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Aboveground biomass (AGB) of temperate forest plays an important role in global carbon cycles and
needs to be estimated accurately. ALOS/PALSAR (Advanced Land Observing Satellite/Phased Array L-
band Synthetic Aperture Radar) data has recently been used to estimate forest AGB. However, the rela-
tionships between AGB and PALSAR backscatter coefficients of different forest types in Northeastern
China remain unknown. In this study, we analyzed PALSAR data in 2010 and observed AGB data from
104 forest plots in 2011 of needleleaf forest, mixed forest, and broadleaf forest in Heilongjiang province
of Northeastern China. ‘‘Poisson” regression in generalized linear models (GLMs) and BRT (boosted regres-
sion tree) analysis in generalized boosted models (GBMs) were used to test whether the constructed
PALSAR/AGB models based on individual forest types have better performance. We also investigated
whether adding topographical and stand structure factors into the regression models can enhance the
model performance. Results showed that GBM model had a better performance in fitting the relation-
ships between AGB and PALSAR backscatter coefficients than did GLM model for needleleaf forest
(RMSE = 3.81 Mg ha�1, R2 = 0.98), mixed forest (RMSE = 17.72 Mg ha�1, R2 = 0.96), and broadleaf forest
(RMSE = 19.94 Mg ha�1, R2 = 0.96), and performance of nonlinear regression models constructed on indi-
vidual forest types were higher than that on all forest plots. Moreover, fitting results of GLM and GBM
models were both enhanced when topographical and stand structure factors were incorporated into
the predictor variables. Regression models constructed based on individual forest types outperform than
that based on all forest plots, and the model performance will be enhanced when incorporating topo-
graphical and stand structure factors. With information of forest types, topography, and stand features,
PALSAR data can express its full ability in accurate estimation of forest AGB.

� 2016 Published by Elsevier B.V.
1. Introduction

Temperate forests cover more than 6.4 billion hectares on the
Earth, and approximately 41 Pg carbon is stored in its vegetation
carbon pools, most of which is held in aboveground live biomass
(AGB) (Dixon et al., 1994). In Northeastern (NE) China, the area
of temperate forest is more than 38.3 million hectares and
accounts for more than one third of the total forest area in China,
and the carbon storage of forests in this area is about 1.4 Pg C
and also accounts for about 30% of the total carbon storage in for-
ests of China (Wang, 2006). Many factors have both positive and
negative influence on forest aboveground biomass. On the one
hand, human and natural disturbances, such as harvesting, fire,
and pest disease, in history decreased the carbon density in NE
China, which is lower than that in temperate forests of other
regions over the world (Fang et al., 2001). Forests in NE China
tended to be carbon source due to overharvesting and degradation
during 1980s and 1990s (Piao et al., 2009). On the other hand, NE
China locates in high latitude region where the climate has chan-
ged intensely since last century, and forest biomass in this region
is boosted by the climate warming (Yang and Wang, 2005). More-
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over, although forests in NE China have experienced severe har-
vesting in history (Jiang et al., 2002; Yu et al., 2011), they had been
one of the key objectives for conservation and reforestation in Nat-
ural Forest Resource Conservation Project of China since 2000 (Wei
et al., 2014), and forest biomass in this region increased rapidly
(Ma et al., 2016). Forest biomass in NE China has changed greatly
during the past several decades. Therefore, accurate estimation of
forest aboveground biomass has important significance in estimat-
ing the role of temperate forests in regional and global carbon cycle
(Laurin et al., 2016) and developing science-based forest manage-
ment practices.

There are a number of ways to estimate and monitor forest AGB
(Brandeis et al., 2006; Soenen et al., 2010; FAO, 2015). Directly
weighing individual components of trees is the most accurate
way to estimate the biomass of trees (Parresol, 1999), but the
method is hardly adopted because of its high cost of labor, money,
and time. Conducting forest inventory and calculating forest bio-
mass using allometric biomass equations based on DBH (diameter
at breast height) and height of each tree is an efficient way (Gower
et al., 1999; Wang, 2006). Although rich data of forest composition
and structure can be obtained in forest inventory, it still has some
deficiency in evaluating spatial distribution of forest biomass
(Brown et al., 1999; Houghton et al., 2001). Moreover, it is also dif-
ficult to calculate the biomass of some tree species, as their allo-
metric equations haven’t been established yet. Remote sensing
has offered a viable mean for estimating forest AGB at large spatial
scales (Hansen et al., 2000; Myneni et al., 2001; Brown, 2002).

Estimation of forest AGB from remote sensing data starts with
analysis of the relationship between remote sensing signals and
AGB of training samples, and then applies this relationship (statis-
tical model) to calculate AGB over the entire study area (Bastin
et al., 2014). Data from optical sensors were used to estimate forest
biomass, based on the relationship between forest AGB and vege-
tation indices, such as NDVI (normalized difference vegetation
index) and EVI (enhanced vegetation index) (Huete et al., 2002;
Nakaji et al., 2008). However, the applications with optical data
are often limited by the lack of high quality images due to frequent
clouds and saturation at low biomass level by the spectral bands
and spectral indices (Nichol and Sarker, 2011). Data from LiDAR
(Light detection and ranging) provide accurate three-dimension
information like tree height and canopy vertical structure
(Naesset, 2002; Goetz et al., 2009), and AGB is calculated using
empirical equation of tree height and biomass (Lefsky et al.,
1999; Zhao et al., 2009). Because of sophisticated technical equip-
ment and high cost, airborne LiDAR images are not widely avail-
able and are less often used in biomass estimation at large
spatial scales, including temperate forest of NE China (Tang et al.,
2012; Zhang and Ni-meister, 2014).

Synthetic Aperture Radar (SAR) data such as L-band ALOS/PAL-
SAR (Advanced Land Observing Satellite/Phased Array L-band Syn-
thetic Aperture Radar) and X-band TerraSAR-X are widely available
and have been increasingly used in estimation of forest AGB
(Karjalainen et al., 2012; Vastaranta et al., 2014). PALSAR data were
used to estimate AGB of forest plots from tropic and temperate for-
ests to boreal forests in Africa, North America, Australia, and Russia
(Lucas et al., 2007; Thiel et al., 2009; Lucas et al., 2010; Cartus et al.,
2012; Sarker et al., 2012). Nonlinear regression models were devel-
oped to estimate forest AGB based on PALSAR backscatter coeffi-
cients; but the model structure and parameters vary
substantially among these studies (Lucas et al., 2010; Englhart
et al., 2011; Carreiras et al., 2012; Peregon and Yamagata, 2013).
In addition, other forest stand properties (stand structure and com-
plexity of understory layer) and topographical features vary among
different forest types and affect forest AGB (Conard and Ivanova,
1997; Jobidon, 2000; Ma et al., 2015b). These factors also have
influence on PALSAR backscatter coefficients (Lucas et al., 2010;
Whittle et al., 2012; Atwood et al., 2014). Therefore, it may be use-
ful to incorporate forest stand and topographical factors in the
nonlinear regression models and to construct various regression
models of different forest types for the purpose of accurate estima-
tion of AGB.

In this study, we constructed the nonlinear relationship
between PALSAR backscatter coefficients and forest AGB of differ-
ent forest types in NE China, based on forest inventory data of
104 plots and PALSAR data. Forest types in NE China were divided
into broadleaf forest, needleleaf forest, and mixed forest in our
study. The objectives of this study were twofold: (1) determine
the relationships between AGB and PALSAR backscatter coeffi-
cients by different forest types; (2) test the hypothesis that adding
forest stand and topographical factors in the predictor variables of
regression models can improve estimation of forest AGB.
2. Materials and methods

2.1. Study area

Our study area is the forest zone in Heilongjiang province of NE
China, and it extends across 43.42�N–52.58�N, 118.06�E–135.16�E
(Fig. 1). The topography is characterized by low mountains with
elevation of 120–1000 m. The climate types are mid-temperate
continental monsoon climate and cold- temperate continental
monsoon climate. The annual mean temperature ranges from
�2.8 �C in southern part to �3.2 �C in northern part. The average
annual rainfall ranges from 530 mm to 800 mm, falling most in
summer. Three main forest types are located in our study area,
needleleaf forest in the northern part, mixed forest in the central
part, and broadleaf forest in the southern part (Fig. 1). Based on
our inventory data and previous studies (Ma et al., 2016; Ma
et al., 2015b), species compositions of the three forest types are
listed in Table 1.
2.2. Field inventory data and AGB calculation

