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A B S T R A C T

Accurate estimation of gross primary production (GPP) is of significance for understanding the changes of car-
bon uptake and its responses to extreme climate events like droughts. Emerging new GPP products with higher
spatial and temporal resolutions (500-1000 m, 8-day) from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) Photosynthesis (MOD17), the Vegetation Photosynthesis Model (VPM), the Breathing Earth System
Simulator (BESS), and the Penman-Monteith-Leuning (PML) models, provided unprecedented opportunities to
understand the spatial and temporal variations of GPP. However, their performances under drought conditions
remain obscure. Here we evaluated the performance of these four state-of-the-art GPP products in grasslands,
using FLUXNET data as reference. The results showed that all the four models have reasonable accuracies under
non-drought years. In drought years, the VPM performed best, followed by the MOD17, PML and BESS, with the
RMSEs of 1.67, 1.69, 1.72 and 1.77 gC m−2 day−1, respectively. The VPM, BESS and PML overestimated annual
GPP by 2%, 13% and 21%, respectively, while MOD17 underestimated annual GPP by 10% in drought years. This
varied model performances under drought years could be partially attributed to the differences in quantifying
the water stress effects. The water constraint factor in the VPM, which is derived from the Land Surface Water
Index (LSWI) and directly indicates the overall water content of leaf, plant stand and soil background, could bet-
ter capture the vegetation response to water content variation than that in MOD17, PML and BESS, all of which
used an atmospheric moisture related indicator (the Vapor Pressure Deficit for MOD17 and PML, and the relative
humidity for BESS). This study suggests that water stress factors, which reflect the physiological and ecological
characteristics of vegetation itself (e.g., LSWI) rather than atmospheric moisture (e.g., VPD) or other meteorolog-
ical surrogates, should be further considered in GPP models when applied in drought conditions

1. Introduction

Gross primary production (GPP) of terrestrial vegetation is known
as the largest carbon fluxes in terrestrial carbon cycle (Beer et al.,
2010; Zhang et al., 2016b). Accurate estimation of GPP is required
for understanding the changes of

global carbon cycle and quantifying the responses of terrestrial ecosys-
tem to climate change (Ryu et al., 2019; Stocker et al., 2019). How-
ever, the extreme climate events, such as severe droughts, can lead to
vegetation stomatal closure and photosynthetic rate decline, thus result-
ing in vegetation growth reduction and even mortality, and finally im-
pose a reduction in terrestrial ecosystem productivity (He et al., 2018;
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Stocker et al., 2019; Wolf et al., 2016). By resolving the system-
atic biases in GPP estimation under droughts for remote sensing-based
models (RS models) (i.e., Moderate Resolution Imaging Spectroradiome-
ter (MODIS) Photosynthesis, MOD17; the Vegetation Photosynthesis
Model, VPM; the Breathing Earth System Simulator, BESS; and P model),
Stocker et al. (2019) found that the global GPP had on average re-
duced by 15% due to droughts as indicated by soil moisture stress,
and the reduction of GPP was even higher (~50%) in semi-arid grass-
lands and savannahs (Stocker et al., 2019). Yu et al. (2017) also re-
ported that the drought-induced MOD17 GPP reduction was 48% in the
mid-latitude region of the Northern Hemisphere and 13% in the low-lat-
itude region of the Southern Hemisphere compared to normal period
(Yu et al., 2017). The accurate estimation of GPP under drought condi-
tions is vital for understanding the impacts of droughts on carbon cycle
dynamics (Angert et al., 2005; Mishra and Singh, 2010; Wolf et
al., 2016), plant recovery from droughts (He et al., 2018; Schwalm
et al., 2017), and spatiotemporal patterns of changes in regional and
global GPP (Angert et al., 2005; Chen et al., 2017; Yao et al., 2018;
Zhang et al., 2016c).

Remote sensing-based GPP models are widely used for estimating
vegetation GPP across the site, regional and global scales (Ryu et al.,
2019). Recently, there are four state-of-the-art global GPP products with
higher spatial and temporal resolutions (500-1000 m, 8-day) (Jiang
and Ryu, 2016; Running and Zhao, 2015; Zhang et al., 2017;
Zhang et al., 2019b). Two of them are derived from light use effi-
ciency (LUE) models including MOD17 (Running et al., 2004) and
VPM (Xiao et al., 2004a; Xiao et al., 2004b), and the other two
are process-based models like BESS (Ryu et al., 2011) and the Pen-
man-Monteith-Leuning (PML) model (Leuning et al., 2008; Zhang et
al., 2010). These GPP products provide unprecedented opportunities
to document spatial patterns and temporal dynamic changes of GPP for
the global terrestrial ecosystems (Jiang and Ryu, 2016; Running and
Zhao, 2015; Zhang et al., 2017; Zhang et al., 2019b). However,
previous studies that included these products have shown that there are
large differences among these products in estimating terrestrial ecosys-
tem GPP. For example, the global annual GPP from the four data prod-
ucts ranged from 110 to 146 PgC year−1, with the annual increasing
trend ranging from 0.20 to 0.39 PgC year−1 and the coefficient of de-
termination (R2) between GPPs from these four products and eddy co-
variance flux tower sites (GPPEC) varying from 0.59 to 0.73 (Jiang and
Ryu, 2016; Running and Zhao, 2015; Zhang et al., 2017; Zhang et
al., 2019b). In details, Indonesia witnessed the opposite trends derived
from two products (i.e., BESS and MOD17) that the BESS showed posi-
tive changes, while the MOD17 displayed negative changes (Jiang and
Ryu, 2016).

