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Accurately estimating spatial-temporal patterns of gross primary production (GPP) is important for the global
carbon cycle. Satellite-based light use efficiency (LUE) models are regarded as an efficient tool in simulating
spatial-temporal dynamics of GPP. However, the accuracy assessment of GPP simulations from LUE models at
both spatial and temporal scales remains a challenge. In this study, we simulated GPP of vegetation in China dur-
ing 2007–2014 using a LUEmodel (Vegetation Photosynthesis Model, VPM) based onMODIS (moderate-resolu-
tion imaging spectroradiometer) imageswith 8-day temporal and 500-m spatial resolutions and NCEP (National
Center for Environmental Prediction) climate data. Global Ozone Monitoring Instrument 2 (GOME-2) solar-
induced chlorophyll fluorescence (SIF) data were used to compare with VPM simulated GPP (GPPVPM) tempo-
rally and spatially using linear correlation analysis. Significant positive linear correlations exist betweenmonthly
GPPVPM and SIF data over a single year (2010) andmultiple years (2007–2014) inmost areas of China. GPPVPM is
also significantly positive correlatedwithGOME-2 SIF (R2 N 0.43) spatially for seasonal scales. However, poor con-
sistency was detected between GPPVPM and SIF data at yearly scale. GPP dynamic trends have high spatial-
temporal variation in China during 2007–2014. Temperature, leaf area index (LAI), and precipitation are the
most important factors influence GPPVPM in the regions of East Qinghai-Tibet Plateau, Loss Plateau, and South-
western China, respectively. The results of this study indicate that GPPVPM is temporally and spatially in line
with GOME-2 SIF data, and space-borne SIF data have great potential for evaluating LUE-based GPP models.
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1. Introduction

Terrestrial vegetation sequesters carbon dioxide through photosyn-
thesis, which is measured as vegetation productivity, and is the largest
CO2 flux in global carbon cycle (Yang et al., 2015). It provides energy
and matter for the biosphere and supports most life on Earth
(Demmig-Adams and Adams, 2000). Vegetation productivity is usually
measured as gross primary production (GPP), which is the total amount
of carbohydrate that is assimilated by vegetation. Because of its impor-
tance in global carbon cycle, numerous studies have assessed the im-
pacts of climate change on GPP (Ciais et al., 2005; Rogers et al., 2017;
Sitch et al., 2003; Y.L. Zhang et al. 2014). In particular, increased carbon
uptake by vegetation has played an important role in mitigating
negative social and ecological effects caused by increased atmospheric
CO2 concentration and temperature in the past several decades
(Ballantyne et al., 2012). Accurately estimating GPP at regional and
global scales has been vital in understanding the role that terrestrial
vegetation plays in the carbon cycle and how ecosystems and climate
interact, especially during extreme climate events (Zhang et al., 2016c).

Many approaches have been developed to estimate GPP of terres-
trial ecosystems. Satellite-based production efficiency models
(PEMs) is a popular approach that is based on light-use efficiency
(LUE) (Monteith, 1972; Wagle et al., 2016) to estimate GPP at vari-
ous spatial and temporal scales. GPP calculated by this method is
based on photosynthetically active radiation (PAR), the fraction of
absorbed PAR (fPAR) by vegetation, and LUE. Generally, fPAR can
be defined at either the canopy or chlorophyll scale and is often ap-
proximated by various vegetation indices from remote sensing im-
ages using two different satellite-based LUE models. One type of
LUE model (e.g., MODIS-PSN model and EC-LUE model) estimates
GPP by regarding fPAR as the fraction of PAR absorbed by vegetation
canopy (fPARcanopy), which is usually derived from normalized dif-
ference vegetation index (NDVI) or leaf area index (LAI) (Potter
et al., 1993; Running et al., 2004; Yuan et al., 2007). The second
type of LUE models (e.g., the vegetation production model, VPM)
considers the fraction of PAR absorbed by vegetation chlorophyll
(fPARchl) in the estimation of GPP, and the enhanced vegetation
index (EVI) is generally used to estimate fPARchl (Wu et al., 2011;
Xiao et al., 2004a; Xiao et al., 2004b). For example, VPM has been
used to simulate GPP for different ecosystems (such as forests, crop-
lands, savannas, and grasslands) over many years using climate data
(Dong et al., 2015; Jin et al., 2013; Kalfas et al., 2011; Wagle et al.,
2014; Xiao et al., 2005), and the results were identified to be highly
consistent with observed data from eddy covariance (EC) tower
sites. However, considerable variance exists in the performance of
LUE-based GPP models at regional and global scales in major biomes
(Jung et al., 2007; Li et al., 2014; Nightingale et al., 2007), and the
main reasons include their differences in model structure, model pa-
rameters, and input datasets (Hilker et al., 2008; Jin et al., 2015).

Satellite-based PEMs have a great ability to monitor GPP spatially
and temporally. However, it is hard to evaluate the simulated GPP re-
sults due to the lack of observational data at relevant spatial and tempo-
ral scales (Yuan et al., 2016). In-situ GPP estimates are typically
calculated using net ecosystem CO2 exchange (NEE) data collected at
EC tower sites by partitioning of NEE into GPP and ecosystem respira-
tion (Re) (Baldocchi et al., 2001). These GPP calculations from EC
tower sites (GPPEC) have been up-scaled by previous studies to regional
scales using machine learning methods so that GPPEC data could be
compared with PEMs simulated GPP results (Jung et al., 2009; Jung
et al., 2011; Xiao et al., 2014; Xiao et al., 2010). Upscaling of GPPEC to re-
gional GPP generally involves using regression algorithms, satellite-
based vegetation indices (VIs), and climate data. The application of
this approach is limited due to the availability of GPPEC data and the un-
certainties of vegetation indices and climate data. At regional or global
scales, several LUE-based models were used to estimate global GPP in
recent studies (Chen et al., 2014; He et al., 2014; Zhang et al., 2016b;
Zhang et al., 2016c), but the validation of these models is still
challenging.

