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A B S T R A C T   

Cropping intensity maps at high spatial resolution play a crucial role in guiding agricultural policies and ensuring 
food security. So far, most of nationwide cropping intensity maps have been developed from satellite images at 
moderate or coarse resolutions. In this study, we first assembled and integrated time-series dataset with high 
spatial resolution, specifically Landsat-7, Landsat-8 and Sentinel-2 imagery in 2017. We then used an object- and 
phenology-based algorithm and integrated images to create a 10-m resolution cropping intensity map over 
China. The map evaluation results revealed an overall accuracy of 96.68 ± 0.01 % and a Kappa coefficient of 
0.90. In 2017, single cropping dominated the agricultural practices in China, with an approximate area of 1.189 
× 106 km2 ± 7.90 × 103 km2, constituted 79.26 % of the entire cropland area. Simultaneously, double and triple 
cropping covered approximately 0.306 × 106 km2 ± 8.03 × 103 km2 and 5.00 × 103 ± 1.75 × 103 km2, cor-
responding to 20.41 % and 0.33 % of the entire cropland area, respectively. On average, the national multiple 
cropping index (MCI) was 1.21. The results in the study prove the reliability of the generated mapping products 
and high potential of the developed mapping framework (the algorithm and integrated datasets), which can be 
readily applied to quantify the interannual changes of cropping pattern on a nationwide level with a high spatial 
resolution.   

1. Introduction 

Cropland area, crop yield, and cropping intensity (CI, i.e., the crops 
cultivation frequency on a cropland parcel within a year) are important 
factors influencing global food security (Kogan, 2019). Since early 
1980s, rapid economic and population growth has resulted in significant 
cropland transformation in China (Liu et al., 2005). Several strategies 
have been implemented to protect and conserve the croplands in China 
(Zhang et al., 2016; He et al., 2021b), nevertheless, cropland continues 
to be lost owing to urbanization and industrialization (Liu et al., 2019). 
The per capita cropland of China was only about 0.001 km2, much lower 
than the global mean of 0.002 km2 (He et al., 2017; FAOSTAT, 2018). 
Losses of labor in rural areas, driven by an influx of rural people into 
cities for higher-paying jobs, also reduced crop cultivation (Li et al., 
2018). These factors put substantial pressure on food production in 

China (Wang et al., 2018; Doelman et al., 2019; Liu et al., 2022). 
Moreover, in view of global food prices fluctuations led by Russia- 
Ukraine conflict (Lin et al., 2023), China’s food import also faces great 
uncertainty. Greater emphasis should be placed on domestic food pro-
duction efficiency. Several studies have reported that double- and triple- 
cropping fields increase food production by improving cropland effi-
ciency, however, increasing cropping intensity puts more stress on the 
land and can reduce yields or require higher inputs (Rufin et al., 2019; 
Xiang et al., 2019). Given these contexts, rational planning of cropping 
intensity is increasingly important to ensure food production and secu-
rity in China. 

Accurate cropping intensity data can provide meaningful informa-
tion to guide the formulation of agricultural strategies (Sun et al., 2019), 
and come from agricultural census statistics and remote sensing imagery 
(Panigrahy et al., 2005). Agricultural census data provide the cropland 

* Corresponding author. 
E-mail address: xiangming.xiao@ou.edu (X. Xiao).  

Contents lists available at ScienceDirect 

International Journal of Applied Earth  
Observation and Geoinformation 

journal homepage: www.elsevier.com/locate/jag 

https://doi.org/10.1016/j.jag.2023.103504 
Received 16 August 2023; Received in revised form 18 September 2023; Accepted 22 September 2023   

mailto:xiangming.xiao@ou.edu
www.sciencedirect.com/science/journal/15698432
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2023.103504
https://doi.org/10.1016/j.jag.2023.103504
https://doi.org/10.1016/j.jag.2023.103504
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2023.103504&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


International Journal of Applied Earth Observation and Geoinformation 124 (2023) 103504

2

and sowing area at county scale but usually lack detailed spatial dis-
tribution information and lag in data collection (Qiu et al., 2018). 
Therefore, statistical investigation cannot meet the needs of govern-
ments and scientists for cropping intensity maps at high spatial resolu-
tion (Hao et al., 2019). Satellite remote sensing provides repeated 
observations of land surfaces, allowing the surveys of crop phenology 
and cropland utilization over wide areas (Li et al., 2015; Shao et al., 
2016). Therefore, remote sensed images have become important data 
sources for rapid and large-scale data collection from multiple cropping 
fields (Peng et al., 2011; Wu et al., 2018). Most existing cropping in-
tensity maps of China have been generated using MODIS images with 
moderate spatial resolutions (250-m and 500-m) (Yan et al., 2014; Ding 
et al., 2015; Yan et al., 2019). These products often show high accuracy 
as the temporal resolution is high, however, their spatial resolution is 
coarse. Each MODIS pixel often comprises several crop fields and/or 
crop types, which precludes accurate mapping of small fields, especially 
in southern China (Liu et al., 2020; Qiu et al., 2022). Some studies have 
suggested that high-spatial-resolution images and maps are required for 
small croplands within China (Li et al., 2017; Zhai et al., 2021). 

