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a b s t r a c t

Validation of the long-term biomass predictions of forest landscape models (FLMs) has always been a
challenging task. Using the space-for-time substitution method, forest biomass curves over stand age
were generated from a forest survey dataset (FSD) in the Lesser Khingan Mountains area (LKM),
Northeastern China and compared with long-term biomass predictions of LANDIS-II model. The results
showed that mean forest age and mean biomass of the LKM in 2000 were 51.6 years and 84.2 Mg ha�1,
respectively. Significant linear correlations were found between FSD derived biomass and simulated
biomass in the aggradation phase for the entire LKM and most subregions. However, a considerable
difference in the mean maximum biomass (53.45 Mg ha�1) existed between from FSD and simulation
during the post-aggradation phase. The space-for-time substitution method has potential in validating
time series biomass predictions of FLMs in aggradation phase when only limited forest inventory data is
available.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Forests are a key component of terrestrial ecosystems and play
an important role in the global carbon cycle (Birdsey et al., 2006;
Dixon et al., 1994; Houghton and Hackler, 2000). Predictions of
forest biomass and its spatial distribution are essential for evalu-
ating how forests contribute to climate change mitigation (Keith
et al., 2009; Saatchi et al., 2011). Forest landscape models (FLMs)
are generally used to simulate forest biomass, species composition,
and stand structure at large spatiotemporal extents (Gustafson
et al., 2010; He et al., 1999; Scheller et al., 2007; Scheller and
Mladenoff, 2004). The effects of forest management (Scheller
et al., 2011a, 2011b), climate change (He et al., 2005; Ma et al.,
2014b), and disturbances (He and Mladenoff, 1999) on forest suc-
cession dynamics, such as biomass accumulation and species dis-
tribution, can also be explored in FLMs. However, the credibility of
predictions, especially forest biomass, directly determines the
scope and applicability of FLMs in forest management (Gardner and
Urban, 2003; Shifley et al., 2009; Tian et al., 2016; Wang et al.,
2014b). Thus, it is important to evaluate FLMs predictions with
observational data.

Traditionally, the evaluation of simulated results of most FLMs is
conducted by comparing the predictions with results from empir-
ical knowledge, other model outputs, and/or field observation data
(Blanco et al., 2007; Busing et al., 2007; Ma et al., 2014a). For
example, field collected datawere used to validate the phenological
predictions of the PHENIPS model in Bohemian forests (Berec et al.,
2013). The productivity and cycling of carbon and nitrogen in aspen
forests were simulated in five differentmodels, and the results from
multiple models were cross validated (Wang et al., 2014a). Monthly
carbon flux data were used to calibrate and validate the results of
the LANDIS-II model, which was used to simulate forest carbon
sequestration under different fire regimes (Scheller et al., 2011b). A
TROLL simulation of tropical rainforest spatial patterns was
compared to field sampling data to validate predicted forest suc-
cession processes (Chave,1999). However, most validations of FLMs
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Model description

Model name LANDIS-II
Developers Eric Gustafson, USDA Forest Service; David

Mladenoff, University of Wisconsin-Madison;
Robert Scheller, Portland State University; Brain
Stuturvant, USDA Forest Service; Jonathan
Thompson, Harvard Forest

Contact Information Dr. Robert Scheller, Department of
Environmental Sciences and
Management, Portland State University.
Email: rmschell@pdx.edu

Year First Available 2004
Hardware Required No special requirements
Software Required Windows, Mac OSX, or Linux
Availability Free (downloading site: http://www.landis-ii.

org/install)
Program Language C#
Data Form of Repository Files and Spreadsheet
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predictions were conducted at a specific site and time, which do not
match the large spatiotemporal extents used in FLM simulations.

One of the ideal methods to improve the short-term predictions
of FLMs is to conduct model calibration by comparing model pre-
dictions with time-series in-situ field data at appropriate spatio-
temporal scales (Schmitz, 1997; Tsoar et al., 2007; Zaniewski et al.,
2002). The model calibration has been proved to improve the
credibility of predictions in ecological models based on a large
amount of ecological data (Marcot et al., 2006; Wang et al., 2014b).
Forest inventory data has been adopted by forest modeling studies
to calibrate and validate predictions made by ecological models,
which has enhanced the performance of the models (Peng et al.,
2011). FLMs are parameterized using complex field-collected data
at landscape scale, and the validation of FLM results, generally re-
quires a multitude of long-term observation data. However, this
kind of data is not available for most forest areas in the world.
Chronological forest inventory data can be used effectively to
improve the predictions of FLMs. For example, LANDIS Pro is a
dynamic FLM that simulates processes like forest succession, seed
dispersal, species establishment, and disturbances (Gustafson et al.,
2000; He et al., 1999; Ma et al., 2014b). Biomass can also be
simulated in this model by tracking tree species cohorts and their
amounts of the landscape. A recent study proposed a framework for
evaluating short-term predictions of the LANDIS Pro model based
on a series of historical forest inventory data (Wang et al., 2014b).

Ground-based forest survey data, such as the U.S. Forest In-
ventory and Analysis (FIA) data, are increasingly abundant and
easily obtained. However, similar data that are appropriate for
comparison with the long-term predictions of FLMs are still scarce
for forests in China. Theoretical and empirical knowledge are usu-
ally used to judge the long-term predictions and adjust the initial
parameters of FLMs of forest regions in Northeastern China (He,
2008). Generally, different forest succession stages were regarded
as representative moments of forest growing process, and mea-
surements of their biomass have been used to predict the trajec-
tories of forest carbon sequestration (Larsen et al., 2010; Ma et al.,
2015; Wang et al., 2014b). However, great uncertainties exist in
forest biomass accumulation over time when considering only
specific states of succession. Also, climate change and disturbance
influences forest biomass accumulation processes to a considerable
extent (Chiang et al., 2008; Li et al., 2000; McMahon et al., 2010; Xu
et al., 2012). Therefore, time series forest biomass survey data is
essential for calibrating long-term FLM simulations, however, this
data is difficult to acquire. Fortunately, based on the space-for-time
substitution method, observed forest biomass at different stand
ages can be used to compare with the long-term biomass pre-
dictions of FLMs.