Chlorophyll fluorescence in the red and near infrared bands (with
wavelength of 650–800 nm) is emitted during the vegetative photo-
chemical energy process and directly reflects the intensity of photosyn-
thesis (Liu and Cheng, 2010). Solar-induced chlorophyll fluorescence
(SIF) has recently been measured by multiple satellite-based instru-
ments including the Greenhouse Gases Observing Satellite (GOSAT)
(Frankenberg et al., 2011; Guanter et al., 2012; Joiner et al., 2011), the
Global Ozone Monitoring Instrument-2 (GOME-2) (Joiner et al., 2013),
and the Orbiting Carbon Observatory-2 (OCO-2) (Frankenberg et al.,
2014). These space-borne SIF data have a great potential in estimating
photosynthesis at regional and global scales (Frankenberg et al., 2011;
Guanter et al., 2014). For example, a previous study found that SIF can
be used as a proxy for GPP due to its relationship with both APAR and
LUE (Yang et al., 2015). Moreover, SIF data was shown to have potential
in improving carbon cyclemodeling and predicting agricultural produc-
tivity (Guan et al., 2016). Both SIF and GPP are related to light absorp-
tion processes of photosynthesis (APAR or fPAR) (Wagle et al., 2016),
and space-borne SIF is regarded as the direct observation of the photo-
synthetic process. Therefore, it is appropriate to compare space-borne
SIF data with LUE-based GPP simulations for validation at regional and
global scales.

Although a good consistency between seasonal LUE-based models
(such as VPM) simulated GPP and SIF data was identified for a single
year. However, considering climate change and land use change,
which has significant impact on GPP estimate and SIF measurement,
varies among years. The performance of the consistency between GPP
and SIF at seasonal scale for multiple years as well as at interannual
scale is still unclear. Besides, as GPP plays a central role in global carbon
cycles, studies of the dynamic and trend of GPP can give useful informa-
tion in estimating global carbon budget. Furthermore, to our knowl-
edge, few studies have been conducted to evaluate the performance of
LUE-based models and GPP estimates in China using space-borne SIF
data. Therefore, the objectives of this study were to (1) use VPM to sim-
ulate time-series GPP of China from 2007 to 2014; (2) compare VPM
simulated GPP and GOME-2 SIF data at 0.5° (latitude/longitude) resolu-
tion for China at monthly, seasonal, and annual timescales for
2007–2014; and (3) explore the interannual variability of GPP in differ-
ent periods during 2007–2014 in China. Considering that SIF data di-
rectly reflects the intensity of photosynthetic activity, the data can be
used to evaluate, improve, and identify possible source of errors in
VPM simulations by locating those regions and biomes where the con-
sistency between GPP and SIF is good or poor. Also, quantitative com-
parison of GPP between China and other regions with similar land
cover types and latitude ranges can give better understand the spatial
distribution of global carbon cycle.

2. Materials and methods

2.1. The vegetation photosynthesis model

The vegetation photosynthesis model (VPM) was developed by
partitioning the total sunlight absorbed by vegetation into light
absorbed by chlorophyll and light absorbed by non-photosynthetic veg-
etation (Xiao et al., 2004a; Xiao et al., 2004b). The VPM calculates daily
GPP as a product of light use efficiency (LUE, εg) and absorbed photosyn-
thetically active radiation by chlorophyll (APARchl). The fraction of PAR
absorbed by chlorophyll (fPARchl), which is estimated by a linear func-
tion of enhanced vegetation index (EVI) (Xiao et al., 2004a), is used to
calculate APARchl. Eqs. (1)–(5) describe the main processes of GPP esti-
mation in the VPM (Zhang et al., 2016c).

GPP ¼ εg � APARchl ð1Þ

APARch1 ¼ fPARch1 � PAR ð2Þ
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fPARch1 ¼ EVI−0:1ð Þ � 1:25 ð3Þ

εg ¼ ε0 � Tschalar �Wscalar ð4Þ

where εg is estimated as a function of the maximum light use efficiency
(ε0), air temperature Tscalar), and water condition (Wscalar). Tscalar and
Wscalar are scalars for the effects of temperature and water on light use
efficiency, respectively (Xiao et al., 2004a). ε0 is a biome-specific param-
eter which differs between C3 and C4 plants.

Tscalar is estimated from the fowling equation derived from a terres-
trial ecosystem model (TEM) (Raich et al., 1991):

Tscalar ¼
T−Tmaxð Þ � T−Tminð Þ

T−Tmaxð Þ � T−Tminð Þ− T−Topt
� �2 ð5Þ

where Tmin, Tmax, and Topt are the minimum, maximum, and optimum
temperatures for vegetation photosynthesis, which are also biome-
specific and can be obtained from a Look-Up Table (LUT) (Table S1).

Wscalar is calculated from the land surfacewater index (LSWI) (Eq. 8)
(Xiao et al., 2004a) using the following equation:

Wscalar ¼
1þ LSWI

1þ LSWImax
ð6Þ

where LSWImax is the maximum LSWI (Xiao et al., 2002) during the
growing season over several years, and it is set based on a series of pro-
cedures which was documented in detail in one of our previous studies
(Zhang et al., 2016c).

2.2. Simulation of the vegetation photosynthesis model

VPM simulations are driven by vegetation indices (EVI and LSWI),
climate data (PAR and temperature), and biome-specific physical pa-
rameters (ε0, Tmin, Tmax, and Topt). We used 8-day 500 m resolution
MODIS products and Gaussian grid (192 × 96; ~ 1.875° × 2°) National
Center for Environment Prediction (NCEP) reanalysis-II climate data
during 2007–2014 to drive the VPM. We obtained 8-day 500 m resolu-
tion GPPVPM results after the simulation. All the input data of VPM are
detailed in the following subsections.