In 2011, field inventory was carried out in various types of for-
ests in Heilongjiang province. A total of 104 forest plots (Fig. 1)
with the size of 20 m � 50 m were surveyed. These plots belong
to three forest types: needleleaf forest, mixed forest, and broadleaf
forest (Table S2). For each plot, location (latitude and longitude) of
the central point, species name, diameter at breast height (DBH),
and height of individual trees in the overstory layer were recorded.
Because the lower limit of the applicable range of most biomass
allometric equations in this study is about 5 cm, we only measured
the trees that with a minimum DBH of 5 cm. trees with DBH less
than 5 cm will be regarded as shrubs, and their biomass was calcu-
lated by direct measurement. Each plot was regarded as an individ-
ual sample in our analysis. The number of dead trees was quite
few, therefore they were not included in the AGB of our survey.
Within each tree plot, three 2 m � 2 m shrub plots and three
1 m � 1 m herb plots were selected randomly. Species name and
abundance of each shrub and herb were recorded, and then the
aboveground part of shrub and herb was harvested. These shrub
and herb samples were taken into laboratory for further process-
ing, and they were dried to a constant weight at 105 �C and then
weighed. Considering the low growth rate of forests in this high
latitude region, the increment of forest AGB for one year is negligi-
ble. Therefore, forest inventory results in 2011 were matching with
PALSAR data in 2010.

The DBH-based allometric equations from previous studies
(Chen and Zhu, 1989; Wang, 2006) were adopted to calculate tree
AGB (Table S1). The dry weight of shrub and herb samples of the
three subplots within a tree plot represented the AGB of under-



Fig. 1. Locations of forest sampling plots of different forest types and the acquisition dates of PALSAR mosaic dataset and field photos of needleleaf forest, mixed forest, and
broadleaf forest in Heilongjiang Province of Northeastern China in 2010. The area with the brown boundary do not belong to Heilongjiang Province, however, we also
conducted field investigation there. Note: the strip in the red box was obtained in November 2010, which is beyond the plant growing season and could be affected by snow,
and thus it was replaced by PALSAR data in September 2009.

Table 1
Main species, plots number, and aboveground live biomass (AGB) of the three forest types that surveyed in Heilongjiang of Northeastern China. Min, Max, Mean, Median, and Std
represent the minimum, maximum, mean, median and standard deviation values of AGB of different forest types.

Forest types Main species Plots
number

AGB (Mg ha�1)

Min Max Mean Median Std

Needleleaf
forest

Larix gmelinii, Pinus sylvestris Linn., Betula platyphylla, etc. 20 11.2 169.6 84.0 79.3 47.9

Mixed forest Pinus. koraiensis, Picea koraiensis and Picea jezoensis, Abies nephrolepis, Fraxinus mandshurica, Ulmus
japonica, Acer mono Maxim, etc.

50 14.3 350.3 127.2 116.7 79.9

Broadleaf
forest

Populus davidiana, Betula costata, Quercus mongolica, Betula costata, etc. 34 31.9 388.0 129.2 108.3 72.5

All forest
plots

104 11.2 388.0 119.5 106.2 74.4
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story layer. The AGB (Mg ha�1) of a tree plot was calculated as the
sum of all trees’ AGB and understory layers’ AGB in the tree plot.
However, understory AGB only accounted for a small percentage
of the total AGB, and the proportions of the understory AGB to
the total AGB for needleleaf forest, mixed forest, and broadleaf for-
est were 0.71%, 0.99%, and 1.56%, respectively (Table S2).

At plot level, stand structure features were mainly reflected
based on the inventory data. Tree density and median value of tree
height in a plot were calculated. The two stand structure factors as
well as their ranges and explanations or calculation formulas were
listed in Table 2. Considering the high correlation between these
two stand structure factors to forest AGB (Brown et al., 1989;
Fang et al., 1996; Lefsky et al., 2002; Naesset, 2002) and the avail-
ability of the global forest canopy height data (Lefsky, 2010), they
were also incorporated as the predictor variables of forest AGB
estimation.
2.3. ALOS/PALSAR data

The 25-m PALSAR L-band orthorectified mosaic data with the
Fine Beam Dual (FBD) model in 2009 and 2010 was downloaded
from the ALOS Research and Application Project of EORC, Japan
Aerospace Exploration Agency (http://www.eorc.jaxa.jp/ALOS/
en/palsar_fnf/data/). This dataset is aggregated from original
observation with minimum response to surface moisture
(Shimada et al., 2014). In high latitude regions, the growing season
of forests is relative short (May to October) and there is large vari-
ation in snow cover, which may contribute to seasonal variability

http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/
http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/


Table 2
Ranges and calculation of topographical and forest stand structure variables used to
be combined in generalized linear models (GLMs) and generalized boosted models
(GBMs) analysis. In calculation of topographical wetness index (TWI), a represents
flow area per cell, and b represents the slope (by radian).

Variables Code Range Explanation or calculation formula

Elevation (m) M1 121–1016 Elevation
Slope (�) M2 0.8–22.5 Slope
Aspect (�) M3 7.8–322.3 Aspect
Irasp M4 0–1 Irasp ¼ 1�cos ð p

180Þ�ðaspect�30Þ½ �
2

Relief M5 3–59 Relief amplitude
STD M6 0.9–17.8 Standard deviation of elevation

of 3*3 pixels
TWI M7 4.7–13.1 TWI ¼ lna=b
Tree Height (m) N1 3.3–21.6 Median value of tree height of a plot
TD (stem ha�1) N2 201–3670 Tree density
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in SAR data (Santoro et al., 2011). We selected PALSAR data mainly
in summer and early autumn when biomass data is considered to
be most representative and PALSAR data receives least influence of
moisture and snow. However, one PALSAR image strip was
obtained in November 2010, and it was replaced by another strip
of PALSAR data obtained in September 2009 (Fig. 1).

Gamma-naught HH and HV are included in the dataset, and the
preprocessing of PALSAR data is completed by JAXA. Geometrical
calibration of the PALSAR image was conducted using 90 m resolu-
tion SRTM (Shuttle Radar Topography Mission) Digital Elevation
Model (DEM) (Shimada and Ohtaki, 2010). The digital numbers
(DN) of PALSAR signal amplitude have been extracted and con-
verted to gamma naught backscattering coefficients (dB) in deci-
mal units using following equation (Shimada et al., 2009; Qin
et al., 2015):

c0 ¼ 10� log10DN
2 � CF

where c0 is the backscattering coefficient, DN is the PALSAR signal
amplitude in HH or HV, CF is the calibration factor, depended on
incidence angle (Shimada et al., 2009), and equals to �83.

In addition to HH and HV backscatter coefficients, we also cal-
culated the sum, the difference, the ratio, the normalized differ-
ence, and square values of above coefficients (Table 3), and they
were all used to explore the relationships between PALSAR data
and forest AGB.

In order to test whether the PALSAR data of the 104 forest plots
can represent the forests in the entire study area, we calculated
and compared the frequency and cumulative frequency curves of
PALSAR HH and HV backscatter coefficients for (1) all forest pixels
in Heilongjiang province, and (2) those pixels associated with the
104 forest sampling plots, respectively (Fig. 2), based on the forest
Table 3
Parameters estimates and fitting statistics of variables of full model using ‘‘Poisson” regre
asterisk means the significant (P < 0.05) effect of regression of the variable. c0 is the ALOS
obtained for all coefficients run at the same time.

Parameters Variables Code Needleleaf fores

a0 Intercept �488.5*

a1 c0HH X1 �2579.6*

a2 c0HV X2 598. 9*

a3 c0HH+HV X3 993.8*

a4 c0HV�HH X4 �1609.6*

a5 c0HH/HV X5 534.9*

a6 c0(HV�HH)/(HH+HV) X6 733.0*

a7 c0HH2 X7 �636.7*

a8 c0HV2 X8 �637.5*

a9 c0(HH+HV)2 X9 318.6*

a10 c0(HV�HH)
2 X10 318.0*

a11 c0(HH/HV)2 X11 �3.1
a12 c0[(HV�HH)/(HH+HV)]

2 X12 �414.8*
and non-forest map from analysis of PALSAR and MODIS data (Qin
et al., 2015). The frequency distribution of HH and HV backscatter
coefficients for the 104 plots is similar to those associated with all
pixels in Heilongjiang province indicating that our sampling sites
are representative.