Forest survey dataset (FSD) is generated based on different
forest management units in China at regular intervals (every 10
years) and contain abundant information such as species compo-
sition, tree ages, and timber volume (Dong et al., 2008). From FSD,
we can obtain information on the spatial distribution of vegetation
communities, stand ages, and biomass. This dataset is commonly
used to parameterize FLMs such as LANDIS Pro and LANDIS-II (Bu
et al., 2008a; He et al., 2005). The space-for-time substitution
method can be adopted to validate long-term forest biomass sim-
ulations by assuming that the biomass of old-growth forest is the
future state of the younger forests. Therefore, this methodmight be
useful for validating long-term biomass predictions of FLMs,
especially when only limited forest inventory data is available.

In this study, the LANDIS-II model was used to illustrate how the
space-for-time substitution method is applied to validate long-
term biomass predictions based on FSD derived forest age and
biomass data. FSD of 2000 was used to calculate forest biomass
dynamicswith different stand ages in different regions in the Lesser
Khingan Mountains area (LKM) of Northeastern China, and the
forest biomass-age curves were compared with simulated biomass
of LANDIS-II model for the entire LKM and its subregions. The ob-
jectives of this studywere to (1) generate forest biomass-age curves
based on the FSD of the LKM in the year 2000; (2) simulate biomass
dynamics from 2000 to 2300 using LANDIS-II model; and (3)
explore the performance of the space-for-time substitutionmethod
in the validation of biomass predictions by the LANDIS-II model.

2. Materials and methods

2.1. Study area

The study area, extends across 47.05�e49.32� N,
127.02�e130.79� E, which covers the entire LKM (Fig. 1). The forest
coverage ratio of the study area is about 73% and the elevation
ranges between 400 m and 600 m above sea level. The topography
changes from being mountainous in the northern part to having
hills and low lying mountains in the southern portion of the study
area. Dark brown soil is the major soil type, which is distributed
throughout the region (Zhang et al., 2013). The LKM is dominated
by temperate continental monsoon climate that is characterized by
long cold winters (mean January temperature, �25 �C) and short
warm summers (mean July temperature, 21 �C). The growing sea-
son generally lasts from late May to early October, and the pre-
cipitation occurs mostly in the summer with an average annual
rainfall range between 550 and 670 mm. The entire LKM forest
landscape includes twenty-one subregions (forest bureaus):
Zhanhe (ZH), Hongxing1 (HX1),Wuyiling (WYL), Tangwanghe (TWH),
Shanggangling1 (SGL1), Xinqing (XQ), Youhao (YH), Wuying (WY),
Hongxing2 (HX2), Tongbei (TB), Shanggangling2 (SGL2), Hebei (HB),
Lilin (LL), Shanggangling3 (SGL3), Fenglin (FL), Suiling (SL), Meixi
(MX), Cuiluan (CL), Wumahe (WMH), Jinshantun (JST), and Tieli (TL).

The LKM is a transitional zone between cold and moderate
temperate climate zones, and therefore it contains coniferous for-
ests in the north, mixed coniferous-broadleaf forests in the central
area, and broadleaf forests in the south. The dominant tree species
include Korean pine (Pinus. koraiensis), Spruce (Picea koraiensis and
P. jezoensis), Khingan fir (Abies nephrolepis), Larch (Larix gmelinii),
Mongolian Scotch pine (Pinus sylvestris Linn.), Manchurian walnut
(Juglans mandshurica), Manchuria ash (Fraxinus mandshurica),
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Fig. 1. Study area and locations of forest sampling plots in the Lesser Khingan Mountains area of Northeastern China. (a) Northeastern China in China, (b) The Lesser Khingan
Mountains area in Northeastern China, and (c) The forest bureaus boundaries and forest sampling plots.
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Amur cork (Phellodendron amurense), Mongolia oak (Quercus
mongolica), Black elm (Ulmus propinqua), Mono maple (Acer mono
Maxim), Ribbed birch (Betula costata), Black birch (Betula davurica),
Amur linden (Tilla amurensis), White birch (Betula platyphylla),
Aspen (Populus davidiana).
Fig. 2. Distribution of forest stand ages map in the Lesser Khingan Mountains area of
Northeastern China.
2.2. Forest survey dataset (FSD)

Forest survey dataset (FSD) of the LKM are usually generated
every 10 years, and the FSD in 2000 was available for this study.
This dataset was produced by the Forestry Planning and Design
Bureau of Heilongjiang Province in 2003. The LKM contains 21
forestry bureaus, and each forestry bureau is divided into several
forest management units (about 10 ha per unit). For each individual
management unit, species composition, tree age and density, and
timber volume were surveyed. The collected data was input into a
vector format dataset. For this study, we converted the vector
dataset into several 90m-resolution raster layers including themap
of species composition, forest stand age (Fig. 2), and timber volume.
In order to match with the ecoregions map (which was converted
from 90-m resolution DEM data) and to fit the operating ability of
the computer, all the raster layers were set at 90-m resolution, and
this resolution was higher than that of most previous LANDIS-II
simulation studies.

The value of a given pixel in the forest age map was the mean
age of all tree species in that pixel. The forest species composition
map was used in the parameterization of LANDIS-II model. For the
entire LKM and each subregion, we calculated the mean, median,
and standard deviation of stand age (Table 1). In order to match the
output of LANDIS-II model, forest ages were grouped into bins at
10-year intervals. Based on the 10-year time step, the mean stand
ages for most subregions are equal to their respective median
values (Table 1). Therefore, it is applicable to use the mean forest
age as an approximation of forest age in each subregion.
Considering the forests in the LKM experienced severe distur-

bance in history, we divided the forest biomass accumulation curve
in this study into three phases based on a previous study that
focused on forest biomass dynamics after disturbances (Bormann



Table 1
Forest area, stand age, and biomass (calculated from timber volume information in forest survey dataset) of different subregions (forestry bureau) and the entire Lesser
KhinganMountains area for the year of 2000. Mean, median, and STD represent themean, median, and stand deviation values of forest stand age. Min, Max, Mean, Median, and
STD represent the minimum, maximum, mean, median, and stand deviation values of initial biomass in 2000.