2.2.1. MODIS vegetation indices, land cover types, and land surface temper-
ature data

TheMODISMOD09A1 surface reflectance product,with a spatial res-
olution of 500 m and an 8-day temporal resolution, were used to calcu-
late EVI (Huete et al., 2002) and LSWI based on the following equations:

EVI ¼ 2:5� ρnir−ρred

ρnir þ 6� ρred−7:5� ρblueð Þ þ 1
ð7Þ

LSWI ¼ ρnir−ρswir

ρnir þ ρswir
ð8Þ

where ρnir, ρred, ρblue, and ρswir are the surface reflectance of near infra-
red, red, blue, and short-wave infrared band, respectively. A temporal
gap-fill algorithm, which was detailed in our study (Zhang et al.,
2016c), is applied to EVI time series data.

The temperature parameters in VPM are biome-specific, and we ex-
tract this information by using the IGBP land cover classification scheme
in the MODIS MCD12Q1 land cover product (Friedl et al., 2010). LUT
(Table S1) is used to get parameters of ε0, Tmin, Tmax, and Topt for individ-
ual biomes.

The water parameter in VPM is land-surface-specific. In order to
avoid the effects of snow cover in identifying yearly maximum LSWI,
thermal growing season and snow cover period are differentiated
based on information from theMODISMYD11A2 land surface tempera-
ture (LST) dataset. This dataset provides surface temperature at 1:30 am
local time which can be regarded as the daily minimum temperature.
The thermal growing season begins when LST of three consecutive 8-
day values in the spring is above 5 °C, while the thermal growing season
ends when LST of three consecutive 8-day in the fall is below 10 °C
(Zhang et al., 2017).

2.2.2. Climate data
We used climate data (downward shortwave radiation and air tem-

perature) from NCEP reanalysis II product, which were provided in a
Gaussian grid (192 × 96; ~ 1.875° × 2°). The original daily data were ag-
gregated into 8-day averages to match the temporal resolution of
MODIS NDVI and LSWI indices. The day-time mean air temperature
was calculated by averaging temperature between 6 am to 6 pm local
time. Following previous studies that reported the positive bias of the
surface shortwave radiation from the NCEP data product when com-
pared to in-situ radiation observations (Jin et al., 2015; Zhao et al.,
2006), the NCEP radiation data were multiplied by 0.8 in this study
(Zhang et al., 2016c).

NCEP climate data were interpolated into 500 m resolution using a
nonlinear algorithm to match the MODIS data (Zhao et al., 2005). The
output value of a particular pixel (V) is calculated as the inverse distance
weighted average values of the nearest four grid cells:

Di ¼ cos4
π
2
� di

dmax

� �� �
i ¼ 1;2;3;4 ð9Þ

Wi ¼
Di

∑4
i¼1Di

ð10Þ

V ¼
X4
i¼1

Di ð11Þ

where di is the distance between the center of the pixel and each of the
four vertex grid cells fromNCEP data; dmax is themaximumdistance be-
tween the four vertex NCEP grid cells; and Vi is the value for the four
surrounding grid cell values of NCEP data.

2.3. GOME-2 SIF data

Themonthly GOME-2 SIF data from January 2007 to December 2014
used in this study, obtained from an instrument onboard Eumetsat's
MetOp-A satellite, was publicly available at http://acdb-ext.gsfc.nasa.
gov/People/Joiner/my_gifs/GOME_F/GOME-F.htm (Joiner et al., 2014).
Earth radiation at the top of atmosphere in the 715–758 nm spectrum
is captured by GOME-2, and radiation with wavelength around
740 nm at the far-red peak of the SIF emission is used to retrieve SIF
using a principal component analysis approach to include atmospheric
absorption. The final SIF data are quality-controlled to exclude the ef-
fects of heavy clouds and aggregated to monthly average values at the
spatial resolution of 0.5°. Details about the SIF calculation in GOME-2
and the effects of cloud on fluorescence measurements can be found
in a study (Joiner et al., 2013).

2.4. Comparison between GPPVPM and SIF data

The 8-day VPM simulated GPP (GPPVPM) data was aggregated into
monthly mean and yearly sum GPPVPM, and maximum daily GPPVPM
in a year was also calculated. The 500 m resolution GPPVPM data were
reprojected and aggregated into 0.5° to match the spatial resolution of
SIF data after all data processing. Yearly mean SIF and maximum daily
SIF were calculated based on monthly mean SIF data. The mean values
of GPPVPM and SIF for different seasons (spring, summer, fall, and win-
ter) in 2010 were also calculated. The four seasons are MAM (March,
April, and May of 2010), JJA (June, July, and August of 2010), SON (Sep-
tember, October, and November of 2010), and DJF (December of 2010,
and January and February of 2011).

http://acdb-ext.gsfc.nasa.gov/People/Joiner/my_gifs/GOME_F/GOME-F.htm
http://acdb-ext.gsfc.nasa.gov/People/Joiner/my_gifs/GOME_F/GOME-F.htm
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Comparisons between GPPVPM and SIF data were conducted at both
single and multiple years. Considering SIF data has been proved to be
linear correlatedwith PARwhich is the direct control of GPP in VPM, lin-
ear correlation was adopted to test the relationship between VPM sim-
ulated GPP and SIF. For the single year 2010, comparisons between
annual GPPVPM with annual mean SIF, maximum daily GPPVPM with
maximum daily SIF, and seasonal mean GPPVPM with seasonal mean
SIF were conducted. Pixel-wise linear correlations between monthly
mean GPPVPM with monthly mean SIF were also calculated in 2010.
For the multiple years during 2007–2014, comparisons between
monthly mean GPPVPM with monthly mean SIF and yearly GPPVPM
with yearlymean SIFwere conducted. Similarly, pixel-wise linear corre-
lations between GPPVPM and SIF at both monthly and yearly during
2007–2014were also conducted. The distributionmaps of statistical pa-
rameters such as slope and intercept regression line, R2, and P value of
pixel-wise linear correlations were generated.