2.4. Topographical data

We downloaded the Digital Elevation Model (DEM) data at
30-m spatial resolution from the USGS (United States Geological
Survey) website (http://www.usgs.gov/). We calculated elevation,
slope, aspect, irradiation aspect (Irasp), relief amplitude (Relif),
standard deviation of elevation of 3 � 3 pixels (STD), and topo-
graphic wetness index (TWI) of each forest plot. Irasp represents
the amount of irradiation of a certain aspect, Relif and STD both
represent the relief intensity of microtopography, and TWI reflects
the moisture of circumstance induced by topographical conditions
(Sorensen et al., 2006). Selection of these topographical factors was
based on the consideration of their possible impacts on forest AGB
or PALSAR data, and all these topographical factors can be calcu-
lated from DEM dataset, which can also be applied in forests of
other regions. The calculation and ranges of these topographical
factors were also listed in Table 2.

2.5. Regression models

A few studies showed strong linear relationships between loga-
rithmic transform of AGB and predictor variables (Carreiras et al.,
2012; Peregon and Yamagata, 2013). In this study, we first devel-
oped the linear-log regression models between forest AGB (natural
logarithmic transformation) and PALSAR (HH, HV) backscatter
coefficients. However, several other studies (Lucas et al., 2010;
Cartus et al., 2012) reported that nonlinear regression models were
considered as the best fit of the relationship between PALSAR data
and forest AGB. Therefore, we also used both ‘‘Poisson” regression
in generalized linear models (GLMs) and boosted regression tree
(BRT) analysis in generalized boosted models (GBMs) to fit the rela-
tionship between forest AGB and PALSAR backscatter coefficients
in this study. Considering topographical and forest stand structure
factors have significant influence on both forest AGB and PALSAR
backscatter coefficients, they were also incorporated in regression
models to explore whether they can improve the performance of
models.

‘‘Poisson” regression normally has an advantage in fitting loga-
rithmic model of variables, therefore, it can be used to build direct
nonlinear relationship between AGB and predictor variables. BRT
analysis is a machine learning approach used in nonlinear relation-
ship analysis (Moisen et al., 2006; Elith et al., 2008), which couples
ssion in generalized linear models (GLMs) from samples of different forest types. An
/PALSAR backscatter intensity (dB). The significance values of these coefficients were

t Mixed forest Broadleaf forest All forest plots

3.7 �109.9* �138.8*

�924.3* �266.1* �513.5*

3.5 421.5* 195.3*

456.7* �79.8 157.4*

�454.0* �342.0* �351.5*

�114.2* 138.9* 173.2*

151.5* 134.2* 214.5*

�52.34 525.1* 58.5*

�52.0 525.2* 58.5*

26.0 �262.6* �29.3*

26.2 �262.6* �29.2*

81.6* �47.9* �50.3*

�138.8* �7.3 �65.8*

http://www.usgs.gov/


Fig. 2. Frequency and cumulative frequency curves of PALSAR HH and HV backscatter coefficients for (1) all forest pixels in Heilongjiang province, and (2) forest sampling
plots in this study. (a) HH, (b) HV.
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the strengths of two algorithms: regression trees and boosting.
Regression trees are originated from the theories of classification
and decision tree. Boosting is mainly based on a forward procedure
which construct and combine a collection of models with the pur-
pose of improving model performance. No transformation is
needed in BRT analysis due to the ability in accommodating any
data distribution.

In regression models, the response variable is forest AGB, and
the predictor variables include PALSAR backscatter coefficients,
forest stand structure and topographical factors. We used R soft-
ware to conduct GLM and GBM (‘‘gbm” package) fitting (R
Development Core Team, 2011). In addition, the ranking of relative
importance of individual predictor variables was also output by
BRT analysis. Parameters including ‘‘gaussian” error distribution, a
learning rate of 0.005, a bag fraction of 0.5, and 10-fold cross vali-
dation were set in BRT analysis. Root mean square error (RMSE) and
R square (R2) were used to evaluate the performance of fitting
models. In the results, fitted AGB in ‘‘Poisson” regression of GLM
and cross validation predicted AGB in BRT analysis of GBM were
also generated.
2.6. Variables selection

In order to avoid over fitting, all PALSAR backscatter coefficients
were firstly used in GLM regression models, and parameter esti-
mates (full model) and the significance of each PALSAR backscatter
coefficients were output (Table 3). Results showed that not all PAL-
SAR backscatter coefficients were significantly correlated with for-
est AGB, and collinearity may exist among these coefficients.
Therefore, based on the significance of each parameter of the full
model, variables selection was conducted using all-subsets regres-
sions (‘‘leaps” packages in R) method to get the best fit model and
to avoid collinearity. Variable selections were developed in both
circumstances that the predictor variables include or not include
topographical and stand structure factors. The highest adjust R2

was used as the filter criteria to choose predictor variables that
would be selected to construct nonlinear regression models. The
chosen predictor variables of different forest types and all forest
plots by all-subsets regressions were shown in Fig. 3. However,
based on several previous studies (Saatchi et al., 2007; Carreiras
et al., 2012; Peregon and Yamagata, 2013), HH and HV backscatter
coefficients will be included if they are not chosen by the method
of all-subsets regression. All the nonlinear regression models in
GLM and GBM were constructed after variable selection.
3. Results

3.1. Single-variable linear-log regression models between AGB and
PALSAR HH and HV data

Fig. 4a showed the relationships between PALSAR HH backscat-
ter coefficients and AGB by individual forest types and all forest
plots. As AGB increases, PALSAR HH also increased and reached sat-
uration points at �150 Mg ha�1 for needleleaf forest and
�100 Mg ha�1 for mixed forest. According to the linear-log regres-
sion models, the relationship between forest AGB and PALSAR HH
backscatter coefficients were significant (P < 0.05) for needleleaf
forest (R2 = 0.63), mixed forest (R2 = 0.20), and all forest plots
(R2 = 0.13) (Fig. 4a). Broadleaf forest had no significant logarithmic
correlation between PALSAR HH and AGB.

Fig. 4b showed the relationships between PALSAR HV and AGB
by individual forest types and all forest plots. The larger dynamic
range of HV backscatter coefficients, in comparison to HH, clearly
represented the sensitivity of HV to the variation in AGB. The scat-
terplots showed that saturation points of PALSAR HV vary from
�160 Mg ha�1 for needleleaf forest, �130 Mg ha�1 for mixed for-
est, to �100 Mg ha�1 for broadleaf forest. According to the linear-
log regression models, the relationships between forest AGB and
PALSAR HV backscatter coefficients were significant (P < 0.05) for
needleleaf forest (R2 = 0.63), mixed forest (R2 = 0.47), broadleaf for-
est (R2 = 0.28), and all forest plots (R2 = 0.41), respectively.

3.2. Multi-variable nonlinear regression models between AGB and
PALSAR data

Improvement of performance was found in the GLM regression
models for needleleaf forest (RMSE = 21.47 Mg ha�1, R2 = 0.82),
mixed forest (RMSE = 56.46 Mg ha�1, R2 = 0.45), and broadleaf for-
est (RMSE = 52.02 Mg ha�1, R2 = 0.44) (Table 4), in comparison to
the linear-log relationships between AGB and single HH and HV



Fig. 3. Selected predictor variables of different forest types and all forest sampling plots in nonlinear regression (GLM and GBM) models using all-subsets regression method.
(a) and (b): Needleleaf forest, (c) and (d): Mixed forest, (e) and (f): Broadleaf forest, and (g) and (h): All forest plots. NonTF represents PALSAR data only, andWithTF represents
PALSAR data and topographical and forest stand structure factors.
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backscatter coefficients (see Fig. 4). Moreover, higher correlations
were found in the GBM regression models for needleleaf forest
(RMSE = 3.81 Mg ha�1, R2 = 0.98), mixed forest (RMSE =
17.72 Mg ha�1, R2 = 0.96), broadleaf forest (RMSE = 19.94 Mg ha�1,
R2 = 0.96), and all forest plots (RMSE = 25.99 Mg ha�1, R2 = 0.90).