Regions Area(Km2) Stand Age Forest biomass (Mg ha�1)

Mean Median STD Min Max Mean Median STD

Zhanhe (ZH) 7599.1 50.2 50 17.1 26.27 199.61 74.39 78.93 24.95
Hongxing1 (HX1) 1858.5 43.0 40 23.4 29.02 179.17 66.72 50.64 34.62
Wuyiling (WYL) 3183.1 53.7 50 12.4 28.99 175.56 78.35 79.03 19.03
Tangwanghe (TWH) 2254.0 56.8 60 23.2 26.37 201.75 82.15 77.60 32.99
Shanggangling1 (SGL1) 665.4 43.1 40 23.3 34.64 183.97 68.42 69.54 32.67
Xinqing (XQ) 2926.7 48.0 50 23.6 26.81 198.72 71.54 70.31 29.36
Youhao (YH) 2830.6 52.0 50 23.7 28.85 198.98 76.53 71.38 34.72
Wuying (WY) 1214.4 52.7 50 31.6 27.80 210.09 74.93 69.38 38.66
Hongxing2 (HX2) 881.8 46.5 40 21.4 26.60 193.52 66.53 61.53 30.18
Tongbei (TB) 2693.7 44.4 50 16.0 26.27 171.54 68.69 74.28 21.63
Shanggangling2 (SGL2) 157.8 55.6 50 17.0 40.51 159.77 85.47 65.79 40.98
Hebei (HB) 3903.8 56.7 50 29.1 26.99 212.83 86.04 79.87 40.74
Lilin (LL) 81.1 68.0 50 34.8 40.10 189.52 100.99 73.09 53.53
Shanggangling3 (SGL3) 634.6 50.4 50 19.4 30.79 213.40 71.42 70.88 23.68
Fenglin (FL) 180.0 161.6 170 41.3 55.33 197.52 174.30 181.62 29.51
Suiling (SL) 2171.2 47.3 50 19.9 26.22 202.38 73.15 73.11 29.02
Meixi (MX) 2264.1 51.6 50 18.9 26.55 217.65 77.67 77.74 28.50
Cuiluan (CL) 1558.4 44.9 40 18.4 26.85 190.66 65.09 64.51 22.26
Wumahe (WMH) 1239.5 42.7 40 12.8 26.33 184.89 66.21 67.57 20.36
Jinshantun (JST) 1852.2 54.2 50 24.4 29.46 205.87 79.24 78.92 29.98
Tieli (TL) 2042.0 50.9 50 20.7 26.91 208.06 77.81 76.77 30.50
Entire landscape (LKM) 42191.9 51.6 50 24.6 26.22 217.65 84.16 75.78 31.54
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and Likens, 1979): reorganization, aggradation, and post-
aggradation. During the reorganization phase, which is a period
following disturbance, the rate of biomass accumulation is low.
Then, we define the beginning of the aggradation phase as the time
when biomass increases 30% or more between two time steps. The
post-aggradation phase begins when forest biomass increases less
than 5% between two time steps, and forest age of the beginning of
this phase is regarded as the stable age. The post-aggradation phase
may include a transition period in which forest biomass declines
after reaching its peak (Perry et al., 2008). In this study, we mainly
compared simulated biomass and FSD derived biomass of the
aggradation phases of the LKM and each subregion, the aggradation
phase was marked in Figs. 4 and 5.
2.3. Model parameterization

LANDIS-II is a cellular automaton FLM that simulates forest
succession, seed dispersal, species establishment, and the impact of
disturbances on the forest (He and Mladenoff, 1999; Mladenoff,
2004; Mladenoff and He, 1999b; Scheller et al., 2007). LANDIS-II
is derived from an earlier version of LANDIS, which simulates for-
est landscape processes using a grid of cells. The cell size ranges
from 10m to 500m, and large spatial (<108 ha) and temporal (<103

years) extents can be simulated. In each cell, all trees were grouped
into different species cohorts, and they were tracked through the
whole simulation period in LANDIS-II. Based on species stand age
and species composition, forest biomass of each cell and each
species was calculated (Scheller and Mladenoff, 2004). In order to
reflect the heterogeneity of the simulated landscape and the dif-
ferences in growing conditions (temperature, light, and precipita-
tion) among forest stands, three raster layers (altitude, aspect, and
watershed boundaries) were combined to delineate ecoregions.
Using this approach, the entire study area was divided into 166
ecoregions (Fig. S1a). The ecoregions map is an important input
parameter for the LANDIS-II model. Each ecoregion varies from the
other and represents a unique habitat for forest growing. For each
ecoregion, the establishment probability of each tree species varies
from the other. For each species, its establishment probabilities also
vary among different ecoregions. The initial communities map is
another important input parameter (Fig. S1b), and it was generated
mainly by adjusting the species composition map, which was
converted from FSD. Details about the simulation mechanisms of
ecological and spatial process in LANDIS-II model can be found and
consulted in previous studies (Gustafson et al., 2010; Scheller et al.,
2007, 2008; Scheller and Mladenoff, 2004).

Sixteen tree species (Fig. S2), including five conifers and eleven
broadleaf species, were simulated in this study. Forest succession in
the LANDIS-II model is driven by species’ biological attributes
(Table 2), which were collected from previous studies and indige-
nous empirical knowledge (Bu et al., 2008a; Ma et al., 2014b). The
LANDIS-II model was run for 300 years (from 2000 to 2300) at a 10-
year time step. Forests in Northeastern China have experienced
severe deforestation in the past several decades, but since 2000
they have been the key focus of the Natural Forest Resource Con-
servation Project (Wei et al., 2014). Harvest of forests in LKM is now
entirely forbidden. Therefore, no timber harvesting was simulated
in this study. Although rigorous fire suppression is practiced in the
LKM, lightning fires can occur under some weather conditions
(when the fuel load is high and dry). The occasionality of the
occurrence of fire disturbance in this area at spatial and temporal
scales is quite high, and the fire distribution can be regarded as
random. Therefore, a random fire regime based on fuel types was
simulated in the “Dynamic Fire System” extension, based on fuel
types, which were calculated from Canadian Fire Behavior Predic-
tion System (Forestry Canada Fire Danger Group, 1992) using pa-
rameters that were converted from species-cohort information in
the LANDIS-II model.