2.5. GPPVPM dynamic trends and drive factors detection

The interannual trends of GPPVPM and SIF for China during
2007–2014 were explored in this study. Considering that climate
change and land cover change occurred in China nationwide in the pe-
riod of 2007–2014 (especially around the year 2010) and that GPPVPM
had a decreasing trend during 2007–2010 and an increasing trend dur-
ing 2010–2014, we assumed that climate and land cover change had
significant impacts on GPPVPM and changed the GPPVPM trend around
the year 2010. Therefore, linear correlations were calculated between
annual GPPVPM and the periods of 2007–2010, 2010–2014 and
2007–2014, respectively. Pixel-wise linear correlation between annual
GPPVPM and time for the three time periods were conducted, and the
distribution maps of the slope and p-value of the regression lines were
generated. In order to test and compare with other regions, annual
total carbon (GPPVPM), obtained by multiplying annual mean GPPVPM
and the area of terrestrial land of China, was calculated for the entire
study period 2007–2014. The change map of GPPVPM trends (pixel-
Fig. 1. The spatial distribution and frequency of average annual and maximum daily value
fluorescence (SIF) for China in 2010. (a) Spatial distribution of annual GPPVPM; (b) spatial di
mean SIF; (e) spatial distribution of maximum daily GPPVPM; (f) spatial distribution of maxim
daily SIF.
wise slope map) between the periods of 2010–2014 and 2007–2010
was generated to find the spatial distribution of the change of GPP
trend. Four types of GPPVPM trend change including continuous negative
(NN), positive changed into negative (PN), negative changed into posi-
tive (NP), and continuous positive (PP) were obtained, and different
types were also separated spatially in this study.

To better understand why the trend in GPPVPM changed in 2010, we
need to identify the factors, such as climate and land cover, affected
GPPVPM. In this study, a typical point of each GPPVPM trend change
type, except theNN type (the land surface of this typemostly is not veg-
etation), was selected as representative experiment site to study the rel-
ative influence of climate and land cover factors on GPPVPM (Fig. 8d).
The typical study sites were only selected when their positions satisfy
both of the following criteria: (1) located in the pixels with significant
GPPVPM trends in both periods of 2007–2010 and 2010–2014; (2) lo-
cated nearby a meteorological station (the distance is less than
10 km) so that observed climate data can be directly used.

Observed climate data (includingmean daily temperature, daily pre-
cipitation, and daily illumination time) of themeteorological stations as
well as remote sensing-based leaf area index (LAI) data, fraction of pho-
tosynthetically active radiation (FPAR) data (Zhu et al., 2013), with a
spatial resolution of 0.083°, and the standardized precipitation-
evapotranspiration index (SPEI) data (Vicente-Serrano et al., 2010)
with a spatial resolution of 0.5°, from 2007 to 2014 was obtained and
used as the individual variables in influencing GPPVPM. LAI data esti-
mates the vegetation coverage and can be used as a factor reflecting
land cover change (vegetation gain or loss). FPAR and SPEI estimate
the condition of solar radiation and drought, respectively, and they
were direct estimation of climate condition influencing the vegetation
photosynthesis process.

The observed climate data was downloaded from climate data shar-
ing website (http://data.cma.cn/), LAI and FPAR data was obtained by
contacting data producer (http://cliveg.bu.edu/modismisr/lai3g-
fpar3g.html), and SPEI dataset was directly downloaded from the
website (http://spei.csic.es/database.html). The daily climate data was
s of VPM simulated gross primary production (GPPVPM) and sun-induced chlorophyll
stribution of annual mean SIF; (c) frequency of annual GPPVPM; (d) frequency of annual
um daily SIF; (g) frequency of maximum daily GPPVPM; and (h) frequency of maximum

http://data.cma.cn
http://cliveg.bu.edu/modismisr/lai3g-fpar3g.html
http://cliveg.bu.edu/modismisr/lai3g-fpar3g.html
http://spei.csic.es/database.html
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aggregated into monthly scale, while all raster-based data (LAI, FPAR,
and SPEI) reprojected and aggregated into monthly 0.5° spatial-
temporal scale to match the GPPVPM and SIF data. GPPVPM, LAI, FPAR,
and SPEI data of the three study siteswere obtained by extracting values
of raster of the sites' position, while observed climate data of the three
study sites was get directly use the recorded values of the nearby mete-
orological stations.

2.6. Statistical analysis

Boosted regression tree (BRT) analysis of generalized boosted
models (GBMs)was adopted to identify the relative importance of indi-
vidual climate and land cover factors on GPPVPM. BRT analysis is a ma-
chine learning approach applied in nonlinear relationship analysis
(Elith et al., 2008; Ma et al., 2017). Regression trees are originated
from the theories of classification and decision tree. Boosting is mainly
based on a forward procedure which constructs and combines a collec-
tion of models with the purpose of improving model performance. No
transformation is needed in BRT analysis due to the ability in accommo-
dating any data distribution. Parameters including “gaussian” error dis-
tribution, a learning rate of 0.005, a bag fraction of 0.5, and 10-fold cross
validation were set in BRT analysis. Test of collinearity of all individual
variables was conducted to avoid overfitting between GPPVPM and ex-
planation factors. For each study site, BRT analysis was conducted, and
a horizontal bar displaying the relative influence of individual variables
on GPPVPM was obtained.

All the raster layer data processing, mapping, and statistical analysis
were conducted using ArcGIS10.3 and R software (R Development Core
Team, 2013), and the significance level of linear correlation is set to 0.05.