Under drought, there is a common bias of GPP estimated from the-
ses RS GPP products (e.g., MOD17, BESS, and VPM), and the bias in-
creases during the course of droughts (Sjostrom et al., 2013; Stocker
et al., 2019; Wu et al., 2018). On the contrary, the performance of
PML GPP product under drought has not been studied yet (Zhang et
al., 2019b). The bias existing in these GPP estimates under drought
may be rooted in their different ways to resolve dryness effects (Stocker
et al., 2019). For example, MOD17 and PML uses vapor pressure
deficit (VPD) as a surrogate of moisture stress (Coops et al., 2007;
Nightingale et al., 2007; Zhang et al., 2019b; Zhao et al., 2005;
Zhu et al., 2018). BESS uses relative humidity (RH) via Ball-Berry
model to consider the water stress effect on canopy conductance (Ball,
1988; Ryu et al., 2011).

Both VPD and RH are atmosphere moisture related indexes. While VPM
uses satellite-based land surface water index (LSWI) to account for water
constraint (Dong et al., 2015; Doughty et al., 2018; Wagle et al.,
2014; Wagle et al., 2015; Xiao et al., 2004a; Xiao et al., 2004b;
Zhang et al., 2017), which is a plant moisture related index. More-
over, previous studies have demonstrated that LUE was more sensitive
to plant moisture indicators (such as LSWI) than atmospheric moisture
indicators (such as VPD) in comprehensive situations (Zhang et al.,
2015). However, the sensitivity of these moisture indices to drought re-
mains unknown. To study which kind of moisture indicators can better
capture the response of plant to drought is of great significance for im-
provement of GPP models and thus accurate estimating of GPP in wa-
ter-limited areas or plants.

Moreover, there is a lack of consistency assessment of these four
emerging GPP products using the same criteria, especially under
drought for specific ecosystems, such as grasslands. Grasslands are more
susceptible to drought stress since they have less accessibility to soil wa-
ter with shallower roots compared to forests (Frank et al., 2015; Wu
et al., 2018). However, grasslands actually have the similar amounts
of carbon stocks with forests globally, because grasslands are more ge-
ographically distributed.(Hoover and Rogers, 2016). Previous stud-
ies have shown that grasslands in the US often act as carbon sinks,
whereas they can become carbon sources during drought(Zhang et al.,
2011). The study of grasslands carbon dynamics under drought is of
great significance for understanding the potential feedbacks to climate
change, which requires reliable GPP products to provide high accurate
data. Therefore, it is essential to evaluate the performances of these four
state-of-the-art GPP products under drought for grasslands, which can
provide some references for the selection of products in future studies.

The objectives of this study are: 1) to conduct a comprehensive eval-
uation of these four GPP products, as well as exploring the differences
between the LUE models and the process-based models in their perfor-
mances under drought years; and 2) to explore the sensitivity of plant
moisture indicator and atmospheric moisture indicator in response to
drought. In this study, we used GPPEC to evaluate the performances of
these four GPP products under drought years. To achieve these aims, we
firstly describe the major characteristics of the climate, GPP and vege-
tation indices in drought and non-drought years. Then, we compare the
8-day and annual sum GPP from the four GPP products with that from
the flux tower sites in drought and non-drought years. Thirdly, we con-
duct a comparison between the LUE models and the process-based mod-
els, as well as the comparison within LUE/process-based models (i.e.,
VPM vs. MOD17, and BESS vs. PML). The results are expected to con-
tribute to the improvement of the current GPP models and their applica-
tions in grassland ecosystem, especially under severe drought years.

2. Materials and methods

2.1. Reference GPP data from CO2 eddy flux towers

Eddy covariance flux tower sites provide landscape-scale measure-
ments of ecosystem carbon fluxes, including net ecosystem CO2 ex-
change (NEE) (Baldocchi et al., 2001). The observed NEE was parti-
tioned into GPP and ecosystem respiration (Re) based on the nighttime
method (Reichstein et al., 2005). 51 site-years of data from 9 grass-
land flux towers (Table 1) at the daily scale in the FLUXNET 2015 web
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Table 1
The information of grassland FLUXNET sites used in the study.