The “Biomass Succession” extension in LANDIS-II model was
used to simulate forest biomass in this study. In the simulation,
species establishment probability (SEP) and maximum above-
ground net primary productivity (ANPPmax) are two important
parameters. SEP and ANPPmax can directly determine the results of
biomass and indirectly reflect the impact of climate on simulated
biomass. A site-level ecosystem model, PnET-II, was used to simu-
late SEP and ANPPmax in this study. The PnET-II model was devel-
oped to simulate vegetation growth processes, biomass



Table 2
Biological (life history) attributes of main species in the Lesser Khingan Mountains area. LONG: Longevity; MTR: Mature age; ST: Shade tolerance; FT: Fire tolerance; ESD:
Effective distance of seed disperse; MSD:Maximum distance of seed disperse; VP: Vegetative production probability; SAmin: Minimum age of sprout age; SAmax: Maximum age
of sprout age; PFRR: Post-fire regeneration regime. Shade tolerance is an ordinal scale whereby 1 is the least shade tolerant, 5 is the most tolerant. Fire tolerance is an ordinal
scale whereby 1 is the least fire tolerant, 5 is the most tolerant.

Species LONG
(a)

MTR
(a)

ST FT ESD
(m)

MSD
(m)

VP SAmin

(a)
SAmax

(a)
PFRR

Korean pine (Pinus. koraiensis) 450 80 4 3 200 600 0 0 0 None
Spruce (Picea koraiensis and P. jezoensis) 300 30 4 3 80 200 0 0 0 None
Khingan fir (Abies nephrolepis) 200 30 4 3 80 200 0 0 0 None
Larch (Larix gmelinii) 300 20 3 4 80 200 0 0 0 None
Mongolian scotch pine (Pinus sylvestris Linn.) 250 20 1 1 100 200 0 0 0 Resprout
Manchurian walnut (Juglans mandshurica) 250 15 1 2 50 100 0.9 60 70 Resprout
Manchuria ash (Fraxinus mandshurica) 250 40 3 5 400 1000 0.9 50 110 None
Amur cork (Phellodendron amurense) 250 15 3 4 60 300 0.8 60 90 None
Mongolia oak (Quercus mongolica) 320 20 3 5 50 200 1 50 100 Resprout
Black elm (Ulmus propinqua) 250 10 3 3 200 1000 0.5 60 100 None
Mono maple (Acer mono Maxim) 200 10 3 3 500 1000 0.5 50 60 None
Ribbed birch (Betula costata) 250 15 3 3 500 4000 0.9 40 90 Serotiny
Black birch (Betula davurica) 150 15 3 5 500 4000 0.9 30 50 None
Amur linden (Tilla amurensis) 300 15 3 2 80 250 0.8 30 80 None
White birch (Betula platyphylla) 150 15 1 2 500 4000 0.8 50 60 None
Aspen (Populus davidiana) 150 10 1 1 600 5000 0.9 10 60 None
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accumulation, and forest productivity (Gustafson et al., 2010; Xu
et al., 2007) based on climatic (temperature, precipitation, and
irradiation), environmental (soil nutrition and water availability),
and physiological (Table S1) parameters.

In this study, we ran PnET-II to get SEP and ANPPmax for each
ecoregion. In order to make the model reach a steady state, climate
data from 1960 to 2000, which was compiled from 133 weather
stations in northeastern China, was interpolated into the entire
Northeastern China and then used in the PnET-II model. Further, in
order to simulate the current climate of the forest landscape, the
mean temperature and precipitation of the past 30 years
(1970e2000, Fig. S2) was used as the input climate data of 2000 in
the PnET-II model. The LANDIS-II model considered spatial het-
erogeneity in the ecoregions map parameter. The variation of
climate is reflected in the various forest ecoregions, and the impacts
of spatial variation on biomass were already reflected in the
modeling results. Therefore, it has little impact on the application of
the space-for-time substitution approach. Moreover, considering
the great uncertainty of future climate, we parameterized the
model of the initial year (2000) and assumed the climate change
trend will remain the same level in period of 1970e2000. Climate
change and variability are indirectly incorporated in LANDIS-II
model. Climate data is used in the parametrization of PnET-II
model to simulate ANPP and SEP, which are two important input
parameters in biomass simulation in LANDIS-II model (Fig. 3).
Therefore, climate change can be incorporated the in LANDIS-II
simulations by setting SEPs of tree species at different future
time, while spatial variation of climate can also be reflected in the
parameter of different environmental factors in different ecor-
egions. In total, we simulated SEP and ANPPmax of the sixteen tree
species for 166 ecoregions.

The whole modeling process of LANIDS-II and PnET-II, as well as
the derivations of the main parameters, are shown in a flow chat
(Fig. 3). The LANDIS-II and PnET-II model ran five times, and the
mean values were presented as the final results. Considering the
difference among each running was quite small, we did not add
error bars in the demonstration of the simulated biomass results.
2.4. Calculation of forest biomass

Using the maps of species composition and timber volume that
were generated from FSD, we calculated forest biomass in 2000
using the relationship between biomass and timber volume (Fang
et al., 1996, 1998). Based on the forest biomass and forest stand
age maps, we set a series random points (20000 points) and
extracted the pixel values of biomass and forest ages at relevant
positions (Fig. S1c). Therefore, a dynamic curve of forest biomass of
the LKM that varied with forest ages was generated. Similarly, dy-
namic curves of biomass in each subregion were also generated by
using the same method. The minimum, maximum, mean, median,
and standard deviation values of biomass for the LKM and each
subregion are listed in Table 1. The simulated total biomass of the
LKM and each subregion were also calculated. The observed mean
forest ages of the LKM and each subregion in 2000were regarded as
the forest ages of these areas. Simulated forest biomass accumu-
lation dynamics can also be divided into the three successional
phases (reorganization, aggradation, and post-aggradation). Thus,
simulated biomass from the LANDIS-II model and FSD derived
biomass can be compared during the aggradation phase. All the
data processing and mapping were conducted using “raster”
package in R software and ArcGIS 10.3.