3. Results

3.1. Spatial distribution and relationship between GPPVPM and SIF in 2010

At the annual scale, the spatial distribution of GPPVPM was similar to
annual mean SIF of China in 2010. The high values of annual GPPVPM
(N2000 g C m−2 year−1) (Fig. 1a) and annual mean SIF (N0.8 mWm−2-

nm−2 sr−1) (Fig. 1b) were both distributed in South China and the
North China Plains. Annual GPPVPM in 2010 ranged from about 100 to
1300 g C m−2 year−1 (Fig. 1c), while annual mean SIF in 2010 ranged
from about 0.05 to 0.5 mW m−2 nm−2 sr−1 (Fig. 1d). Also, maximum
daily GPPVPM (Fig. 1e) and maximum daily SIF (Fig. 1f) in 2010 for
China had similar spatial patterns for most China except for South
China. Northeastern China and the North China Plain each had high
Fig. 2. Linear correlations between (a) annual GPPVPM (g Cm−2 year−1) and annualmean SIF (m
SIF (mW m−2nm−1sr−1) in 2010 for China.
values of maximum daily GPPVPM (N20 g C m−2 day−1) and maximum
daily SIF (N3 mW m−2 nm−2 sr−1), while South China only had high
values of maximum daily SIF. Maximum daily GPPVPM in 2010 ranged
from about 10 to 16 g C m−2 day−1 (Fig. 1g), while maximum daily
SIF in 2010 ranged from about 0.8 to 2.2 mW m−2 nm−2 sr−1

(Fig. 1h). Significant linear correlations were found between annual
GPPVPM and annual mean SIF (P b 0.001, R2 = 0.623) as well as maxi-
mum daily GPPVPM and maximum daily SIF (P b 0.001, R2 = 0.467) in
2010 for China (Fig. 2).

At the seasonal scale, similar spatial patterns were found between
GPPVPM and SIF for different seasons (MAM, JJA, SON, and DJF) in 2010
for most China except for some part of South China, and significant (P
b 0.05) linear correlations between GPPVPM and SIF were also identified
for the four seasons. The values of the coefficient of determination for
MAM, JJA, SON, and DJF were 0.60, 0.52, 0.64, and 0.37, respectively
(Fig. 3).

At the monthly scale, significant (P b 0.05) linear correlations be-
tween monthly GPPVPM and monthly mean SIF were identified for all
of China except for small regions in Northwestern, Southwestern, and
Southern China (Fig. 4). The high correlation (R2 N 0.8) was mainly dis-
tributed in Northeastern China and Central China, while the low corre-
lation was mainly distributed in some parts of Northwest and South
China.
3.2. Spatial-temporal relationship between GPPVPM and SIF during
2007–2014

At the monthly scale, significant linear correlation was found be-
tween monthly GPPVPM and monthly mean SIF (P b 0.001, R2 = 0.99)
during 2007–2014 using the averaged values over entire China
(Fig. 5a). Except for small regions in Northwestern China, the significant
(P b 0.05) linear correlation between monthly GPPVPM and monthly
mean SIF during 2007–2014 was found for almost all gridcells in
China (Fig. 6g). The high values of correlation efficient (R2 N 0.8) was
mainly distributed in Northeastern China and the Northern China Plains
(Fig. 6e).

At the annual scale, significant linear correlationwas found between
annual GPPVPM and annual mean SIF (P b 0.05, R2 = 0.63) during
2007–2014 using the averaged values across entire China (Fig. 5b).
However, the significant (P b 0.05) linear correlation between annual
GPPVPM and annual mean SIF during 2007–2014 can be only found for
some pixels in China (Fig. 6h). The correlation (R2) of all pixels in
China was at very low level (Fig. 6f).
Wm−2nm−1sr−1), and (b)maximumdaily GPPVPM (g Cm−2 day−1) andmaximumdaily



Fig. 3. The spatial distribution and relationships of seasonal VPM simulated gross primary production (GPPVPM) and sun-induced chlorophyll fluorescence (SIF) for China betweenMarch
2010 and February 2011. MAM:March, April, andMay; JJA: June, July, and August; SON: September, October, and November; DJF: December 2010, January, and February. R square values
with a star means the linear correlation was statistically significant (P b 0.05).

1246 J. Ma et al. / Science of the Total Environment 639 (2018) 1241–1253
3.3. Interannual GPPVPM dynamic and its drives during 2007–2014

For the averaged values over entire China, annual GPPVPM of China
had a non-significant increasing trend (P N 0.05, R2=0.24) over the en-
tire study period 2007–2014. However, a significant decreasing trend (P
b 0.05, R2=0.63) in GPPVPMwas found during 2007–2010, and a signif-
icant increasing trend (P b 0.05, R2 = 0.65) was found during
2007–2010 and 2010–2014 (Fig. 7a). Besides, annual mean SIF showed
a similar interannual dynamic trend as annual GPPVPM (Fig. 7a). Total
sequestrated carbon, calculated as the sum of GPP, for China had the
same trend as annual mean GPPVPM during 2007–2014 with the lowest
value of 7.24 Pg C in 2010 and the highest value of 7.90 Pg C in 2013
(Fig. 7b).

Geographically, in the period of 2007–2014, positive GPPVPM trend
was mainly distributed in Northern China, while negative GPP trend
was mainly found in Southern and Southwestern China (Fig. 8a). Nega-
tive GPPVPM trend was found in most areas of China except for an in-
creasing trend was found in Eastern Qinghai-Tibet Plateau in the
period of 2007–2010 (Fig. 8c). Conversely, positive GPP trendwas iden-
tified in almost all regions of China except for a decreasing trend was
identified in Eastern Qinghai-Tibet Plateau in the period of 2010–2014
(Fig. 8e). Areas with significant GPPVPM trend in the periods of
2007–2014, 2007–2010, and 2010–2014 were mainly located some
parts of Loss Plateau, in Eastern Qinghai-Tibet Plateau and Southwest
China, and in some regions of North China, respectively (Fig. 8b, d, e).