The estimated AGB from the GLM and GBM models was signif-
icantly correlated with observed AGB, respectively. In ‘‘Poisson”
regression of GLM (Fig. 5), the correlations between fitted AGB
and observed AGB of needleleaf forest (R2 = 0.80), mixed forest
(R2 = 0.50), and broadleaf forest (R2 = 0.49) outperformed that of
all forest plots (R2 = 0.36). Similar pattern was also found in BRT
analysis of GBM (Fig. 6). Correlations between cross validation pre-
dicted AGB and observed AGB in needleleaf forest (R2 = 0.98),
mixed forest (R2 = 0.93), and broadleaf forest (R2 = 0.91) were all
stronger than that in all forest plots (R2 = 0.36).
The most important factors in nonlinear regression models
based on multi-variables of PALSAR coefficients that influence
the estimation of AGB for needleleaf forest, mixed forest, broadleaf
forest were c0HH (X1), c0HHþHV (X3), c0ðHHþHVÞ2 (X9), and c0HV (X2),

respectively. Their relative importance were 34.8%, 31.0%, 23.0%,
and 29.6%, respectively (Table 5).
3.3. Effect of topographical and stand structure factors on regression
models

The GLM models had better performance for needleleaf forest
(RMSE = 10.75 Mg ha�1, R2 = 0.94), mixed forest (RMSE =
46.70 Mg ha�1, R2 = 0.58), broadleaf forest (RMSE = 45.52 Mg ha�1,
R2 = 0.54), and all forest plots (RMSE = 56.10 Mg ha�1, R2 = 0.40)



Fig. 4. The relationship between forest aboveground biomass (AGB) and PALSAR
backscatter coefficients by individual forest types and all forest sampling plots. (a)
HH, (b) HV. Logarithmic regressions are used to fit the relationship, and asterisks
after the R square values indicate significant correlations (P < 0.05).
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when topographical and stand structure factors were incorporated
(Table 4). The GBM models also show improved performance for
various forest types but not for all forest plots (Table 4).
Table 4
Root mean square error (RMSE) and R2 (without/with topographical and forest stand structu
and 10-fold cross-validation in boosted regression tree (BRT) analysis of generalized booste
analysis without and with topographical and forest stand structure factors, respectively. T

Statistics Needleleaf forest Mixed forest

NonTF WithTF NonTF W

GLM
RMSE (Mg ha�1) 21.47 10.75 56.46 46
R2 0.82 0.94 0.45 0.

GBM
RMSE (Mg ha�1) 3.81 2.18 17.72 11
R2 0.98 0.99 0.96 0.
Correlations between fitted AGB and observed AGB in GLM
models for needleleaf forest (R2 = 0.95), mixed forest (R2 = 0.66),
broadleaf forest (R2 = 0.60), and all forest plots (R2 = 0.43) were
all increased when topographical and stand structure factors were
incorporated into predictor variables of the GLM models (Fig. 5). In
the GBM models, except for all forest plots (R2 = 0.34), higher cor-
relations between cross validation predicted AGB and observed
AGB for needleleaf forest (R2 = 0.99), mixed forest (R2 = 0.99), and
broadleaf forest (R2 = 0.92), were also detected when topographical
and stand structure factors were included (Fig. 6).

Some topographical factors (M1, M2, M5, and M7) and tree
height (N1) emerged to be the top five most important factors that
influence forest AGB of various forest types and all forest plots
when topographical and stand structure factor were incorporated
into nonlinear regression models (Table 5). Especially, tree height
(N1), with relative importance of 29.5%, emerged to be the most
important variables influence forest AGB for mixed forest.

4. Discussion

4.1. The relationship between forest AGB and individual PALSAR HH
and HV data

Significant logarithmic correlation was found between forest
AGB and PALSAR HH backscatter coefficients in all forest plots,
but fitted equation only explained a relatively small (R2 = 0.13)
proportion of variance (Fig. 4). At the meantime, a better
(R2 = 0.41) performance in logarithmic correlation between HV
backscatter and forest AGB was identified. Logarithmic correlations
between forest AGB and HV backscatter coefficients of needleleaf
forest, mixed forest and broadleaf forest were higher than those
between AGB and HH backscatter coefficients. These findings prove
that HV backscatter coefficients generally have higher sensitivity in
quantifying forest AGB, which has been also reported by some pre-
vious studies (Mitchard et al., 2009; Lucas et al., 2010).

The degree of logarithmic correlations between forest AGB and
PALSAR HH and HV backscatter coefficients declines from needle-
leaf forest to mixed forest and broadleaf forest. This may be attrib-
uted to the following reasons. First, the vertical and spatial
complexity varies among different forest types (Kane et al.,
2013). The structure of leaves and branches in needleleaf forest
is tighter than that in mixed and broadleaf forests, and it allows
more scattering information to be obtained by PALSAR sensor
(Carreiras et al., 2012). Therefore, AGB of needleleaf forest can be
estimated more accurately. Second, the complexity of species com-
position (Zenner and Hibbs, 2000; McElhinny et al., 2005) and AGB
of understory layers increases from needleleaf forest to mixed for-
est and broadleaf forest (Table S2) which may result in relatively
larger error in estimating AGB from forest inventory data in broad-
leaf forest and mixed forest. This may cause lower correlation
between forest AGB and PALSAR backscatter coefficients in mixed
forest and broadleaf forest than in needleleaf forest.
re factors) of fitted model in ‘‘Poisson” regression of generalized linear models (GLMs)
d models (GBMs) from samples of different forest types. NonTF and WithTF represent
opographical and forest stand structure factors in this study are all listed in Table 2.

Broadleaf forest All forest plots

ithTF NonTF WithTF NonTF WithTF

.70 52.02 45.52 59.14 56.10
58 0.44 0.54 0.32 0.40

.30 19.94 19.30 25.99 29.66
98 0.96 0.97 0.90 0.88



Fig. 5. The relationship between fitted AGB generated using ‘‘Poisson” regression in generalized linear models (GLMs) and observed AGB of various forest types based on
predictor variables from (1) PALSAR data only (NonTF), and (2) PALSAR data and topographical and forest stand structure factors (WithTF). (a) Needleleaf forest, (b) Mixed
forest, (c) Broadleaf forest, and (d) All forest sampling plots.
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Both HH and HV backscatter coefficients could reach saturation
as forest AGB increases. This phenomenon was reported by many
publications (Luckman et al., 1997; Austin et al., 2003; Saatchi
et al., 2007; Englhart et al., 2011; Carreiras et al., 2012), and some
of them have pointed out that the saturation level was approxi-
mate at 100 Mg ha�1 in tropic forests. Our results showed that sat-
uration levels varied among the three forest types in the temperate
areas, for example, the saturation level of needleleaf forest, approx-
imately up to 150 Mg ha�1, was higher than the other two types.
Generally, the complexity of vertical structure and understory
composition in needleleaf forest is simpler when compared to
mixed and broadleaf forests (Fig. 1). It is likely that the PALSAR
sensor is more sensitive to AGB of needleleaf forest, and the satu-
ration level therefore increases.

Highly consistent agreements of PALSAR HH/HV frequency and
cumulative frequency curves between our field inventory plots
(N = 104) and all forest pixels of Heilongjiang province (Fig. 2) indi-
cate that the selected forest plots can well represent the forests in
this area. Therefore, the relationships between PALSAR backscatter
coefficients and forest AGB, especially for individual forest types,
are reliable in estimating forest AGB at large spatial scale. More-
over, when AGB of some plots that reaches a high level (over
150 Mg ha�1), their HH and HV backscatter coefficients maintain
at about �6 dB and �11 dB (Fig. 4), respectively, which are higher
than about 80% of the plots in current forests (Fig. 2). This shows
that most of the forests in NE China are in the low level of AGB
and suggests that a great potential of increasing AGB exists in
the forests of NE China.

4.2. Nonlinear relationships between AGB and multi-variable PALSAR
backscatter data of various forest types

Improvement of fitting results between AGB and multi-variable
PALSAR backscatter data were detected in GLM and GBM models
for different forest types and all forest plots (Table 4) when com-
pared to the linear-log regression between AGB and single
backscatter coefficients (Fig. 4). This is in line with many previous
studies (Lucas et al., 2007; Lucas et al., 2010; Englhart et al., 2011;
Cartus et al., 2012) which demonstrates that simple logarithmic
regression models are not suitable for estimating AGB of forest
with complex compositions. Regression models constructed based
on multi-variable of PALSAR data have higher ability in detecting
canopy structure and retrieving forest AGB (Saatchi et al., 2007;
Carreiras et al., 2012). These studies constructed models based
on single PALSAR HH/HV and their square value as well as the
mean, minimum, maximum, and standard deviation of PALSAR
HH and HV backscatter coefficients in North America and West
Africa, respectively. However, predictor variables in this study



Fig. 6. The relationship between predicted AGB generated using 10-fold cross validation in boosted regression tree (BRT) analysis of generalized boosted models (GBMs) and
observed AGB of various forest types based on predictor variables from (1) PALSAR data only (NonTF), and (2) PALSAR data and topographical and forest stand structure
factors (WithTF). (a) Needleleaf forest, (b) Mixed forest, (c) Broadleaf forest, and (d) All forest sampling plots.