In this study, we also used some biomass data from forest field
sampling plots to validate the simulated biomass at the site scale.
The field investigation was conducted in 2011 and 2012, and a total
of 64 forest plots with the size of 20 m � 50 m were surveyed. For
each plot, the central point (latitude and longitude) was recorded.
The species names, diameter at breast height (DBH), and height of
individual trees in the overstory layer (DBH >5 cm or height >2 m)
were also recorded. DBH-based allometric equations from previous
studies (Chen and Zhu, 1989; Wang, 2006) were adopted to
calculate tree biomass of each plot. The observed forest plot
biomass was used to validate the simulated biomass in 2010 from
the LANDIS-II model at the site scale.
2.5. Validation of biomass predictions

At the site scale, forest plot biomass measured in 2011 and 2012
was used to evaluate the LANDIS-II simulated biomass in 2010 for
each location. We set a hypothesis that samples the field observed
biomass and LANDIS-II simulated biomass in 2010 belong to a same
population. In order to test this hypothesis, a t-test was conducted
between field observed biomass and simulated biomass in 2010.
Moreover, linear regression analysis was also used to detect the
relationship between the two biomass datasets.



Fig. 3. Flow chat of the whole simulation and validation processes, including the main parameters of the LANDIS-II and PnET-II models and their derivations.

Fig. 4. Comparison between LANDIS-II simulated biomass and FSD derived biomass
using the space-for-time method at the landscape scale. Grey background represents
the aggradation phase of biomass accumulation.
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At the landscape scale, we compared simulated biomass in the
LANDIS-II model and FSD derived biomass in the aggradation phase
of the LKM and each subregion (Figs. 4 and 5). T-test and linear
regression analysis were also conducted between the two biomass
datasets, and the correlation (R2) and slope (k) of the regression line
were used to estimate the relationship between simulated biomass
and FSD derived biomass. Higher R2 values means stronger linear
relationship, while values of k closer to 1 illustrate better accuracy
of biomass predictions. Moreover, root mean square error (RMSE)
and the Nash-Sutcliffe index of mean error (ME) were used to es-
timate the quality of the comparison results. Lower values of RMSE
reflect lower errors between actual biomass and simulated
biomass, while values of ME closer to 1 indicate better accuracy of
biomass predictions (Miehle et al., 2006). RMSE and ME were
calculated using the following equations:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðBFi � BSiÞ2
n

s
(1)

ME ¼ 1�
Pn

i¼1ðBFi � BSiÞ2Pn
i¼1ðBSi � BSmeanÞ2

(2)

where n is sample size and i is the sequence number of sample; BFi
and BSi represent the biomass of number i from the forest survey
datasets and the simulated result in LANDIS-II model, respectively;
BSmean is the mean value of simulated biomass that was used in the
comparison. All of the statistical analyses, including the t-test,
correlation analysis, and the calculation of RMSE and ME were
conducted using R software (R Development Core Team, 2011) with
P < 0.05 used as a threshold of significance. A diagram of the
comparisons between the two biomass datasets at site and land-
scape, subregional, and site scales was shown in Fig. 3.

In this study, we also compared the FSD derived biomass and



Fig. 5. Comparison between LANDIS-II simulated biomass and FSD derived biomass using the space-for-time method at the subregional scale. Grey background represents the
aggradation phase of biomass accumulation.
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simulated biomass in the post-aggradation phase. Mean biomass
was at its maximum in this period. The mean value of the biomass
in post-aggradation period was regarded as the mean maximum
biomass (MMB). The MMB was calculated for the LKM and each
subregion in both FSD derived biomass and LANDIS-II simulated
biomass. The differences in MMB between simulated biomass and
FSD derived biomass were also calculated. We checked the
assumption of normality and homogeneity of variance for all vari-
ables in the statistical analysis of our study, and variables were
natural logarithmically transformed when necessary.

3. Results

3.1. Forest ages and forest biomass from FSD

The mean forest age of the LKM in 2000 was about 51.6 years,
and it ranged from 42.7 years in WMH to 161.6 years in FL. The
median forest age of each subregions was between 40 and 50 years,
while the standard deviations were generally less than 20 years
(Table 1). Forest stand age was found to be highly variable across
the LKM, and was illustrated in Fig. 2. The forest stand age is
obviously higher in the reserve area (FL) and the eastern part of the
LKM, while younger stands were almost often located in other
regions.

The mean biomass for the LKM in 2000, derived FSD was
84.16 Mg ha�1, and it ranged from 65.09 Mg ha�1 in CL to
174.30 Mg ha�1 in FL. The minimum, maximum, and median values
of FSD derived biomass ranged from 26.22 Mg ha�1 in CL to
55.33Mg ha�1 in FL, from 159.77Mg ha�1 in SGL2 to 217.65Mg ha�1

in MX, and from 50.64 Mg ha�1 in HX1 to 181.62 Mg ha�1 in FL,
respectively (Table 1). Also, most of the standard deviations of
forest biomass at subregional scale were less than 40 Mg ha�1.
Mean biomass calculated from FSD was highest in old growth for-
ests, most notably the FL subregion (Fig. 6b). However, there was
not much difference in FSD derived biomass of other subregions.

3.2. Spatial and temporal patterns of simulated forest biomass

Simulated total forest biomass of the LKM firstly increased from
79.6 Mg ha�1 in 2000 to 232.81 Mg ha�1 in 2100, then remained
steady at about 237.97 Mg ha�1 in the period of 2100e2180.
Biomass then dropped to 157.63 Mg ha�1 by 2230, but recovered to
230.05Mg ha�1 by the end of the simulation (Table 1). As for spatial
distribution, the total forest biomass in 2000 was relatively low in
each subregion except FL. Biomass accumulation steadily increased
for these other subregions until 2100, when biomass became
comparable between FL and all of the subregions (Fig. 7). However,
large spatial differences of total forest biomass can later be iden-
tified in 2200 when the forest biomass in southwestern part of the
LKM became low. At the end of simulation, spatial differences of
total forest biomass increased and declines of forest biomass can be
identified in the eastern and northwestern parts of the LKM.
However, biomass in the southwestern part of the LKM increased to
high levels (Fig. 7).
3.3. Validation of simulated biomass using observed and FSD
derived biomass

At the site scales, a significant (P < 0.05, R2 ¼ 0.468) linear
correlation existed between field inventory biomass and simulated
biomass in 2010 of the sampling sites (Fig. 8), while t-test result
showed no significant (P ¼ 0.078 > 0.05) difference between
observed biomass and predicted biomass. However, most of the
observed biomass was higher than that predicted by LANDIS-II
model.