Site ID Longitude Latitude Year range Citation

US-
AR1

99.42 W 36.4267 N 2009–2012 (Baldocchi and
Penuelas,
2019)

US-
AR2

99.5975 W 36.6358 N 2009–2014 (Baldocchi and
Penuelas,
2019)

US-
ARb

98.0402 W 35.5497 N 2005–2006 (Fischer et al.,
2012; Wagle et
al., 2014)

US-
ARc

98.04 W 35.5465 N 2005–2006 (Fischer et al.,
2012; Wagle et
al., 2014)

US-
Goo

89.8735 W 34.2547 N 2002–2006 http://sites.
fluxdata.org/US-
Goo/

US-IB2 88.241 W 41.8406 N 2004–2011 (Wagle et al.,
2014)

US-
SRG

110.8277 W 31.7894 N 2008–2014 (Bhattarai et
al., 2018; He et
al., 2018)

US-
Var

120.9507 W 38.4133 N 2000–2014 (Baldocchi and
Penuelas,
2019; Chu et
al., 2018)

US-
Wkg

109.9419 W 31.7365 N 2004–2014 (He et al.,
2018; Scott et
al., 2010; Wolf
et al., 2016)

site (http://www.fluxdata.org) were used for the validation. These sites
were selected because they have at least two years' observations and
include at least one drought year (Fig. 1, Section 2.3). The meteoro-
logical data, including air temperature, precipitation, VPD, and short-
wave solar radiation, observed at the selected flux sites, were used in
this study to describe the characteristics of the flux sites in drought and
non-drought years. Then the daily GPPEC and meteorological data were
all averaged to 8-day mean data to match the temporal resolution of the
modeled GPPs (i.e., GPPMOD17, GPPVPM, GPPBESS, and GPPPML).

2.2. The global GPP data products

2.2.1. MOD17 GPP data product
The MODIS standard product (MOD17) uses the concept of the light

use efficiency (Monteith, 1972), which estimate GPP as the product
of the incident photosynthetically active radiation (PAR), the fraction of
absorbed photosynthetically active radiation (FPAR) by plants and the
actual LUE (ε) of vegetation (Monteith, 1972). The MOD17 algorithm
is shown as follows:

(1)
where APAR is the absorbed photosynthetically active radiation, and ε
is the actual light use efficiency (LUE).

In the MOD17 algorithm, the ε is derived from the attenuation of its
maximum value (εmax) by two environmental stresses: (1) the minimum
temperature, which may inhibit the photosynthesis by reducing enzyme
activity, and (2) the VPD, as that high atmospheric VPD may reduce the
stomatal conductance (Prince and Goward, 1995; Running et al.,
2004; Running and Zhao, 2015; Zhao et al., 2005).

(2)
where εmax is the maximum light use efficiency, which is optimized
in advance and given in a Biome Parameter Look-up Table (BPLUT)
for each land cover type. TMINscalar

Fig. 1. The Standardized Precipitation-Evapotranspiration Index (SPEI) for the 9 grassland FLUXNET sites and the identification of the drought years.
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and VPDscalar are environmental stress factors and parameterized accord-
ing to Eqs. (3) and (4):

(3)

(4)

where TMIN and VPD are the daily minimum temperature (°C) and av-
erage VPD (Pa), TMINmax and VPDmax are the daily maximum tempera-
ture and average VPD at which ε = εmax, and TMINmin and VPDmin are
the daily minimum temperature and average VPD at which ε = 0. These
parameters were determined for each land cover type in the BPLUT.

2.2.2. VPM GPP data product
The VPM model estimates the GPP as the products of APARchl and ε

(Xiao et al., 2004a; Xiao et al., 2004b):
(5)

where APARchl is the absorbed photosynthetically active radiation by
chlorophyll, and ε is the actual light use efficiency (LUE).

APARchl is estimated as follows:
(6)

(7)
where APARchl is the absorbed photosynthetically active radiation by
chlorophyll, PAR is the photosynthetically active radiation, EVI is the
Enhanced Vegetation Index (EVI) and FPARchl is the fraction of PAR ab-
sorbed by chlorophyll, which is a linear function of EVI.

The ε is down-regulated by temperature stress (Tscalar) and water
stress (Wscalar) factors from its maximum value (εmax).

(8)

(9)

(10)

where εmax is the maximum light use efficiency (g C mol−1 APAR), which
only differs by C3/C4 photosynthesis pathways in the VPM GPP prod-
ucts. Both Tscalar and Wscalar are ranging from 0 to 1. Tmin, Tmax, and Topt
represent the minimum, maximum, and optimum temperatures for pho-
tosynthetic activities, respectively. In the VPM GPP product, the Tmin,
Tmax, and Topt were set as 0°C, 48°C, and 27°C for grassland, respec-
tively. Wscalar is estimated based on the LSWI derived from MODIS data.
LSWImax is the maximum LSWI during the snow-free period for each
pixel each year. More details about the VPM model and VPM GPP prod-
uct can be found in Xiao et al. (2004a, 2004b) and Zhang et al.
(2017).

2.2.3. BESS GPP data product
BESS is a sophisticated process-based model and driven by several

modules, including: (1) atmospheric radiative transfer, which is based
on an atmospheric radiative transfer model (Forest Light Environmental
Simulator, FLiES) with the input variables of solar zenith angle, aerosol
optical thickness, land surface albedo, cloud top height, atmospheric
profile type, aerosol type, cloud type (Ryu et al., 2018); (2) canopy ra-
diative transfer, which uses different methods to quantify APAR, near-in-
frared radiation (NIR), longwave radiation, and net radiation for sun-
lit and shaded leaves; (3) canopy photosynthesis, which considers the
biochemical photosynthesis pathways for C3 and C4 plants based on
Farquhar model(Collatz et al., 1992; Farquhar et al., 1980); (4)
maximum carboxylation rate (Vcmax), which is plant functional types
(PFT) dependent peak values down-regulated by seasonal LAI varia-
tions; (5) two-leaf canopy conductance and temperature, which uses the
Ball-Berry equation (Ball et al., 1987) and the analytic solution of leaf
energy balance to calculate the two-leaf canopy conductance and tem-
perature, respectively; and (6) evapotranspiration, which is based on the
Penman-Monteith equation (Jiang and Ryu, 2016; Ryu et al., 2011).