Table 5
Relative importance (%) of the top five most important predictor variables on forest AGB fitting of different forest types in GBM modelling. NonTF represents PALSAR data only,
while WithTF represents PALSAR data and topographical and forest stand structure factors.

Forest types NonTF WithTF

Variables Relative importance (%) Variables Relative importance (%)

Needleleaf forest c0HH 34.77 c0(HH+HV)2 42
c0HV 21.33 c0HV2 14.22
c0HV2 15.19 c0HH/HV 11.21
c0HV-HH 11.92 Elevation 10.74
c0(HV-HH)/(HH+HV) 5.74 Slope 9.62

Mixed forest c0HH+HV 30.96 Tree height 29.48
c0HV-HH 19.66 c0HV-HH 13.66
c0HH/HV 14.06 c0HH+HV 11.70
c0(HV-HH)2 13.25 c0(HH/HV)2 11.00
c0HH 9.95 TWI 10.80

Broadleaf forest c0(HH+HV)2 23.04 c0HV 24.72
c0HV 21.72 c0HV-HH 16.91
c0(HH/HV)2 14.18 Relief 14.49
c0HV-HH 14.09 Slope 13.36
c0HV2 9.95 c0HH+HV 13.17

All forest plots c0HV 29.61 c0HV2 22.98
c0HV-HH 20.84 Tree height 12.33
c0HH 17.52 TWI 12.14
c0HH/HV 15.57 c0(HH/HV)2 11.56
c0HH+HV 9.97 Relief 11.06
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are partly in line with previous studies (Saatchi et al., 2007;
Carreiras et al., 2012) and suggest that c0HH (X1), c0HV (X2), c0HHþHV

(X3), and c0ðHHþHVÞ2 (X9) are the most important factors in nonlinear

regression models used to estimate forest AGB (Table 5). The pos-
sible reason is that the stand compositions of the forests and topo-
graphical conditions in our study is quite different, and it makes
differences in the sensitivity of various PALSAR backscatter
coefficients.

Nonlinear regression models (both GLM and GBM) that con-
structed on individual forest types all had higher correlations
(R2 > 0.95) but lower RMSE (<20 Mg ha�1) than those of all forest
plots (Table 4). Similarly, fitting results of nonlinear regression
models, improvement of the correlations between observed AGB
and fitted or cross validation predicted AGB of various forest types
were also identified. This is in line with the fitting results between
AGB and single PALSAR backscatter coefficients (Fig. 4), and it
demonstrates that constructing nonlinear regression models
between AGB and PALSAR data based on individual forest types
can enhance the predictability. Originally, the complexity of stand
structure and species compositions are different among needleleaf
forest, mixed forest, and broadleaf forest (Zenner and Hibbs, 2000;
McElhinny et al., 2005), just as the variation of the understory AGB
among different forest types in this study. Although the proportion
of the understory AGB to the total AGB is generally less than 2% and
(Table S2), the understory layer still attenuates the PALSAR
backscatter signal. Better performance of nonlinear regression
models in needleleaf forest is attributed to its simple and clear
understory composition (Ma et al., 2016). The predictability non-
linear regression models will certainly decline when various forest
types are mixed together, which induces higher complexity of
change patterns of PALSAR data with forest AGB.

In all forest plots, both fitted AGB in GLM models and cross val-
idation predicted AGB in GBM models were underestimated when
real observed AGB higher than 120 Mg ha�1 (Fig. 5–7). This phe-
nomenon is also emerged in several previous studies (Englhart
et al., 2011; Carreiras et al., 2012; Peregon and Yamagata, 2013),
and the beginning point of underestimation ranges from 100 Mg
ha�1 to 200 Mg ha�1. The explanation is mainly that predicted
AGB in 10-fold cross validation statistic approach may be skewed
in nonlinear regression models (Friedman, 2001). Besides, most
of the underestimated samples belong to mixed and broadleaf for-
ests which have higher AGB than needleleaf forest. It is possible
that the complex stand structure and understory composition of
mixed and broadleaf forests decreased the predictability of regres-
sion model of all forest plots and then AGB was underrated. How-
ever, this problem is solved when constructing regression models
using data of each forest type, which was shown in high correlation
between observed AGB and either fitted or predicted AGB of indi-
vidual needleleaf, mixed, and broadleaf forest. Especially in needle-
leaf forest, GBM regression model well fitted the relationship
between AGB and PALSAR data (RMSE = 3.81 Mg ha�1, R2 = 0.98),
and this suggests that PALSAR data may widely be used to estimate
needleleaf forest AGB in high latitude area. Our results also suggest
that accurate information on different forest types is essentially for
the estimation of forest AGB using nonlinear regression models.
Several global and regional maps of forests are already available
(Friedl et al., 2010; Gong et al., 2013; Grekousis et al., 2015) and
need to be carefully investigated for their likely effects on AGB esti-
mation in the AGB.
4.3. Comparing performance between GLM and GBM models

In this study, we evaluated two popular nonlinear regression
models (‘‘Poisson” regression of GLM and BRT analysis of GBM),
and both of them showed good fittings of the relationship between
forest AGB and PALSAR backscatter coefficients (Table 4). This sug-
gests that nonlinear regression is an appropriate method to fit the
relationship between forest AGB and PALSAR data, which is widely
used in AGB estimation from remote sensing data (Garestier and Le
Toan, 2010; Morel et al., 2011). The improvement of fitting statis-
tics of the GBM models over the GLM models in individual forest
types demonstrates that BRT analysis outperforms the ‘‘Poisson”
regression in constructing the nonlinear relationship. BRT analysis
couples the advantages of decision tree and boosting simultane-
ously and have been tested in quite a lot researches in prediction
or classification (Carreiras et al., 2006; Ma et al., 2016). Better per-
formance of the GBM models was also shown in the high correla-
tions (all R2 > 0.9) between cross validation predicted AGB and
observed AGB for various forest types.

Some other regression algorithms have also been used in fitting
relationship between forest AGB and PALSAR data. For example,
bagging stochastic gradient boosting algorithm was adopted to fit
the regression model between AGB and PALSAR backscatter coeffi-
cients in tropic forest (Carreiras et al., 2012), and the correlation
(R2) between predicted AGB and observed AGB was 0.144 that is
far lower than the correlation in our study. This indicates BRT anal-
ysis has a considerable ability in fitting regressions between AGB
and PALSAR backscatter coefficients.

4.4. The effect of topographical and stand structure factors on
nonlinear regression models

Fitting results in nonlinear regression models for different for-
est types and all forest plots were enhanced (Table 4) when topo-
graphical and stand structure factors were added into predictor
variables. Meanwhile, correlations between observed AGB and
either fitted AGB in the GLM models or cross validation predicted
AGB in the GBM models for various forest types also increased
(Figs. 5–7). This shows that topographical factors and stand struc-
ture factors have certain impacts on forest AGB estimation in
regression models, which has also been reported by previous stud-
ies (Takyu et al., 2003; Tateno et al., 2004). Moreover, PALSAR
backscatter coefficients are also influenced by topographical and
stand structure factors. Slope, aspect, wetness, and spatial and ver-
tical structure in canopy all have some impacts on PALSAR
backscatter coefficients (Attarchi and Gloaguen, 2014). Both
response and predictor variables in nonlinear regression models
are affected by topographical and stand structure factors, and the
fitting results will be certainly influenced.

Stand structure factors emerged in the top five important vari-
ables that influence AGB in needleleaf forest, mixed forest, and
broadleaf forest when these factors incorporated into BRT analysis
in the GBM models (Table 5). In this study, we found that tree
height (N1) is an important variable in the GLM and GBM regres-
sion models for mixed forest (29.5%) and all forest plots (12.3%).
This reflects the important role of stand structure factors in esti-
mating forest AGB. Canopy height is highly related to AGB and
widely used in predicting forest AGB from allometric equations
or LiDAR (Light Detection And Ranging) inversion (Chave et al.,
2005; Saatchi et al., 2011). A global forest canopy height map, gen-
erated from satellite observation data, is now available (Lefsky,
2010), and thus it is feasible to the index of forest height to esti-
mate forest AGB.