At the landscape and subregional scales, the difference between
FSD derived biomass and simulated biomass in 2000 had high
spatial heterogeneity (Fig. 6c). The difference between simulated
biomass and FSD derived biomass for most subregions of the LKM
ranged between �20 Mg ha�1 and 20 Mg ha�1. The differences
were greatest in the subregions that have high LANDIS-II simulated
biomass.

High consistency and significant (P < 0.05) linear correlations
were found between FSD biomass and simulated biomass in the
aggradation phase for the entire LKM (Fig. 4), as well as for all
subregions except FL (Fig. 5). The highest R2 values existed in HB,
while the value of k closest to 1 existed in XQ (Table 3). Moreover, t-
test results also showed no significant (P > 0.05) differences



Fig. 6. Spatial distributions of simulated biomass from LANDIS-II, FSD derived biomass in 2000, and their difference. (a) LANDIS-II simulated biomass in 2000, (b) FSD derived
biomass in 2000, and (c) The difference between FSD derived biomass and simulated biomass.

Fig. 7. Dynamics of simulated forest biomass from the LANDIS-II model in the Lesser Khingan Mountains area from 2000 to 2300. The four maps show the distribution of forest
biomass every 100-year, and the curve shows the dynamic of forest biomass every 10-year of the entire landscape.
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between these two biomass datasets for those regions (Table 3).
Comparison results of the two biomass datasets in the aggradation
phase showed that the values of RMSE ranged from 17.56 Mg ha�1

in the entire LKM to 53.27 Mg ha�1 in TB. The entire LKM also had
the value of ME closest to 1 (Table 3).

3.4. Comparisons of mean maximum biomass in post-aggradation
phase

In post-aggradation phase, the MMB derived from FSD varied
between each region, and it ranged from 114.04 Mg ha�1 in TBwith
a 90-year age to 229.52 Mg ha�1 in FLwith a 110-year age. Also, the
MMB derived from simulated biomass ranged from 222.68 Mg ha�1
in JST with a 100-year age to 252.78 Mg ha�1 in FL with a 110-year
age (Table 4). The differences in MMB between the two biomass
datasets also varied among subregions, which ranged from
23.26 Mg ha�1 in FL to 123.49 Mg ha�1 in TB. However, the differ-
ences inMMB of the two biomass datasets was 53.45Mg ha�1 at the
landscape scale.

4. Discussion

4.1. Spatial and temporal dynamics of forest biomass

Data from the forest survey dataset was used to calculate forest
biomass using a method established in a previous study (Fang et al.,



Fig. 8. The relationship between observed forest biomass and simulated forest
biomass in 2010. Linear regression is used to fit the relationship, and asterisks after the
R square values indicate significant correlations (P < 0.05).

Table 3
Descriptive statistics of the relationship between simulated biomass from the
LANDIS-II model and forest survey dataset (FSD) derived biomass in the aggradation
phase of different subregions (forestry bureau) and the entire Lesser Khingan
Mountains area. k and R2 represent the slope of regression line and correlations of
linear regressions, respectively. P-values from a t-test indicate significant differences
between the two biomass datasets at the 0.05 alpha level. RMSE and ME represent
the root mean square error and Nash-Sutcliffe index of mean error in comparison
between FSD derived biomass and simulated biomass in the aggradation phase,
respectively.

Regions P-values R2 k RMSE (Mg ha�1) ME

ZH 0.16 0.88 1.08 37.53 0.20
HX1 0.24 0.89 1.20 35.37 �0.05
WYL 0.21 0.85 1.23 37.21 �0.30
TWH 0.24 0.94 1.07 31.89 0.35
SGL1 0.13 0.94 1.43 42.02 �0.74
XQ 0.19 0.90 0.99 36.27 0.22
YH 0.36 0.93 1.04 25.49 0.60
WY 0.41 0.89 0.90 25.63 0.61
HX2 0.26 0.87 0.93 33.10 0.41
TB 0.06 0.91 2.17 53.27 �7.63
SGL2 0.86 0.84 0.53 18.68 0.71
HB 0.18 0.97 1.09 32.56 0.32
LL 0.22 0.76 0.71 37.90 0.01
SGL3 0.16 0.82 1.08 41.29 �0.02
FL e e e e e

SL 0.16 0.86 0.86 38.98 0.37
MX 0.21 0.89 1.02 34.98 0.40
CL 0.16 0.79 0.98 40.21 �0.06
WMH 0.36 0.81 0.84 30.37 0.47
JST 0.31 0.79 0.92 31.69 0.30
TL 0.40 0.92 1.05 23.87 0.72
LKM 0.67 0.90 1.14 17.56 0.76
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1996), which has been a popular approach for forest biomass
estimation in China (Fang and Chen, 2001; Fang et al., 1998; Huang
et al., 2007). For the initial landscape, dynamics of forest biomass
over time for the entire LKM andmost subregions presented an “S”-
shaped curve (Figs. 4 and 5). This curve was consistent with some
previous studies (Poorter et al., 2006, 2012), which pointed out that
a logistic regression exists between a tree's diameter at breast
height (DBH) and its age. This logistic relationship was also
demonstrated at the stand scale by simulating forest biomass and
forest age, which suggests that the forest biomass-age curve ob-
tained using the space-for-time substitution method has certain
rationality. The small difference of the mean forest biomass
(4.6 Mg ha�1) between FSD (Table 1) and LANDIS-II simulation
(Fig. 4) indicated that the initial parameterization of LANDIS-II
model was reliable. Moreover, time series changes of biomass
with forest age was generated through the space-for-time substi-
tutionmethod, which shows great potential in validating long-term
predictions of FLMs.