The spatial distribution of different GPPVPM trend change types for
2007–2010 and 2010–2014 and relevant selected typical study sites
was shown in Fig. 9a. NN, PN, NP, and PP types were mainly found in
Northwest China, in Eastern Qinghai-Tibet Plateau, in some areas of
Loss plateau of China, and in North China, respectively. Especially, PN
and PP types presented highly concentrated distribution in space.
Mean monthly temperature, LAI, and monthly total precipitation were
the most important factors influence GPPVPM of the typical study sites
in GPPVPM trend change types of PN, PP, and NP. There relative influence
was 43.75%, 35.96%, and 41.21%, respectively (Fig. 9b-d). The total rela-
tive influence of the top five most important factors influence GPPVPM
dynamics of GPPVPM trend change type of PN, PP, and NP were 95.49%,
97.85%, and 92.78%, respectively.

4. Discussion

4.1. Spatial-temporal consistency between GPPVPM and GOME-2 SIF data

Spatial distributions and frequency distributions of annual GPPVPM
and annual mean SIF in 2010 are quite similar (Fig. 1), and the annual
GPPVPM is significantly positively linearly correlated with annual mean
SIF in 2010 (R2 = 0.62, P b 0.001). This correlation demonstrates that
the VPM simulated GPP is consistent with GOME-2 SIF data at annual
scale in China, which was also shown to be true for North America
(Zhang et al., 2016c). Moreover, a significant positive linear correlation
exists between maximum daily GPPVPM and SIF in 2010 (R2 = 0.47, P b

0.001) for China. Some areas, especially in Southern China (Fig. 1), had
high maximum daily SIF values that were not reflected in the map of
maximum daily GPPVPM. This difference suggests that the performance
of VPM inmodelingmaximum carbon uptake intensity at some low lat-
itude areas is weak, which has been reported in previous VPM simula-
tions at the site level (Wu et al., 2010; Yan et al., 2009). The most
likely reason for this weak performance is that maximum



Fig. 4. The spatial distribution of statistical parameters of pixel-wise linear correlation between monthly GPPVPM and SIF in 2010. (a) Slope, (b) intercept, (c) R square, and (d) p value.
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photosynthesis usually occurs under the most suitable climate condi-
tions, which cannot be reflected in NCEP climate data. The aggregated
NCEP climate data (the spatial and temporal resolution of the used
Fig. 5.Relationship of VPM simulatedGPP (GPPVPM) and solar-induced chlorophyll fluorescence
scale.
data has been diminished from original data) may decrease the climate
fluctuation with time and cover up the optimal condition for vegetation
photosynthesis. Especially in some low latitude areas (such as South
(SIF) in China during 2007–2014 at different time scales. (a)Monthly scale; and (b) yearly



Fig. 6. Spatial distribution of statistical parameters of pixel-wise linear correlation between monthly GPPVPM and SIF and between annual GPPVPM and SIF during 2007–2014. (a) and
(b) Slope, (c) and (d) Intercept, (e) and (f) R square, and (g) and (h) P value.
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China), higher uncertainty of the emergence of the most suitable cli-
mate condition, derived by the low variance of climate, may lead to
poor performance of maximum GPP simulation. For example, the
VPM-simulated GPP, parameterized by the NCEP climate dataset, was
compared with flux tower-based GPP at 39 flux site at 8-day interval
in US, and the result showed that the maximum GPPVPM values of
about 12 sites had been underestimated (Zhang et al., 2016c). Further-
more, Southern China has generally experienced frequent cloud cover,
Fig. 7. Interannual trends of VPM simulated GPP (GPPVPM), solar-induced chlorophyll
fluorescence (SIF), and annual total sequestrated C (calculated as the sum of GPPVPM) in
China during 2007–2014. (a) Annual dynamics of GPPVPM and SIF and the interannual
trends of GPPVPM and SIF during 2007–2014, 2007–2010, and 2010–2014; and
(b) Annual total sequestrated C for China during 2007–2014.
which may hinder the calculation of vegetation indices (such as EVI)
using MODIS images (Nitze et al., 2015; Pinto et al., 2017).

GPPVPM is also consistentwith SIF data at the seasonal timescale, and
positive linear correlations exist for all seasons in 2010 (Fig. 3). How-
ever, the correlation in DJF is much weaker (R2 = 0.37), which can be
explained by lower SIF signal and relative lower signal-to-noise ratio
inwinter (Zhang et al., 2016c). Furthermore, a significant positive linear
correlation exists between monthly GPPVPM and SIF in 2010 for most
pixels in China (Fig. 4). This correlation also confirms that VPM simu-
lated GPP matches the SIF data well in China for a single year. Note
that small areas in Southwestern and Southern China have relatively
low consistency between monthly GPPVPM and SIF in 2010 (R2 b 0.3).
This weak correlation could be attributed to the extreme droughts in
Southwestern China during 2009–2012 (Zhou et al., 2017) and cloudy
weather conditions Southern China which have been reported to
cause significant decreases in vegetative productivity (Zhang et al.,
2015; Zhao et al., 2015).

Moreover, relatively high consistency (R2 N 0.5) exists between
monthly GPPVPM and SIF during 2007–2014 for almost all pixels in
China (Fig. 6), and monthly GPPVPM is also significantly positive linear
correlated (R2 = 0.99) with monthly SIF of the entire China (Fig. 5).
These results indicate that GPPVPM not onlymatches SIFwell for a single
year, but is also strongly correlated with SIF at monthly scale for multi-
ple years. Moreover, the R2 value of monthly comparison (R2 =0.99) is
generally higher than that of yearly comparison (R2 =0.63) for the en-
tire China. Especially, most pixels of China did not have a significant (P N
0.05) correlation between GPPVPM and SIF data at annual time scale
(Fig. 6f). This difference may be attributed to two reasons. First, large
uncertainty exists in individual GOME-2 SIF grid cell which has extreme
low spatial (0.5) and temporal (monthly) resolutions. Especially, when
aggregating monthly data into yearly data, this uncertainty may be
magnified. Second, the interannual variation is relatively small compare
to the monthly variations due to sensor degradation occurred over the
years, and GOME-2 SIF data are not recommended to be used in explor-
ing inter-annual dynamics of vegetation photosynthesis (Joiner et al.,
2014). High uncertainty in SIF and GPP estimates leads to lower correla-
tion at inter-annual scale. Nevertheless, there remains a high consis-
tency between GPPVPM and SIF at monthly and yearly scales for China.