PALSAR data are affected by topography (Rosenqvist et al.,
2007; Shimada et al., 2009). Although topographic correction of
PALSAR data was conducted using digital elevation model (DEM),
our results showed that relief amplitude (M5) have moderate
impact on forest AGB in nonlinear regression models for broadleaf
forest (14.5%) and all forest plots (11.1%). This indicates that topo-
graphic correction using DEM cannot eliminate the negative influ-
ence of microtopography on PALSAR. Moreover, topographic
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wetness index (M7) also has some impact on estimating forest AGB
using nonlinear regression models. Topographic wetness index is
calculated based on flow accumulation of each cell of land and rep-
resents the moisture of the circumstance at some extent. The main
reason may attribute to the high sensitivity of PALSAR data to
moisture and snow/ice as reported by a previous study (Thiel
et al., 2009). Therefore, topographical conditions should be consid-
ered carefully especially in future mapping of forest AGB.

5. Conclusions

In this study, ‘‘Poisson” regression in GLM models and BRT anal-
ysis in GBMmodels were both used to construct the nonlinear rela-
tionship between forest AGB and PALSAR backscatter coefficients
of three forest types in NE China. Topographical and stand struc-
ture factors were also evaluated and incorporated in the regression
models. Although HV backscatter coefficient has a higher ability in
estimating AGB of forest in NE China, both the GLM and GBM non-
linear regression models fit the relationship between forest AGB
and PALSAR data better, and the GBM model generally outper-
formed the GLMmodels in estimating forest AGB. Regression mod-
els constructed based on individual forest types are better than
that based on all forest plots. Incorporating topographical and
stand structure factors into nonlinear regression models can
enhance the fitting for forest AGB, especially topographic wetness
index and tree height are two important factors for the estimation
of forest AGB.

Acknowledgements

This research was funded by China Postdoctoral Science Foun-
dation (2015M581519) and Natural Science Foundation of China
(41601181 and 41571408). We thank Rencang Bu, Yu Chang, Zaip-
ing Xiong, and Miao Liu for their field work.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.foreco.2016.12.
020.

References

Attarchi, S., Gloaguen, R., 2014. Classifying complex mountainous forests with l-
band sar and landsat data integration: a comparison among different machine
learning methods in the hyrcanian forest. Remote Sens. 6, 3624–3647.

Atwood, D.K., Andersen, H.E., Matthiss, B., Holecz, F., 2014. Impact of Topographic
Correction on Estimation of Aboveground Boreal Biomass Using Multi-
temporal, L-Band Backscatter. Ieee J. Sel. Top. Appl. Earth Obs. Remote Sens.
7, 3262–3273.

Austin, J.M., Mackey, B.G., Van Niel, K.P., 2003. Estimating forest biomass using
satellite radar: an exploratory study in a temperate Australian Eucalyptus
forest. For. Ecol. Manage. 176, 575–583.

Bastin, J.F., Barbier, N., Couteron, P., Adams, B., Shapiro, A., Bogaert, J., De Canniere,
C., 2014. Aboveground biomass mapping of African forest mosaics using canopy
texture analysis: toward a regional approach. Ecol. Appl. 24, 1984–2001.

Brandeis, T.J., Delaney, M., Parresol, B.R., Royer, L., 2006. Development of equations
for predicting Puerto Rican subtropical dry forest biomass and volume. For. Ecol.
Manage. 233, 133–142.

Brown, S., 2002. Measuring carbon in forests: current status and future challenges.
Environ. Pollut. 116, 363–372.

Brown, S., Gillespie, A.J.R., Lugo, A.E., 1989. Biomass estimation methods for tropical
forests with applications to forest inventory data. Forest Sci. 35, 881–902.

Brown, S.L., Schroeder, P., Kern, J.S., 1999. Spatial distribution of biomass in forests
of the eastern USA. For. Ecol. Manage. 123, 81–90.

Carreiras, J.M.B., Pereira, J.M.C., Campagnolo, M.L., Shimabukuro, Y.E., 2006.
Assessing the extent of agriculture/pasture and secondary succession forest in
the Brazilian Legal Amazon using SPOT VEGETATION data. Remote Sens.
Environ. 101, 283–298.

Carreiras, J.M.B., Vasconcelos, M.J., Lucas, R.M., 2012. Understanding the
relationship between aboveground biomass and ALOS PALSAR data in the
forests of Guinea-Bissau (West Africa). Remote Sens. Environ. 121, 426–442.
Cartus, O., Santoro, M., Kellndorfer, J., 2012. Mapping forest aboveground biomass in
the Northeastern United States with ALOS PALSAR dual-polarization L-band.
Remote Sens. Environ. 124, 466–478.

Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Folster, H.,
Fromard, F., Higuchi, N., Kira, T., Lescure, J.P., Nelson, B.W., Ogawa, H., Puig, H.,
Riera, B., Yamakura, T., 2005. Tree allometry and improved estimation of carbon
stocks and balance in tropical forests. Oecologia 145, 87–99.

Chen, C., Zhu, J., 1989. The Biomass Manual of Main Tree Species in Northeastern
China. China Forestry Press, Beijing.

Conard, S.G., Ivanova, G.A., 1997. Wildfire in Russian boreal forests – potential
impacts of fire regime characteristics on emissions and global carbon balance
estimates. Environ. Pollut. 98, 305–313.

Dixon, R.K., Brown, S., Houghton, R.A., Solomon, A.M., Trexler, M.C., Wisniewski, J.,
1994. Carbon pools and flux of global forest ecosystems. Science 263, 185–190.

Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted regression trees.
J. Anim. Ecol. 77, 802–813.

Englhart, S., Keuck, V., Siegert, F., 2011. Aboveground biomass retrieval in tropical
forests – the potential of combined X- and L-band SAR data use. Remote Sens.
Environ. 115, 1260–1271.

Fang, J.Y., Chen, A.P., Peng, C.H., Zhao, S.Q., Ci, L., 2001. Changes in forest biomass
carbon storage in China between 1949 and 1998. Science 292, 2320–2322.

Fang, J.Y., Liu, G.H., Xu, S.L., 1996. Biomass and net production of forest vegetation in
China. Acta Ecol. Sinica 16, 497–508 (in Chinese).

FAO, 2015. Global Forest Resources Assessment 2015: How Have the World’s Forets
Changed? FAO, Rome.

Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A.,
Huang, X., 2010. MODIS Collection 5 global land cover: algorithm refinements
and characterization of new datasets. Remote Sens. Environ. 114, 168–182.

Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine.
Ann. Stat. 29, 1189–1232.

Garestier, F., Le Toan, T., 2010. Forest modeling for height inversion using single-
baseline InSAR/Pol-InSAR Data. IEEE Trans. Geosci. Remote Sens. 48, 1528–1539.

Goetz, S.J., Baccini, A., Laporte, N.T., Johns, T., Walker, W., Kellndorfer, J., Houghton,
R.A., Sun, M., 2009. Mapping and monitoring carbon stocks with satellite
observations: a comparison of methods. Carbon Balance Manage. 4. 2-2.

Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X., Fu, H., Liu, S.,
Li, C., Li, X., Fu, W., Liu, C., Xu, Y., Wang, X., Cheng, Q., Hu, L., Yao, W., Zhang, H.,
Zhu, P., Zhao, Z., Zhang, H., Zheng, Y., Ji, L., Zhang, Y., Chen, H., Yan, A., Guo, J., Yu,
L., Wang, L., Liu, X., Shi, T., Zhu, M., Chen, Y., Yang, G., Tang, P., Xu, B., Giri, C.,
Clinton, N., Zhu, Z., Chen, J., Chen, J., 2013. Finer resolution observation and
monitoring of global land cover: first mapping results with Landsat TM and ETM
+ data. Int. J. Remote Sens. 34, 2607–2654.

Gower, S.T., Kucharik, C.J., Norman, J.M., 1999. Direct and indirect estimation of leaf
area index, f(APAR), and net primary production of terrestrial ecosystems.
Remote Sens. Environ. 70, 29–51.

Grekousis, G., Mountrakis, G., Kavouras, M., 2015. An overview of 21 global and 43
regional land-cover mapping products. Int. J. Remote Sens. 36, 5309–5335.