The global BESS GPP product was generated from this process-based
model. It provides GPP data with the spatial resolution of 1 km and tem-
poral resolution of 8-day from 2001 to 2015 (http://environment.snu.
ac.kr/bess/) (Jiang and Ryu, 2016; Ryu et al., 2011).

2.2.4. PML GPP data product
The PML model was first developed by Leuning et al. (2008) (Le-

uning et al., 2008) through introducing a biophysical model for sur-
face conductance (Gs) based on Penman-Monteith (PM) equation. Since
then there are two improved versions of the PML model (PML-V1 and
PML V2) (Gan et al., 2018; Zhang et al., 2016a). PML-V2 used a
biophysical canopy conductance (Gc) model to couple ET with GPP (Gan
et al., 2018). Zhang et al. (2019a, 2019b) further improved the
PML-V2 by incorporating the VPD to constraint GPP as follows (Zhang
et al., 2019b):

(11)

(12)

where A is the gross assimilation rate, and f(VPD) is the VPD constraint
function. VPDmax is the threshold above which there is no assimilation,
and VPDmin is the threshold below which there is no vapor pressure con-
straint.

2.3. Climate data and identifying drought years

We used the Standardized Precipitation-Evapotranspiration Index
(SPEI) drought index to identify the drought years for the 9 grass-
land sites (Fig. 1). The effects of precipitation and temperature on
drought were considered simultaneous in the SPEI, which was esti-
mated by integrating both the climatic water balance and cumula-
tive water deficit into account (Naumann et al., 2014; Um et al.,
2018; Vicente-Serrano et al., 2010; Vicente-Serrano et al., 2015).
The SPEI data was derived from the SPEI base v2.5 (Vicente-Ser-
rano et al., 2010). We selected the SPEI data sets with the time scale
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of 12 months to recognize the drought years. The drought years were
defined as SPEI < −1.00 according to previous studies (Potop et al.,
2014; Prabnakorn et al., 2018).

2.4. Statistical analysis of model performance in drought and non-drought
years

The GPPs from the four models (GPPMOD17, GPPVPM, GPPBESS, and
GPPPML) were evaluated against the GPPEC. Firstly, the drought years
were extracted for each site using SPEI. Secondly, the linear regres-
sion method was used to analyze the relationships between the GPPEC
and the GPPs estimated from the four models. The coefficient of deter-
mination (R2), Root Mean Squared Error (RMSE)(Cote et al., 2018),
Nash-Sutcliffe Efficiency (NSE) and Bias (Eq. (18)) between the GPPEC
and the predicted GPPs were calculated in drought and non-drought
years, respectively. Thirdly, the annual sum GPP from the four models
were compared with that from the flux tower sites to assess the overes-
timation or underestimation of the four GPP models in annual GPP.

(13)

(14)

(15)

where N is the number of observations; GPPnEC, are the nth and
average GPPEC, respectively. GPPnmodeled is the nth corresponding esti-
mated GPP from the four models.

2.5. Other auxiliary materials

We also used several spectral indices in this study. Three vegeta-
tion indices, including Normalized Differential Vegetation Index (NDVI),
EVI, and LSWI, were calculated for each site, by using the MODIS
8-day composite surface reflectance data (MOD09A1). These indices
were compared with GPPEC to further illustrate the major characteristics
of vegetation growth in drought years and non-drought years. While the
GPP values were simulated and could be biased due to parameterization,
spectral indices (NDVI, EVI, and LSWI) can be observed as independent
reference. These remote sensing indices were calculated as follows:

(16)

(17)

(18)

where ρNIR, ρRed, ρBlue, and ρSWIR are the surface reflectance values of
near infrared band (841–875 nm), red band (620–670 nm), blue band
(459–479 nm) and shortwave infrared band (1628–1652 nm), respec-
tively.

3. Results

3.1. Major characteristics of climate, GPP and vegetation indices in drought
years

The drought index SPEI was used to identify the drought years. A
total of 12 drought site-years were identified by SPEI (SPEI < −1.00)
(Fig. 1).

In those drought years, the VPD and temperature showed larger val-
ues, while the GPPEC, EVI, LSWI, and precipitation showed smaller val-
ues than that in non-drought years (Figs. 2 and 3). For example, at the
US-AR1 site, the annual average VPD and temperature in drought years
increased by 40% and 4% compared to the non-drought years, while
the GPPEC, EVI, LSWI and precipitation decreased by 74%, 18%, 67%,
and 42%, respectively. The same phenomenon also occurred in the site
of US-AR2, US-ARb, US-ARc, US-Goo, US-SRG in 2009, and US-Var in
2008. At US-IB2 site, the annual average VPD and temperature increased
by 26% and 11% in drought years, while the EVI, LSWI and precipita-
tion decreased by 18%, 12%, and 47%, respectively.