Fig. 8. The spatial distribution of slope values and p values of pixel-wise linear correlation between annual GPPVPM and time during 2007–2014, 2007–2010, and 2010–2014, respectively.
(a) Slope value in 2007–2014, (b) p value in 2007–2014, (c) slope value in 2007–2010, (d) p value in 2007–2010, (e) slope value in 2010–2014, and (f) p value in 2010–2014.
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In order to eliminate the effects of spatialmismatch (Y.G. Zhang et al.
2014) on the results of comparisons betweenGPPVPM and SIF data in our
study, the GPPVPM dataset was aggregated into the same spatial resolu-
tion as GOME-2 SIF data (0.5°). From the pixel-wise linear correlation
analysis between GPPVPM and SIF data, the correlation for most regions
Fig. 9. The spatial distribution of different GPPVPM trend change types and the relative influen
influence results were obtained using boosted regression tree (BRT) analysis. (a)Spatial dist
relative influence of individual variables for site 1 with a PN type, (c) the relative influence of
variables for site 3 with a NP type. NN: continuously negative, PN: positive changed into negat
of China was relative high (R2 N 0.5). However, a high degree of spatial
variability exists in the distribution of coefficient of determination,
and the strongest correlation is largely distributed in Northeastern
China and the North China Plains. The differences can be attributed to
three aspects: (1) the spatial heterogeneity of land cover is low in
ce of climate and land cover variables on the GPPVPM trends of these types. The relative
ribution of different GPPVPM trend change types and selected typical study sites, (b) the
individual variables for site 2 with a PP type, and (d) the relative influence of individual
ive, NP: negative changed into positive, and PP: continuously positive.
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Northeastern and North Chinawhen compared to other regions (Kuang
et al., 2016; Wu et al., 2008). For 0.5° spatial resolution, homogeneous
pixels have less variance and uncertainty in presenting GPP than het-
erogeneous (mixed) pixels considering the VPM is parameterized
biome-specifically; (2) the MODIS images in low latitude areas of
China are contaminated more frequently by clouds and cloud shadows,
which can decrease vegetation indices (Atkinson et al., 2012; Soudani
et al., 2008) as well as solar irradiation (Eck and Dye, 1991); and
(3) these regions are dominated by croplands which have a high photo-
synthesis seasonality. The relative signal to noise ratio in GOME-2 SIF
data is higher for these regions.

Space-borne SIF data has been shown to have the potential to mea-
sure vegetative production by previous studies (Joiner et al., 2014;
Wagle et al., 2016; Y.G. Zhang et al. 2014), which have compared
satellite-derived SIF data with in-situ GPP estimates from eddy covari-
ance flux tower sites. Emission of SIF occurs during photosynthesis,
and SIF can be regarded as the direct observation of energy transmission
during photochemical quenching (Flexas et al., 2000; Lee et al., 2015;
Liu et al., 2016; Porcar-Castell et al., 2014). TheVPM-simulatedGPP gen-
erally presents high spatial-temporal consistencywith GOME-2 SIF data
during 2007–2014 in China. Therefore, space-borne SIF data has great
potential in validating and parameterizing satellite-based GPP simula-
tions at the regional scale.

4.2. Spatial-temporal dynamics of vegetation GPP in China

Apparent spatial heterogeneity is shown in the distribution of aver-
age annual GPP and maximum daily GPP in 2010 (Fig. 1). This spatial
variability mostly corresponds to the difference in land cover distribu-
tion and the variance in the ability for ecosystems to uptake carbon. In
this study, cropland and evergreen broadleaf forest are the dominant
land cover type in the North China Plain and South China, and they
are reported to have higher annual total GPP than other ecosystems
(Beer et al., 2010; Frankenberg et al., 2011; Turner et al., 2006). There-
fore, these attributes explain why the highest annual GPP value in
2010 can be found in these regions. However, the spatial pattern of
maximum daily GPP in 2010 varies greatly from average annual GPP,
and the highest value was distributed in Northeastern China and
North China Plain where croplands (mainly maize) dominate. Maize is
C4 crop, and it should definitely have the highest maximum daily GPP
because C4 crops have higher LUE and water use efficiency (WUE)
than other ecosystems (Lei and Yang, 2010; Zhang et al., 2007). Al-
though South China shows the highest annual GPP,whichmainly attrib-
uted to the long growing season, the maximum daily GPP is not very
high. This variance is likely to be related with the simulation error in
this region where correlation between GPPVPM and SIF is not as strong.
South China is mainly dominated by evergreen vegetation, which
shows extreme low variations of GPP and SIF. Considering the relatively
large uncertainty in the SIF signal, the correlation between GPP and SIF
would be low, which is also true for tropical rainforest (Zhang et al.,
2016c).

Although GOME-2 SIF data is not appropriate for analyzing interan-
nual variation due to the sensor degradation (Joiner et al., 2014), the dy-
namic trends of annual GPPVPM and annual mean SIF during 2007–2014
for China are similar (Fig. 7), both of which decline during 2007–2010
and increase during 2010–2014. This similarity indicates that VPM per-
forms well in simulating annual GPP, which is also reflected by the sig-
nificant positive linear correlation between annual GPPVPM and annual
mean SIF during 2007–2014 for China (Fig.5). Spatially, vegetation pro-
duction in China during 2007–2014 presents high heterogeneity
(Fig. 8). GPPVPM inmost areas of China displayed a decreasing trenddur-
ing 2007–2010 and an increasing trend during 2010–2014, except for
some regions in Eastern Qinghai-Tibet Plateau. Vegetation production
in some regions of the Loess Plateau continuously increased during
the entire study period 2007–2014. The causes of different dynamic
trends of GPPVPM during different periods in 2007–2014 are complex
and are likely to be attributed to the great spatial heterogeneity of cli-
mate, land cover changes, and major ecological projects across China.