Hansen, M.C., Defries, R.S., Townshend, J.R.G., Sohlberg, R., 2000. Global land cover
classification at 1km spatial resolution using a classification tree approach. Int.
J. Remote Sens. 21, 1331–1364.

Houghton, R.A., Lawrence, K.T., Hackler, J.L., Brown, S., 2001. The spatial distribution
of forest biomass in the Brazilian Amazon: a comparison of estimates. Glob.
Change Biol. 7, 731–746.

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview
of the radiometric and biophysical performance of the MODIS vegetation
indices. Remote Sens. Environ. 83, 195–213.

Jiang, H., Apps, M.J., Peng, C.H., Zhang, Y.L., Liu, J.X., 2002. Modelling the influence of
harvesting on Chinese boreal forest carbon dynamics. For. Ecol. Manage. 169,
65–82.

Jobidon, R., 2000. Density-dependent effects of northern hardwood competition on
selected environmental resources and young white spruce (Picea glauca)
plantation growth, mineral nutrition, and stand structural development - a 5-
year study. For. Ecol. Manage. 130, 77–97.

Kane, V.R., Lutz, J.A., Roberts, S.L., Smith, D.F., McGaughey, R.J., Povak, N.A., Brooks,
M.L., 2013. Landscape-scale effects of fire severity on mixed-conifer and red fir
forest structure in Yosemite National Park. For. Ecol. Manage. 287, 17–31.

Karjalainen, M., Kankare, V., Vastaranta, M., Holopainen, M., Hyyppa, J., 2012.
Prediction of plot-level forest variables using TerraSAR-X stereo SAR data.
Remote Sens. Environ. 117, 338–347.

Laurin, G.V., Puletti, N., Chen, Q., Corona, P., Papale, D., Valentini, R., 2016. Above
ground biomass and tree species richness estimation with airborne lidar in
tropical Ghana forests. Int. J. Appl. Earth Obs. Geoinf. 52, 371–379.

Lefsky, M.A., 2010. A global forest canopy height map from the moderate resolution
imaging spectroradiometer and the geoscience laser altimeter system. Geophys.
Res. Lett. 37.

Lefsky, M.A., Cohen, W.B., Parker, G.G., Harding, D.J., 2002. Lidar remote sensing for
ecosystem studies. Bioscience 52, 19–30.

Lefsky, M.A., Harding, D., Cohen, W.B., Parker, G., Shugart, H.H., 1999. Surface lidar
remote sensing of basal area and biomass in deciduous forests of eastern
Maryland, USA. Remote Sens. Environ. 67, 83–98.

Lucas, R., Armston, J., Fairfax, R., Fensham, R., Accad, A., Carreiras, J., Kelley, J.,
Bunting, P., Clewley, D., Bray, S., Metcalfe, D., Dwyer, J., Bowen, M., Eyre, T.,
Laidlaw, M., Shimada, M., 2010. An Evaluation of the ALOS PALSAR L-Band
Backscatter-Above Ground Biomass Relationship Queensland, Australia:
Impacts of Surface Moisture Condition and Vegetation Structure. Ieee J. Sel.
Top. Appl. Earth Obs. Remote Sens. 3, 576–593.

http://dx.doi.org/10.1016/j.foreco.2016.12.020
http://dx.doi.org/10.1016/j.foreco.2016.12.020
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0005
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0005
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0005
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0010
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0010
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0010
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0010
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0015
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0015
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0015
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0020
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0020
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0020
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0025
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0025
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0025
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0030
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0030
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0035
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0035
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0040
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0040
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0045
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0045
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0045
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0045
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0050
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0050
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0050
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0055
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0055
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0055
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0060
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0060
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0060
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0060
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0065
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0065
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0070
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0070
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0070
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0075
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0075
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0080
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0080
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0085
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0085
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0085
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0090
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0090
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0095
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0095
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0100
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0100
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0105
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0105
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0105
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0110
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0110
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0115
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0115
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0120
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0120
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0120
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0125
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0125
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0125
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0125
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0125
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0125
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0125
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0130
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0130
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0130
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0135
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0135
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0140
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0140
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0140
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0145
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0145
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0145
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0150
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0150
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0150
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0155
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0155
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0155
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0160
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0160
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0160
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0160
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0165
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0165
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0165
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0170
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0170
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0170
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0175
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0175
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0175
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0180
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0180
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0180
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0185
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0185
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0190
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0190
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0190
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0195
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0195
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0195
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0195
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0195
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0195


210 J. Ma et al. / Forest Ecology and Management 389 (2017) 199–210
Lucas, R.M., Mitchell, A.L., Rosenqvist, A., Proisy, C., Melius, A., Ticehurst, C., 2007.
The potential of L-band SAR for quantifying mangrove characteristics and
change: case studies from the tropics. Aquatic Conservation-Marine and
Freshwater Ecosystems 17, 245–264.

Luckman, A., Baker, J., Kuplich, T.M., Yanasse, C.D.F., Frery, A.C., 1997. A study of the
relationship between radar backscatter and regenerating tropical forest
biomass for spaceborne SAR instruments. Remote Sens. Environ. 60, 1–13.

Ma, J., Bu, R.C., Liu, M., Chang, Y., Han, F.L., Qin, Q., Hu, Y.M., 2016. Recovery of
understory vegetation biomass and biodiversity in burned larch boreal forests
in Northeastern China. Scand. J. For. Res. 31, 382–393.

Ma, J., Bu, R.C., Liu, M., Chang, Y., Qin, Q., Hu, Y.M., 2015. Ecosystem carbon storage
distribution between plant and soil in different forest types in Northeastern
China. Ecol. Eng. 81, 353–362.

McElhinny, C., Gibbons, P., Brack, C., Bauhus, J., 2005. Forest and woodland stand
structural complexity: Its definition and measurement. For. Ecol. Manage. 218,
1–24.

Mitchard, E.T.A., Saatchi, S.S., Woodhouse, I.H., Nangendo, G., Ribeiro, N.S., Williams,
M., Ryan, C.M., Lewis, S.L., Feldpausch, T.R., Meir, P., 2009. Using satellite radar
backscatter to predict above-ground woody biomass: a consistent relationship
across four different African landscapes. Geophys. Res. Lett. 36.

Moisen, G.G., Freeman, E.A., Blackard, J.A., Frescino, T.S., Zimmermann, N.E.,
Edwards Jr., T.C., 2006. Predicting tree species presence and basal area in
Utah: a comparison of stochastic gradient boosting, generalized additive
models, and tree-based methods. Ecol. Model. 199, 176–187.

Morel, A.C., Saatchi, S.S., Malhi, Y., Berry, N.J., Banin, L., Burslem, D., Nilus, R., Ong, R.
C., 2011. Estimating aboveground biomass in forest and oil palm plantation in
Sabah, Malaysian Borneo using ALOS PALSAR data. For. Ecol. Manage. 262,
1786–1798.

Myneni, R.B., Dong, J., Tucker, C.J., Kaufmann, R.K., Kauppi, P.E., Liski, J., Zhou, L.,
Alexeyev, V., Hughes, M.K., 2001. A large carbon sink in the woody biomass of
Northern forests. Proc. Natl. Acad. Sci. U.S.A. 98, 14784–14789.

Naesset, E., 2002. Predicting forest stand characteristics with airborne scanning
laser using a practical two-stage procedure and field data. Remote Sens.
Environ. 80, 88–99.

Nakaji, T., Ide, R., Takagi, K., Kosugi, Y., Ohkubo, S., Nasahara, K.N., Saigusa, N.,
Oguma, H., 2008. Utility of spectral vegetation indices for estimation of light
conversion efficiency in coniferous forests in Japan. Agric. For. Meteorol. 148,
776–787.

Nichol, J.E., Sarker, M.L.R., 2011. Improved biomass estimation using the texture
parameters of two high-resolution optical sensors. IEEE Trans. Geosci. Remote
Sens. 49, 930–948.

Parresol, B.R., 1999. Assessing tree and stand biomass: a review with examples and
critical comparisons. Forest Sci. 45, 573–593.

Peregon, A., Yamagata, Y., 2013. The use of ALOS/PALSAR backscatter to estimate
above-ground forest biomass: a case study in Western Siberia. Remote Sens.
Environ. 137, 139–146.