Great differences existed in the spatial patterns of forest
biomass, which increased in the southern LKM and decreased in the
northern LKM (Fig. 7). The reasons are complex and can be attrib-
uted to the following two aspects. First, the distribution of species
composition varies among regions. Broadleaved forests and conif-
erous forests are the dominant forest types of the southern and
northern parts of LKM, respectively. In climate warming scenarios,
it is expected that the growth of broadleaved forests will be
enhanced while coniferous forest growth would be inhibited (Bu
et al., 2008a). When climate is maintained, broadleaved trees
have a tendency to replace coniferous trees (Fraser et al., 2007).
Second, forest age is highly variable among regions. Most of the
forests in the southern LKM are young secondary forests, while old-
growth forests account for a considerable proportion in the
northern LKM (Chen, 2003; Xiao et al., 2002; Xu et al., 2008).
Therefore, biomass accumulation increases at a fast rate in southern
LKM, while forest biomass in the northern part of LKM during the
simulation is closer to a steady state.

We compared forest biomass between FSD derived biomass and
LANDIS-II simulated biomass in 2000. FSD derived biomass is
regarded as the approximation of the real forest biomass. LANDIS-II
overestimates the forest biomass in north part of LKM while un-
derestimates the forest biomass in central and north part of LKM
(Fig. 6c). The overestimation (<�80 Mg ha�1) of forest biomass in
the south is mainly attributed to the forest's vulnerability to human
activities. The south part of LKM area is adjacent to urban land and
cropland where human activities are very intense, and selective
logging might be conducted and cause biomass loss in branches
and leaves. These factors cannot be simulated in LANDIS-II model,
which calculates forest biomass only through the composition of
species physiological conditions and age cohorts' existence. The
underestimation areas (>80 Mg ha�1) are mainly distributed in the
central and north part of LKM. These areas are interior forest land
where forest age is relative higher but tree density is lower. This
cause LANDIS-II to underestimate the real forest biomass in central
and north part of LKM.

In this study, forest age for the LKM and all subregions were
obtained by calculating the mean values of the whole forested
pixels of relevant area and then used to construct forest biomass-
age curves. Although the method that we used to calculate the
forest age of each subregion ignored the variations, it is still an
effective approach to estimate forest age at such large extents.
Forest biomass can be generally obtained by using tree biomass and
age stand estimates, however, this relationship varies among tree
species (Deng et al., 2012; Worbes, 1999). For the initial landscape,
we did not have all these relationships of all tree species. Therefore,
we used another dataset (timber volume), which is uniformly ob-
tained from the entire landscape, to calculate forest biomass at
large extents. This approach controls the uncertainty of the calcu-
lation of forest biomass to some extent and makes the space-for-
time method more appropriate in the validation of forest biomass
predictions from LANDIS-II.



Table 4
Simulated and forest survey dataset (FSD) derived mean maximum biomass (MMB) in the post-aggradation phase of different subregions (forestry bureau) and the entire
Lesser KhinganMountains area. Meanmaximum biomass represents the mean biomass value in the post-aggradation phase. Difference represent the difference value between
simulated mean maximum biomass from the LANDIS-II model and FSD derived biomass in 2000. Forest age at the post-aggradation is the age at which the forest enters the
post-aggradation phase.

Regions MMB (Mg ha�1) Difference (Mg ha�1) Forest age at the post-aggradation phase (years)

Prediction in LANDIS-II Forest survey dataset

ZH 247.33 184.54 62.79 130
HX1 246.62 154.71 91.91 90
WYL 248.71 163.12 85.59 100
TWH 243.78 182.26 61.52 110
SGL1 239.06 151.24 87.82 100
XQ 236.24 177.50 58.74 100
YH 237.97 180.77 57.20 110
WY 244.47 184.62 59.85 100
HX2 240.02 182.54 57.48 100
TB 237.53 114.04 123.49 90
SGL2 237.49 143.24 94.25 80
HB 234.76 181.10 53.66 120
LL 244.07 183.29 60.78 100
SGL3 242.71 181.61 61.10 120
FL 252.78 229.52 23.26 110
SL 224.36 195.93 28.43 120
MX 236.06 201.94 34.12 130
CL 233.52 181.08 52.44 100
WMH 233.08 184.89 48.19 90
JST 222.68 175.79 46.89 100
TL 235.80 195.89 39.91 140
LKM 237.97 184.52 53.45 120
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4.2. Validation performance of predictions of LANDIS-II model

The t-test result showed that the field observed biomass around
2011 and LANDIS-II simulated biomass in 2010 belong to a same
population (Fig. 8). This result might provide some evidence that
biomass predictions are in line with the actual biomass storage at
the initial stage of simulation. However, some errors still existed in
the validation of the biomass predictions of LANDIS-II model at the
site scale. The linear correlation only explained a proportion
(R2 ¼ 0.47) of variance, and observed biomass of most sampling
sites were higher than the predicted biomass for those positions
(Fig. 8). This difference may be attributed to two main reasons.
Firstly, FLMs such as LANDIS-II and LANDIS Pro are not built to
predict forest dynamics at a specific location because stochastic
components are contained in themodels (Mladenoff and He,1999a;
Scheller et al., 2007). Secondly, predicted biomass of LANDIS-II
model was output at 90-m resolution which may include forest
gaps, while observed biomass that was obtained from 20 m � 50 m
sized plots generally do not contain forest gaps. This phenomenon
is extremely obvious in some forest plots in which biomass was
larger than 200 Mg ha�1. These plots are commonly located in old-
growth forests and are more likely to contain larger forest gaps
(Mladenoff et al., 1993; Runkle, 1981; Schnitzer et al., 2000).

A comparison of forest biomass-age curves with the biomass
predictions from the LANDIS-II model showed excellent model
performance during the aggradation phase for the entire LKM and
most subregions (Figs. 4 and 5). According to t-test results, there is
no statistically significant difference between biomass from FSD
and predictions of LANDIS-II model for all regions in the aggrada-
tion phase, except for Fenglin (FL) (Table 3). The results also
demonstrated significant linear correlations between the two
biomass datasets of these regions, and most linear correlations
indicated that predicted biomass in the aggradation phase for most
subregions in the LKM are consistent with the real biomass. Most
regions’ R2 values were larger than 0.8 andmost k values were close
to 1. Although RMSE and ME results between the two biomass
datasets in aggradation phase for most subregions varied in
relatively large ranges (Table 3), the optimal values of RMSE andME
both emerged whenwe conducted analysis for the entire LKM. This
finding demonstrates that the performance of the validation of
biomass predictions in LANDIS-II model using space-for-time sub-
stitution method is enhanced when spatial extent increases, and it
further proves that the main function of FLMs is simulating forest
dynamics at landscape scale (Holling, 1992; Prentice et al., 1993).