3.2. Comparison of four modeled GPP products (GPPMOD17, GPPVPM,
GPPBESS, and GPPPML) in drought and non-drought years

In general, all the four models performed well in predicting GPP,
with R2 ≥ 0.46, RMSE≤2.23 gCm−2 day−1, and NSE ≥ 0.42, and GPPVPM
performed best among the four GPP models, with R2 = 0.59,
RMSE = 1.98 gCm−2 day−1, and NSE = 0.54 (Fig. 4). The estimation
accuracies of GPP in the non-drought years were higher than that
in drought years for all the four models, with the R2 ≥ 0.58 (0.52),
RMSE≤2.08 (1.77) gCm−2 day−1, and NSE ≥ 0.56 (0.47) in non-drought
(drought) years (Fig. 4). In non-drought years, GPPVPM had the highest
R2 (0.73) and NSE (0.72) and lowest RMSE (1.66 gCm−2 day−1), GPPBESS
(R2 = 0.68, RMSE = 1.75 gCm−2 day−1 and NSE = 0.68) and GPPPML
(R2 = 0.68, RMSE = 1.81 gCm−2 day−1, and NSE = 0.66) had the sim-
ilar performances, whereas GPPMOD17 had the lowest R2 (0.58) and NSE
(0.56) and the highest RMSE (2.08 gCm−2 day−1) among the four models
(Fig. 4). In drought years, however, GPPVPM and GPPMOD17 performed
better than GPPPML and GPPBESS, and the accuracy (R2, RMSE, and NSE)
of GPP declined larger in BESS and smaller in MODIS compared to that
in non-drought years.

For individual site, all the four models performed well in predicting
the GPPEC. GPPVPM had the highest R2, NSE, and lowest RMSE among
the four models in general. Moreover, all the four models performed
better in non-drought years than that in drought years for most of the
sites, with the R2 and NSE higher and RMSE lower in non-drought
years. In non-drought years, GPPVPM (R2 0.49–0.94, RMSE 0.72–2.36
gCm−2 day−1, NSE 0.49–0.89) performed best among the four models,
GPPBESS (R2 0.37–0.80, RMSE 0.71–3.49 gCm−2 day−1, NSE 0.27–0.80)
came second, and GPPPML and GPPMOD17 didn't performed as well as the
earlier two models (Fig. 6). In drought years, GPPVPM had the high-
est R2, NSE and lowest RMSE in most of the sites, such as US-ARb,
US-ARc, US-SRG (Fig. 6). GPPMOD17 performed best in US-AR2 and
US-Goo. GPPPML performed best both in US-IB2 and US-Var (Fig. 6),
while GPPBESS performed not as well as other models in drought years.
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Fig. 2. Annual dynamics and interannual variations of temperature, precipitation, photosynthetically active radiation (PAR), and vapor pressure deficit (VPD) with an interval of 8-day at
the 9 grassland sites. The shaded areas represent drought years.

Fig. 3. Annual dynamics of GPPEC and remote sensing indices (NDVI, EVI, LSWI) with an interval of 8-day at the 9 grassland sites.

Fig. 4. Relationship between gross primary production from the flux tower sites (GPPEC) and the predicted GPPs from the four models (GPPVPM, GPPBESS, GPPMOD17, GPPPLM) for all the
grassland sites in different climate conditions. The unit of RMSE is gCm−2 day−1.

In summary, the four GPP models performed better in non-drought
years than that in drought years. GPPVPM performed best among the four
models in all-year, non-drought and drought years, with R2 and NSE
higher and RMSE lower than other models. GPPVPM and GPPBESS per-
formed better than GPPPML and GPPMOD17 in non-drought years; how

ever, GPPVPM and GPPMOD17 performed better than GPPPML and GPPBESS
in drought years both in overall and individual sites.

3.3. Annual GPP from four GPP products

The annual GPP from flux tower sites and all the four products
were calculated in drought and non-drought years.
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The bias and RMSE were used to evaluate the performances of the four
models in estimating the annual GPP in different conditions.

Overall, the annual GPP estimated from the four models were gen-
erally consistent with the annual GPPEC. For example, the annual GPPEC
was 825 gCm−2 year−1, and the annual GPP from VPM, MOD17, BESS,
and PML were 714 gCm−2 year−1, 705 gCm−2 year−1, 854 gCm−2 year−1,
and 940 gCm−2 year−1 with biases of −13%, −15%, 3%, and 14%, re-
spectively. Although LUE-based GPP models (GPPVPM: bias = −17%,
and GPPMOD17: bias = −16%) performed not as good as process-based
GPP models (GPPBESS: bias = 1%, and GPPPML: bias = 12%) under
non-drought years, their performances were better under drought years.
GPPVPM slightly overestimated the annual GPPEC with the bias of 2%,
and GPPMOD17 underestimated annual GPPEC by −10% under drought
years. While GPPBESS and GPPPML have substantially overestimated
GPPEC by 13% and 21% under drought years. As for individual site,
GPPVPM performed best in most of the sites, such as US-AR2, US-ARc,
US-Goo, US-SRG, and US-Var, under non-drought years with biased be-
ing −17% ~3%. Under drought years, GPPMOD17 performed best in
US-AR1 (1%), US-AR2 (29%), and US-Goo (13%), while GPPPML per-
formed best in US-ARb (16%), US-ARc (18%), and US-IB2 (10%). In
summary, the annual GPPVPM and GPPMOD17 performed better than that
of GPPBESS and GPPPML in drought years.

