sec-
ond best mean scores across all species. Van Boeckel et al. (this
issue) found similar results for their Monsoon Asia duck models
with LPS and All.BestRSE showing highest fitness scores. The pre-
dicted density maps produced by models in this study and the
Monsoon Asia study (Fig. 2b here and Fig. 4 in Van Boeckel et al., this
issue) revealed similar output patterns. Here we conclude that for
the China models, either stratification would be appropriate for use,
however an advantage of LPS (and CAR, for geese) over the com-
bined approach (All.BestRSE) is the more intuitive interpretation of
a single stratification versus the combination of many.

Overall, uncertainty measures were low for each species (COV
values ranged from <0.01 to 5). Areas with the highest uncertainties
were located in northwestern China where poultry populations are
scarce and environmental predictors are variable. In eastern and
southern China, where poultry populations are high, uncertainty
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Fig. 2. (a) Observed densities, (b) model predictions, and (c) coefficient of variation, for chickens, ducks, and geese across China. Mean densities and coefficient of variation
(standard deviation divided by mean) represent 25 bootstrapped models. Model output shown for the GLW + LU predictors and LPS (chickens, ducks) or CAR stratification
(geese)  method (defined by goodness of fit scores).

Fig. 3. Violin plots of (a) root mean square error (RMSE) and (b) correlation coefficient between predicted and observed chicken, duck, and goose densities (log transformed)
for  3 predictor datasets: GLW (traditional Gridded Livestock of the World predictors), LU (land use and anthropogenic predictors), and GLW + LU (combination of GLW and LU
predictors). ANOVA main effects (P < 0.001) and Tukey’s pairwise comparisons (all P < 0.005) indicate significant differences among all 3 predictor sets with GLW + LU having
lowest mean RMSE and highest mean Correlation between observed and predicted values.

Table 3
Top 5 predictor variables for chicken, duck, and goose distribution modelling regressions. Predictors are listed in decreasing order of mean Delta AIC (amount AIC score was
increased after removing variable from the best model). A1 = amplitude of annual cycle, DA = combined variance in annual, bi-annual, and tri-annual cycles, D1 = variance in
annual cycle (see Scharlemann et al., 2008).

Chicken Ducks Geese

Annual precipitation Elevation Elevation
Area  suitable for Monogastrics Annual precipitation Annual precipitation
Elevation Evapotranspiration (DA) Daytime Land Surface Temperature (D1)
Evapotranspiration (A1) EVI (mean) Middle Infra-red (mean)
Nighttime Land Surface Temperature (max) EVI (max) Evapotranspiration (D1)
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Fig. 4. Boxplots of root mean square error (RMSE) and correlation coefficient between predicted and observed chicken, duck, and goose densities (log transformed) for 4
stratification schemes: All.BestRSE (uses prediction from stratification (BestEZ, CAR, or LPS) with the best goodness of fit score on a pixel by pixel basis), EZ.BestRSE (uses
prediction from data driven classifications (EZ5, EZ12, EZ25, EZ50) with best goodness of fit score on a pixel by pixel basis), CAR (China Agro-ecological Regions), and LPS
(global livestock production systems). Main effects ANOVA significance values in lower left of each panel; means represented by black circles; Tukey’s pairwise comparisons
(P  < 0.05) denoted by letters; grey boxplots represent statification with best mean GOF, LPS for chickens and ducks and CAR for geese. Although strong differences among
stratifications were not evident, all stratifications examined performed better than the global model (i.e., no stratification; P < 0.001 see Fig. S4).

estimates were low (ranging from <0.01 to 0.08), indicating small
standard deviations in relation to mean predicted densities. In gen-
eral, uncertainty patterns across China were similar among species,
and on average, COVs were lowest for chickens, then ducks, and
geese.

The use of data external to China for training models produced
inferior goodness of fit scores compared to those from models
using training data entirely from within China. This exemplifies
the fact that relationships between the predictor variables and
poultry distributions differ for China in comparison to neighboring
countries. The 13 countries included in this analysis were predom-
inantly located to the south of China. These countries show greater

similarity to China’s tropical southeastern provinces than to the
high-elevation drier provinces in western China and mixed grass-
lands of north central China, which could account for part of the
differences in goodness of fit scores. In addition, China’s poultry
production system far exceeds those of its neighboring countries,
ranking first in egg production and second in meat production
(Qing, 2002; Wang, 2006) on a global scale. For example, in 2004,
China’s poultry production was  more than an order of magnitude
higher than those reported by its surrounding countries except
Indonesia (5.1 billion versus 1.2 billion for China and Indonesia,
respectively). Remaining countries ranged from 500 million (India)
to 230 thousand (Bhutan); from UNFAO’s Global Livestock Pro-

Fig. 5. (a) Root mean square error (RMSE) and (b) correlation coefficients for ducks (log densities) comparing predictions with and without data from surrounding countries.
Data  are presented as violin plots, a combination of box and kernel density plots (see Hintze and Nelson, 1998). Higher RMSE and lower correlation coefficients for analyses
using  data from surrounding countries suggest relationships between poultry densities and predictor variables within China are different from surrounding countries and
such  additional analyses do not improve predictions within China.
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duction and Health Atlas (http://kids.fao.org/glipha/). Given the
observed differences in goodness of fit scores, we  do not recom-
mend using external training data to create model predictions for
China, nor should results from China be directly extrapolated to
other regions in Asia.

The data fill methodology employed in this study (Fig. 1a)
provides a consistent and repeatable method for assembling poul-
try statistics from multiple sources representing the diverse and
expansive regions across China. Despite national efforts to report
agricultural statistics in annual yearbooks for each province, the
administrative level of reporting varies across regions, ranging
from provincial to county level (administrative levels 1–3). Fig. S2
shows the spatial heterogeneity of input data used for our China
models, the finest scale data being located in the poultry-rich
regions of southeastern China. These differences are reflected in
the uncertainty values (Fig. 2c) with higher COVs in regions in
the western and northern regions of China. To accommodate the
spatial heterogeneity of input data, we chose to use a mixed ran-
dom and stratified sampling design that includes a minimum of
one point per administrative unit as well as an average density
across the country (20 points per decimal degree). Model predic-
tions would likely be improved with finer scale input data for the
remote regions of China, however, for the target time frame of our
models, we have assembled the best data available to produce dis-
tribution predictions which have been qualified with estimates of
uncertainty.

5. Conclusions

Our goal was to produce 1 km resolution population distribu-
tion maps each for chickens, ducks, and geese in China for use in
HPAI H5N1 epidemiologic modelling. This research indicates that
spatial distributions for these species can be modeled using agro-
ecological predictors in a regression and disaggregation approach.

We found that a combination of traditional predictors (FAO
Gridded Livestock of the World) and land use predictors produced
output with the best goodness of fit scores between observed
and predicted values. We  also learned that of four stratification
schemes used to build regression models within different regions
of China, the livestock production systems (LPS), China Agro-
ecological Regions (CAR), and combined approach (All.BestRSE)
produced the best goodness of fit scores.

Obtaining observed population data across China for model
training was challenging due to availability of data, however, using
a multi-step approach to systematically incorporate the best data
available for each region, we produced a complete and repeatable
training set for model development. Should other datasets even-
tually be released to the public, the modelling process developed
above can be used to create updated predictive spatial distribution
maps for China.

Our poultry distribution models have been made available to
the scientific and public community through the FAO Gridded Live-
stock of the World database for use in a multitude of applications
from disease risk modelling to livestock and environmental man-
agement.
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