Piao, S., Fang, J., Ciais, P., Peylin, P., Huang, Y., Sitch, S., Wang, T., 2009. The carbon
balance of terrestrial ecosystems in China. Nature 458, 1009–U1082.

Qin, Y.W., Xiao, X.M., Dong, J.W., Zhang, G.L., Shimada, M., Liu, J.Y., Li, C.G., Kou, W.L.,
Moore, B., 2015. Forest cover maps of China in 2010 from multiple approaches
and data sources: PALSAR, Landsat, MODIS, FRA, and NFI. ISPRS J. Photogramm.
Remote Sens. 109, 1–16.

R Development Core Team, 2011. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna.

Rosenqvist, A., Shimada, M., Ito, N., Watanabe, M., 2007. ALOS PALSAR: a Pathfinder
mission for global-scale monitoring of the environment. IEEE Trans. Geosci.
Remote Sens. 45, 3307–3316.

Saatchi, S., Halligan, K., Despain, D.G., Crabtree, R.L., 2007. Estimation of forest fuel
load from radar remote sensing. IEEE Trans. Geosci. Remote Sens. 45, 1726–
1740.

Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T.A., Salas, W., Zutta, B.R.,
Buermann, W., Lewis, S.L., Hagen, S., Petrova, S., White, L., Silman, M., Morel, A.,
2011. Benchmark map of forest carbon stocks in tropical regions across three
continents. Proc. Natl. Acad. Sci. U.S.A. 108, 9899–9904.

Santoro, M., Beer, C., Cartus, O., Schmullius, C., Shvidenko, A., McCallum, I.,
Wegmueller, U., Wiesmann, A., 2011. Retrieval of growing stock volume in
boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter
measurements. Remote Sens. Environ. 115, 490–507.

Sarker, M.L.R., Nichol, J., Ahmad, B., Busu, I., Rahman, A.A., 2012. Potential of texture
measurements of two-date dual polarization PALSAR data for the improvement
of forest biomass estimation. ISPRS J. Photogramm. Remote Sens. 69, 146–166.

Shimada, M., Isoguchi, O., Tadono, T., Isono, K., 2009. PALSAR radiometric and
geometric calibration. IEEE Trans. Geosci. Remote Sens. 47, 3915–3932.

Shimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi, T., Thapa, R., Lucas, R.,
2014. New global forest/non-forest maps from ALOS PALSAR data (2007–2010).
Remote Sens. Environ. 155, 13–31.

Shimada, M., Ohtaki, T., 2010. Generating large-scale high-quality SAR mosaic
datasets: application to PALSAR data for global monitoring. Ieee J. Sel. Top. Appl.
Earth Obs. Remote Sens. 3, 637–656.

Soenen, S.A., Peddle, D.R., Hall, R.J., Coburn, C.A., Hall, F.G., 2010. Estimating
aboveground forest biomass from canopy reflectance model inversion in
mountainous terrain. Remote Sens. Environ. 114, 1325–1337.

Sorensen, R., Zinko, U., Seibert, J., 2006. On the calculation of the topographic
wetness index: evaluation of different methods based on field observations.
Hydrol. Earth Syst. Sci. 10, 101–112.

Takyu, M., Aiba, S.I., Kitayama, K., 2003. Changes in biomass, productivity and
decomposition along topographical gradients under different geological
conditions in tropical lower montane forests on Mount Kinabalu, Borneo.
Oecologia 134, 397–404.

Tang, X., Liu, D., Wang, Z., Jia, M., Dong, Z., Liu, J., Xu, W., 2012. Estimation of forest
aboveground biomass based on remote sensing data: A review. Chin. J. Ecol. 31,
1311–1318.

Tateno, R., Hishi, T., Takeda, H., 2004. Above- and belowground biomass and net
primary production in a cool-temperate deciduous forest in relation to
topographical changes in soil nitrogen. For. Ecol. Manage. 193, 297–306.

Thiel, C.J., Thiel, C., Schmullius, C.C., 2009. Operational large-area forest monitoring
in Siberia using ALOS PALSAR summer intensities and winter coherence. IEEE
Trans. Geosci. Remote Sens. 47, 3993–4000.

Vastaranta, M., Holopainen, M., Karjalainen, M., Kankare, V., Hyyppa, J., Kaasalainen,
S., 2014. TerraSAR-X stereo radargrammetry and airborne scanning LiDAR
height metrics in imputation of forest aboveground biomass and stem volume.
IEEE Trans. Geosci. Remote Sens. 52, 1197–1204.

Wang, C.K., 2006. Biomass allometric equations for 10 co-occurring tree species in
Chinese temperate forests. For. Ecol. Manage. 222, 9–16.

Wei, Y.W., Zhou, W.M., Yu, D.P., Zhou, L., Fang, X.M., Zhao, W., Bao, Y., Meng, Y.Y.,
Dai, L.M., 2014. Carbon storage of forest vegetation under the Natural Forest
Protection Program in Northeast China. Acta Ecol. Sin. 34, 5696–5705.

Whittle, M., Quegan, S., Uryu, Y., Stueewe, M., Yulianto, K., 2012. Detection of
tropical deforestation using ALOS-PALSAR: a sumatran case study. Remote Sens.
Environ. 124, 83–98.

Yang, J., Wang, C., 2005. Soil carbon storage and flux of temperate forest ecosystems
in northeastern China. Acta Ecol. Sin., 2875–2882

Yu, D., Zhou, L., Zhou, W., Ding, H., Wang, Q., Wang, Y., Wu, X., Dai, L., 2011. Forest
management in northeast China: history, problems, and challenges. Environ.
Manage. 48, 1122–1135.

Zenner, E.K., Hibbs, D.E., 2000. A new method for modeling the heterogeneity of
forest structure. For. Ecol. Manage. 129, 75–87.

Zhang, X., Ni-meister, W., 2014. Remote sensing of forest biomass. In: Hanes, J.M.
(Ed.), Biophysical Applications of Satellite Remote Sensing, pp. 63–98.

Zhao, K., Popescu, S., Nelson, R., 2009. Lidar remote sensing of forest biomass: a
scale-invariant estimation approach using airborne lasers. Remote Sens.
Environ. 113, 182–196.

http://refhub.elsevier.com/S0378-1127(16)30504-7/h0200
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0200
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0200
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0200
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0205
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0205
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0205
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0210
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0210
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0210
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0215
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0215
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0215
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0220
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0220
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0220
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0225
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0225
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0225
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0225
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0230
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0230
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0230
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0230
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0235
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0235
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0235
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0235
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0240
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0240
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0240
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0245
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0245
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0245
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0250
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0250
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0250
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0250
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0255
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0255
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0255
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0260
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0260
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0265
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0265
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0265
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0270
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0270
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0275
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0275
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0275
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0275
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0280
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0280
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0285
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0285
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0285
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0290
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0290
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0290
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0295
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0295
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0295
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0295
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0300
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0300
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0300
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0300
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0305
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0305
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0305
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0310
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0310
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0315
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0315
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0315
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0320
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0320
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0320
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0325
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0325
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0325
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0330
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0330
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0330
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0335
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0335
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0335
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0335
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0340
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0340
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0340
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0345
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0345
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0345
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0350
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0350
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0350
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0355
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0355
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0355
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0355
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0360
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0360
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0365
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0365
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0365
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0370
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0370
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0370
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0375
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0375
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0380
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0380
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0380
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0385
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0385
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0390
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0390
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0395
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0395
http://refhub.elsevier.com/S0378-1127(16)30504-7/h0395

	Estimating aboveground biomass of broadleaf, needleleaf, and mixed forests in Northeastern China through analysis of 25-m ALOS/PALSAR mosaic data
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Field inventory data and AGB calculation
	2.3 ALOS/PALSAR data
	2.4 Topographical data
	2.5 Regression models
	2.6 Variables selection

	3 Results
	3.1 Single-variable linear-log regression models between AGB and PALSAR HH and HV data
	3.2 Multi-variable nonlinear regression models between AGB and PALSAR data
	3.3 Effect of topographical and stand structure factors on regression models

	4 Discussion
	4.1 The relationship between forest AGB and individual PALSAR HH and HV data
	4.2 Nonlinear relationships between AGB and multi-variable PALSAR backscatter data of various forest types
	4.3 Comparing performance between GLM and GBM models
	4.4 The effect of topographical and stand structure factors on nonlinear regression models

	5 Conclusions
	Acknowledgements
	Appendix A Supplementary data
	References