4. Discussion

4.1. Higher GPP accuracy from LUE models than that from process-based
models in drought years

The overall accuracies of these four GPP products (i.e., the MOD17,
BESS, VPM, and PML) from this study showed consistencies with that
from previous studies in grassland ecosystem and non-drought years
(Jiang and Ryu, 2016; Zhang et al., 2017; Zhang et al., 2019b).
All the four models showed larger biases (lower R2 and NSE and higher
RMSE) in drought years compared to that in non-drought years (Fig.
4). Furthermore, the performances of the four GPP models varied in
drought years. In terms of annual GPP, most of the four models have
overestimated the GPPEC in drought years, except that GPPMOD17 under-
estimated the GPPEC by −10%. The RMSE of annual GPP between the
estimated GPPs and GPPEC were larger in drought years than that in
non-drought years for all the models except for the MODIS algorithm.

The LUE models (e.g., VPM and MOD17) performed better in grass-
land ecosystem than process-based models (e.g., BESS and PML) in
drought years (Figs. 4, 5 and 6). Especially for individual site, VPM
or MOD17 algorithm performed best in most of the sites (5 out of
9), while PML performed best only in 2 sites (US-IB2 and US-Var)
and BESS did not perform best in any of the sites in drought years
(Fig. 6). LUE models (i.e., MOD17 and VPM) also achieved better
performances than process-based models (e.g., BESS and PML) in the
estimation of annual GPP in grassland ecosystem in drought years.
The reasons may be attributed to the fact that the LUE models

Fig. 5. Relationship between gross primary production from the flux tower sites (GPPEC) and the predicted GPPs from the four models (GPPVPM, GPPBESS, GPPMOD17, GPPPML) for each
grassland site. The unit of RMSE is gCm−2 day−1.
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Fig. 6. Relationship between gross primary production from the flux tower sites (GPPEC) and the predicted GPPs from the four models (GPPVPM, GPPBESS, GPPMOD17, GPPPLM) in drought
and non-drought years for each grassland site. The unit of RMSE is gCm−2 day−1.

with simpler model structures have the stronger ability to directly cap-
ture the canopy photosynthesis (Dong et al., 2015; Running et al.,
2004; Running and Zhao, 2015; Wagle et al., 2015;Xiao et al.,
2004a ; Xiao et al., 2004b). While BESS and PML model have complex
model structures, which may introduce more uncertainties into GPP es-
timation (Jiang and Ryu, 2016; Ryu et al., 2011). Previous studies
have also reported that the process-based model exhibited larger scat-
tering than LUE model across 10 plant functional types (PFTs), which
suggest that LUE models have advantages to simplify complex processes
with rather simple structure comparing to process-based model (Alton,
2016). The poor performances by process-based GPP models may be
due to the fact that the many parameters used in them have introduced
much uncertainties(Alton, 2016), and optimization of these parameters
can achieve better model performance.

4.2. Model structure and comparison between VPM and MOD17

LUE models estimate GPP as the product of the incident PAR, FPAR
and the actual LUE (ε) of vegetation (Monteith, 1972). VPM and
MOD17 are both based on LUE concept (Monteith, 1972). However,
they have two main differences. Firstly, VPM uses LSWI, which re-
flects the canopy water content of vegetation, as the water stress fac-
tor (Xiao et al., 2004a; Xiao et al., 2004b), while MOD17 algo-
rithm uses VPD, which is an atmospheric moisture indicator, as the
water scalar (Running et al., 2004). Under drought conditions, the
VPM model performed better in capturing the drought impacts on GPP
for grasslands and croplands, and this can be attributed to the higher
sensitivity of the land surface water index (i.e., LSWI) (Wagle et al.,
2014; Wagle et al., 2015). Previous studies have indicated that, un-
der severe drought conditions, VPD could not capture the variability
of water stress on GPP well as it did not explicitly incorporate soil
water deficit in canopy gas exchange (Nightingale et al., 2007),
such as the underestimation of MOD17 GPP in dry sites in Africa
(Sjostrom et al., 2013). By replacing the VPD with a soil water
index, the performance of the MOD17 algorithm has

been improved largely at the tropical savanna sites in Australia (Kan-
niah et al., 2009; Leuning et al., 2005). In this study, we compared
the relationships between GPPEC and the two Wscalars, (i.e. f(LSWI) and
f(VPD)) for individual site, respectively (Fig. 7). f(LSWI) had a stronger
relationship with GPPEC than f(VPD) did for most of the sites (7 out
of 9) (Fig. 7), which partly explained the better performance achieved
by VPM under drought years, compared to MOD17. This demonstrates
that LSWI-based water stress captured the drought effects on GPP bet-
ter than VPD-based water stress. The better performances of VPM than
MOD17 algorithm across various ecosystems, including grassland, under
drought or non-drought conditions, have also been demonstrated in pre-
vious studies (Doughty et al., 2018; Liu et al., 2014; Wagle et al.,
2014; Wagle et al., 2015; Wagle et al., 2016; Wu et al., 2018).