Firstly, the large variance of GPP in Eastern Qinghai-Tibet Plateau
during 2007–2010 and 2010–2014 is most likely due to vegetation phe-
nology delay around 2006 (Zhang et al., 2013). Climate variables includ-
ing temperature, FPAR, and precipitation totally have a relative
influence of 78.77% on GPPVPM (Fig. 9). This indicates that climate con-
dition has significant impact and controls vegetation productivity in
this area. Precipitation accounts for a relative high influence (41.21%)
of the GPPVPM dynamic in Southwestern China. This is in line with a
study which reported that drought is considered as the most important
factor in influencing China's GPP in recent years, especially in South-
western China (Ju et al., 2010; Zhao et al., 2015). Moreover, land cover
change (mainly urbanization) is regarded as another important factor
that reduces GPP. The negative effects of urbanization on GPP are
most obvious in the areas aroundmetropolitan in China (such as Beijing
and Shanghai, Fig. 8) (Cui et al., 2017). Lastly, the high influence of LAI
(35.96%) on GPPVPM in the site where GPPVPM continuously increase
during the whole period of 2007–2014 is most likely attributed to the
conduction of some major ecological engineering projects in China,
such as the Grain for Green Project (Liu et al., 2014) and the Three-
North Shelter Forest Program (He et al., 2015). Rapid restoration of veg-
etation, reflected by LAI,might have contributed themost to the contin-
uous increase of GPP in the Loess Plateau of China (Zhang et al., 2016a).

Compared with a previous study which described the spatial-
temporal patterns of VPM-based GPP of North America in 2010
(Zhang et al., 2016c), the total area of high annual GPP (N2000 g Cm−2-

year−1) and maximum daily GPP (N20 g C m−2 year−1) in China is
larger. However, China also has many large areas with extreme low
values of annual GPP (about 33.1% pixels have values lower than
100 g C m−2 year−1) and maximum daily GPP (about 27.4% pixels
have values lower than 5 g C m−2 day−1) (Fig. 1). Moreover, as esti-
mated in this study, mean annual total sequestrated carbon (sum of
GPP) of China ranged from approximately 7.52 Tg C km −2 to
8.20 Tg C km −2 (Fig. 7), which is larger than that of North America
(6.76 Tg C km −2). These results indicate that vegetation in China dem-
onstrates a higher ability to sequester carbon, which can contribute to
an in increasing global carbon sink. Protections should be adopted in
some ecological vulnerable areas of China, especially in the Northwest-
ern Desert and Tibet Plateau. Furthermore, annual total GPP shows a
large increase when compared to the period during 1980–2000 (Fang
et al., 2007). This trend demonstrates that terrestrial vegetation serves
as an important carbon sink and plays a vital role in the global carbon
cycle.

4.3. Implications of the application of GPP simulation using VPM

Based on the comparisons between GPPVPM and SIF at multiple spa-
tial and temporal scales, the ability of VPM to simulate GPP in China
varies among different regions. This variability demonstrates that the
GPPVPM has been affected by some factors. Firstly, temperature and
solar irradiation, can influence GPP estimates (Wagle et al., 2015). Tem-
perature and solar irradiation directly determines the calculation of LUE
and PAR, respectively, which will finally influence the GPP calculation.
Secondly, land cover dataset (MODIS MCDQ12 land cover products) af-
fect the estimation of biome-specific parameters of ε0, Tmin, Tmax, and
Topt, which have impacts on the calculation of GPP. In this study, we
use time-series MODIS land cover maps in the simulation of GPP during
2007–2014. However, MODIS land cover maps have some errors in
identifying land cover changes over years (Friedl et al., 2010).Moreover,
C3 and C4 crop types, which have different photosynthetic pathways,
were not distinguished and will therefore have impacts on the estima-
tion of LUE (Kalfas et al., 2011; Yuan et al., 2015). Each of these factors
induce errors in the GPP simulation results. Thirdly, although a gap-fill
algorithm has been applied in the calculation of GPP, MODIS image
quality also influences the accuracy of GPPVPM. Clouds and cloud
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shadows at low latitude areas affects the quality of EVI, LSWI, and LST
products, which are inputs in the VPM.

In this study, we assumed that the GOME-2 SIF data were direct ob-
servations of photosynthesis from space. However, the low spatial reso-
lution (0.5°) of this SIF data has a certain impact on the comparison
results. The comparisons between GPPVPM and SIF have to be conducted
after GPP data are aggregated into the same spatial resolution as GOME-
2 SIF data. The averaged GPP values of pixels ignore the extreme GPP
values, and it will decrease the performance of comparisons between
GPPVPM and SIF. However, space-borne SIF data still have great signifi-
cance in estimating GPP simulations of LUE-based model. Simulation
processes can be simplified and simulation accuracy can be enhanced
when satellite-based SIF, with appropriate spatial resolution, are incor-
porated in the parameters.
5. Conclusion

In this study, GPP in China was simulated using VPM during
2007–2014, and comparisons between GPPVPM and GOME-2 SIF were
also conducted. Monthly GPPVPM agrees with SIF data at both single-
year andmulti-year scales during 2007–2014. However, consistency be-
tween GPPVPM and SIF in the Northwest Desert, Tibet Plateau, and some
areas in South China is relatively low.Moreover, GPPVPM is spatially cor-
related with SIF at the annual scale during 2007–2014, and correlations
between GPPVPM and SIF were strong for all seasons except winter. In
the period of 2007–2014, GPPVPM is likely to change from a negative
trend into a positive trend around the year 2010, and climate and land
cover conditions, including climate warming, drought, and vegetation
restoration induced bymajor ecological projects in China, played impor-
tant roles in affecting GPPVPM trends in different areas of China. In sum,
space-borne SIF data is highly consistent with GPPVPM at both seasonal
and annual scales, and SIF data has great potential in validating and pa-
rameterizing GPP estimates by LUE-based models.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2018.05.245.
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