Great differences existed between mean biomass estimates
from the FSD and predictions from the LANDIS-II model during the
steady state phase for the LKM and each subregion (Table 4). The
simulated MMB is obviously overestimated. The main possible
reason is that the real forest landscape in the LKM experienced
severe deforestation (Wei et al., 2014), mostly in mature and old-
growth forests, which is not simulated in this study. From
another perspective, the difference indicates that the potential for
biomass accumulation maybe increased by a considerable level if
forest harvesting is forbidden. This finding may be an important
reference for forest managers.

Further, we cannot neglect the simulation error of the model
itself. The simulation of forest biomass by LANDIS-II may over-
estimate the biomass of the regions that already have high level of
biomass in the initial year (Fig. 6). LANDIS-II model simulates forest
biomass based on species cohorts amount and stand ages, which do
not contain all possible factors that might be influencing forest
biomass accumulation. Therefore, these factors may also cause the
deviation between simulated biomass and FSD derived biomass.
Moreover, uncertainties exist in the application of the space-for-
time substitution method, which may also contribute to the dif-
ference between simulated biomass and FSD derived biomass in
the post-aggradation phase. Temporal and spatial variation of
climate, soil type, topography, forest management, and distur-
bances may exist in the study area. These factors all have impacts
on the application of the space-for-time substitution method in
predicting biodiversity, ecological succession, and soil development
(Blois et al., 2013; Johnson and Miyanishi, 2008; Walker et al.,
2010). In this study, although spatial heterogeneity of some forest
growth conditions were reflected in the initial parameters of
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LANDIS-II model, we cannot address all possible factors that might
be influencing forest biomass accumulation in the simulation.

In the LKM, Fenglin (FL) is a natural reserve where the forests
have been protected since the 1950s. Forest age composition of this
subregion can sustainably remain constant, and the forest age as
well as the biomass of most forests there remain at their maximum
level (Table 1). This steady-state situation prohibits the detection of
the aggradation in this subregion, and the space-for-time substi-
tution method is not suitable for validation in this area. Moreover,
forests in FL are commonly regarded as the climax stage of forest
succession and used as a peak reference of carbon storage of forests
of other places (Bu et al., 2008b; Zhou et al., 2007). This finding is
demonstrated by the result of MMB in this study (Table 4), and it
inspires us that the forest reserve is an area not only for biodiversity
protection, but can also increase the carbon sink.

4.3. Implications of space-for-time substitution method

This study attempts to use the space-for-time substitution
method to validate biomass predictions of a FLM at landscape scale.
Forest biomass-age dynamic curves were used to compare long-
term biomass predictions of the LANDIS-II model for the LKM, the
results of which demonstrated an excellent applicability at the
landscape scale. Nonetheless, before the age of 100 years, departure
of the simulated biomass from biomass derived from FSD still exists
inmost subregions (Fig. 5). This divergencemay be attributed to the
following reason. The mean value of the forest stand age (Table 1)
shows the general status of the forest age of a subregion. However,
in order to match the time step of LANDIS-II (10 years) and to set
each pair of biomass samples from FSD and LANDIS-II at the same
time, the age of a subregion was set as integer times of 10 in the
comparisons between the two biomass datasets. This may be a big
problem and lead to departures in the final comparison between
the two biomass datasets. If we horizontally move the start point of
the biomass curve that was derived from FSD to the right position
(mean forest stand age) as shown in Table 1, the departure may be
reduced.

Our study is a new attempt to conduct validations of long-term
predictions of FLMs at large spatial extents when only limited forest
inventory data is available. Although data assimilation has been
widely adopted to validate and calibrate the results of site-scale
ecological models (Luo et al., 2014; Niu et al., 2014; Peng et al.,
2011), it is still hard to apply data ingestion to evaluate pre-
dictions produced by landscape models due to a lack of long time
series observation at the landscape scale. Moreover, forest in-
ventory data in China is limited and commonly difficult to acquire.
Thus, validating predictions of FLMs using the space-for-time
substitution method is an appropriate approach in landscape
ecology. It allows for the realistic comparison between observed
results and long-term predicted results.

In order to simulate the real future state of forest landscape in
LKM, no disturbance (forest harvest is banned in this area since
2000) was modeled in this study. However, historical disturbances
like timber harvesting have a certain impact on current forests
(Ghilardi et al., 2016; Law et al., 2004; Nepstad et al., 1999;
Robichaud, 2000), and the effects of disturbances have been
described by many previous studies at the landscape scale
(Johnstone et al., 2010; Luo et al., 2014). In this study, we speculated
that deforestation of old-growth forests had decreased the MMB,
however, the mechanism and the degree of impacts from har-
vesting as well as other disturbances is still worth future study.

5. Conclusions

Biomass predictions from the LANDIS-II model from 2000 to
2300was comparedwith FSD derived forest biomass at subregional
and the landscape scales using the space-for-time substitution
method in forest landscape of the LKM. Although it is impossible to
exclude the spatial heterogeneity of the entire LKM landscape and
among different subregions, the space-for-time substitution
method is still been proved to have potential in validating time
series biomass predictions of a FLM when only limited forest in-
ventory data is available. Especially in the aggradation phase, high
consistency exists between simulated biomass and FSD derived
biomass. Moreover, predicted biomass at one time step is consis-
tent with field observed biomass data at the site scale.

As to the heterogeneity of the biomass distribution of the initial
landscape, forest reserve subregion (FL) stores more biomass than
other areas of the LKM. The differences in species composition and
forest age composition may cause great variation in biomass dis-
tribution during the simulation. Despite the simulation error of the
model itself and the uncertainties in the application of space-for-
time substitution method, considerable loss of biomass due to
historical harvesting in LKM may be the most possible explanation
of the difference between the mean maximum biomass of simu-
lated biomass and FSD derived biomass.
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