Secondly, VPM uses EVI (chlorophyll or leaf level greenness), while
MOD17 algorithm uses canopy level greenness for the estimation of
FPAR (FPARchl vs. FPARcanopy) (Running et al., 2004; Running and
Zhao, 2015; Xiao et al., 2004a; Xiao et al., 2004b). Previous stud-
ies have demonstrated that EVI has a stronger relationship with GPP
than does NDVI in various ecosystems (Dong et al., 2015; Jin et
al., 2013; Kalfas et al., 2011; Peng et al., 2013; Wagle et al.,
2014; Wu et al., 2010). In this study, the relationships between GPPEC
and the two FPAR (i.e., FPARchl and FPARcanopy) were further evalu-
ated under drought and non-drought years (Fig. 8). The FPARchl also
showed higher correlation with GPPEC than FPARcanopy did. For exam-
ple, FPARchl had a stronger relationship with GPPEC than FPARcanopy did
for most of the sites (8 out of 9). FPARchl also explained 39%~89%
(39%~91%) for GPPEC, while FPARcanopy only explained 12%~83%
(16%~80%) for GPPEC under drought (non-drought) years.

4.3. Model structure and comparison between BESS and PML

Process-based GPP models represent the atmosphere-vegetation-soil
system as an organic integration, so they can pro

9



UN
CO

RR
EC

TE
D

PR
OO

F

Y. Pei et al. Ecological Informatics xxx (xxxx) xxx-xxx

Fig. 7. The relationships between GPPEC and the two Wscalars (f(LSWI), f(VPD)) in drought and non-drought years.

Fig. 8. The relationships between GPPEC and the two FPARs (FPARchl, FPARcanopy) under drought and non-drought years.

vide deeper insights into the underlying interaction mechanisms of the
system (Dickinson, 1983; Jiang and Ryu, 2016; Sellers et al.,
1997). BESS and PML belong to the process-based GPP models, both of
which coupled with an ET estimation model (Jiang and Ryu, 2016;
Ryu et al., 2011; Zhang et al., 2019b). BESS uses relative humid-
ity of the air via the Ball-Berry model to consider the water stress effect
on canopy conductance (Ball, 1988; Ryu et al., 2011). In addition,
although BESS does not explicitly include a soil moisture effect, it as-
sumes that the soil moisture stress is reflected in the seasonal pattern of
leaf area index (LAI), making it better capturing the seasonal water-lim-
iting effects in most seasonally dry ecosystems (Ryu et al., 2011).
For example, BESS GPP showed high R2 (>0.6) and low RMSE (0.7
gCm−2 day−1) for the dry wood savanna flux site (e.g., US-SRM) (Ryu
et al., 2011). However, this assumption determines that the perfor

mance of BESS GPP under water-limited conditions largely depends on
the accuracy of LAI product.

In this study, BESS has a general better performance than PML in
non-drought years; however, its accuracy were slightly lower than that
of PML in drought years, with higher R2 (0.56 for PML vs. 0.52 for
BESS) and NSE (0.50 for PML vs. 0.47 for BESS) and lower RMSE
(1.72 gCm−2 day−1 for PML vs. 1.77 gCm−2 day−1 for BESS). This may
be partly due to the fact that the relative humidity alone used in the
BESS model is not a good indicator of atmospheric moisture condi-
tion and it also depends on the temperature. For example, a high rel-
ative humidity may indicate “dryness” at high temperatures, whereas
a low relative humidity may indicate “wetness” at low temperatures
(Anderson, 1936; Tack et al., 2015). In addition, BESS uses a fixed
ratio between internal leaf and ambient CO2 concentration to avoid
the dependence of GPP to VPD, which may also decrease the accu-
racy of GPP estimation in drought condi
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tions (Jiang and Ryu, 2016; Ryu et al., 2011; Stocker et al., 2019).
Compared with relative humidity, the VPD used in the PML model de-
scribes the relationship between the actual water vapor pressure and
the water vapor pressure at saturation for the same condition, includ-
ing temperature (Yuan et al., 2019). VPD is a direct indicator of at-
mospheric moisture status, with high atmosphere VPD usually indicat-
ing the atmospheric drought (Yuan et al., 2019; Zhou et al., 2019).
Therefore, VPD, the crucial driver of the atmospheric moisture demand
for vegetation, has been identified as one of the important constraints
on terrestrial ecosystem productivity under drought conditions (Yuan
et al., 2019; Zhou et al., 2019). The PML model was first developed
for estimating terrestrial evapotranspiration (ET), i.e., PML (Leuning
et al., 2008) and PML-V1 (Zhang et al., 2016a). In the version of
this study, i.e., PML V2, a biophysical canopy conductance (Gc) model
was used to couple the GPP with ET, and it has been successfully tested
against GPP observations at 9 eddy-covariance sites including 5 ecosys-
tems in Australia with R2 = 0.75 and RMSE = 1.14 μ mol m−2 s−1, re-
spectively (Gan et al., 2018). Zhang et al. (2019b) has further im-
proved the PML-V2 by incorporating the VPD to constrain GPP under
drought conditions. The water constraint factor based on VPD used in
the PML may be explained the better performance of PML than BESS un-
der drought conditions in this study.

4.4. Implications for future model improvements

Grassland ecosystems are more susceptible to droughts since they
have less accessibility to soil water with shallower roots and higher
turnover rates (Frank et al., 2015; Wu et al., 2018). Droughts in-
duce stomatal closure, change of leaf area and angle, and photosyn-
thesis disruption, all of which reduce carbon uptake (Doughty et al.,
2018; Li et al., 2019; Wolf et al., 2016; Wu et al., 2018; Yu et
al., 2017). When drought takes place in terrestrial ecosystem, photo-
synthesis is affected by stomatal closure caused by limited water con-
tent in leaf and canopy or high VPD in atmosphere (Dong et al.,
2015). Therefore, it is critical to capture the process of the stom-
atal closure and photosynthesis disruption, by using indirect surrogate
or direct observation. The VPD is an atmospheric moisture indicator,
which can reflect the atmosphere drought condition and to some ex-
tent, can further reflect the vegetation responses to droughts, because
high VPD could reduce the stomatal conductance and then cause GPP
decrease in dry ecosystems. However, because stomatal conductance
has a strong control on intercellular CO2 concentration and they have
a hyperbolic relationship (Farquhar and Wong, 1984), the reduc-
tion of stomatal conductance caused by increasing VPD may have no
influence on the rate of photosynthesis at the beginning due to the
fact that atmospheric has an adequate supply of CO2 (Zhang et al.,
2019a). Soil moisture was first controlled by atmospheric water condi-
tions and soil composition characteristics and thus regulate plant wa-
ter activity (Geruo et al., 2017; Huang et al., 2016). Some recent
studies suggest soil moisture is crucial for monitoring drought impacts
on vegetation (Stocker et al., 2019). Stocker et al. (2019) demon-
strated that the global GPP reduced by 15% due to soil moisture stress.
However, the reliable soil moisture data with global coverage are not
available now (Stocker et al., 2019). The soil moisture data used
in Stocker et al. (2019) came from the hydrological model simula-
tion. Emerging soil moisture data products derived from microwave re-
mote sensing may provide an improved solution. However, they can

only represent the moisture status in upper soil layers, which limit their
application in deep-rooted vegetation (Stocker et al., 2019). Based
on satellite observations of surface reflectance, LSWI, acting as a plant
moisture indicator, can directly reflect the overall water content of leaf,
plant stand and soil background in near-real time. The drought status
in atmosphere and/or soil will be eventually reflected in vegetation. It
is vegetation itself that has the most intuitive and direct response to
drought. To understand the mechanistic of plant's responses to drought,
it is critical to explore the plant-available water for the reason that it's
the actual water pool that plant can get to support transpiration (Huang
et al., 2016). Zhang et al. (2015) indicated that the strengths of asso-
ciation between moisture indicators on LUE were ranked as plant indi-
cator (LSWI) > atmospheric indicator (VPD) > soil indicator (soil wa-
ter content, SWC) for all biomes (Zhang et al., 2015). Our study also
suggested that an explicit water stress factor can help the GPP models to
achieve better performances under drought conditions. The best perfor-
mances achieved by VPM under drought years could be attributed to the
use of such a drought-sensitive index, i.e., LSWI. LSWI reflected the leaf
water content, which can directly represent the responses of vegetation
itself to drought. Therefore, to rectify the drought-induced bias in GPP
estimations, more efforts should be made in using the water constraint
stress factors which directly reflected the vegetation moisture or a com-
prehensive measurement of vegetation moisture and greenness, such as
solar-induced fluorescence.

5. Conclusions

Based on 51 site-years observation data derived from 9 grassland flux
tower sites, we evaluated the performances of the four state-of-the-art
global GPP products (e.g., the MOD17, BESS, VPM, and PML GPP prod-
ucts) under both drought and non-drought years. Correlation analysis
between GPPEC and modeled GPPs indicated that all the four models had
decreased accuracies under drought years than that under non-drought
years. In drought years, VPM was more robust than the MOD17, BESS,
and PML models. The varied performances in drought years could be at-
tributed to the differences in representing the water stress effects. The
water constraint factor used in VPM was based on LSWI and reflected
the leaf water content, which could better capture the vegetation re-
sponse to drought than that used in MOD17, PML and BESS, all of which
used an atmospheric moisture related indicator (the VPD for MOD17
and PML, and the RH for BESS). This study implies that water stress fac-
tors which reflected the physiological and ecological characteristics of
vegetation itself should be further considered in GPP models to rectify
the biases caused by drought and achieve better performance in global
terrestrial ecosystem GPP estimation in the context of climate change
and increasing extreme climate events.
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