Many studies have used time series images at high spatial resolution 
from single satellite sensors, but their potential for large-scale cropping 
intensity mapping at high spatial resolution was limited (Li et al., 2017; 
Yan et al., 2019). Several researches have integrated satellite data from 
two or more sensors operating at different spatiotemporal resolutions to 
construct time-series datasets (Li et al., 2017). The Sentinel-2A/B sat-
ellites carry wide-swath, multi-spectral imagers (MSI) with 13 spectral 
bands, providing high spatial (10 m) and temporal (10 days) resolution 
imagery at no cost to users (He et al., 2021a), which is suitable for 
integration with Landsat imagery due to the similar spatial resolution 
(Liu et al., 2020). Composite Sentinel-2 and Landsat dataset allows the 
acquisition of global and high-spatial-resolution imagery at a temporal 
resolution of less than 5 days, thus provides more observations to 

identify cropland changes and seasonal crop status (Griffiths et al., 
2019). A few studies have applied this kind of integrated satellite data to 
extract high-accuracy cropping intensity information for some parts of 
China (Hao et al., 2019; Liu et al., 2020; Pan et al., 2021). Therefore, 
such combination among time series Sentinel-2 and Landsat-7/8 imag-
ery presents substantial potential for large-scale cropping intensity 
mapping, particularly within complex multiple cropping systems like 
those in Southern China. 

Considering current demand as well as the challenges for generating 
high-resolution and large-scale cropping intensity maps, this study in-
tegrated Landsat-7/8 and Sentinal-2 data and exploited a novel algo-
rithm capable of producing annual cropping intensity map with 10 m 
spatial resolution. The products are anticipated to offer fundamental 
data for basic research and agricultural planting strategies. 

2. Material and methods 

2.1. Study area 

The study area covers the entire China (73◦33′–135◦05′ E, 
3◦51′–53◦33′ N) (Fig. 1). China spans eight temperature zones from 
north to south, which differs in thermal conditions and crops growth 
periods (Qian and Lin, 2004). In accordance with natural conditions and 
agricultural development direction, China was divided into nine agri-
cultural regions. There are significant regional differences in cropping 
systems, ranging from one to three crops per year, in addition to prac-
tices like intercropping and interplanting. 

2.2. Data and pre-processing 

2.2.1. NLCD cropland data 
We used the cropland layer of 2015 National Land Cover Database 

Fig. 1. Locations of nine agricultural subregions within China. (A, Northeast China Plain; B, Northern arid and semi-arid region; C, Huang-Huai-Hai Plain; D, Loess 
Plateau; E, Qinghai-Tibet Plateau; F, Sichuan Basin and surrounding regions; G, Yangtze Plain; H, Yunnan-Guizhou Plateau; I, Southern China.). 

L. Liu et al.                                                                                                                                                                                                                                       



International Journal of Applied Earth Observation and Geoinformation 124 (2023) 103504

3

(NLCD). The NLCD-China dataset, developed by Chinese Academy of 
Sciences via classification of Landsat imagery, had high accuracy, 
because of a large amount of ground reference data (Liu et al., 2005). As 
shown in Fig. 2, Large areas of cropland in China are located on several 
plains, including the Huang-Huai-Hai Plain, Northeast China Plain, 
Yangtze Plain, and Sichuan Basin, where moderate- and large-size crop 
fields dominate. In addition, the mountainous and hilly areas of South 
China is featured with small-size crop fields. 

2.2.2. Satellite imagery 
To capture the complete planting information of cropland, we uti-

lized integrated Landsat and Sentinel time-series data from August 2016 
to July 2018. This time-period was selected because some winter crops, 
including winter wheat, rapeseed, and oats, were sown during the close 
of the preceding year and harvested at the beginning of the following 
year. We obtained top-of-atmosphere (TOA) reflectance dataset of 
Sentinel-2 MSI, Landsat-7 Enhanced Thematic Mapper Plus (ETM + ) 
and Landsat-8 Operational Land Imager (OLI) from Google Earth Engine 
(GEE). 

We used the F-mask algorithm to identify and remove poor-quality 
observations containing clouds, cloud shadows, and snow, which 
significantly affect spectral bands of optical sensors (Zhu et al., 2015). 
We also used metadata to detect Landsat-7 ETM + scan line corrector 
(SLC)-off gaps that resulted in missing observations data (Long et al., 
2013). 

We compared the good-quality observations amount per pixel among 
each data sources (Fig. 3). Landsat-7 provided smallest amount of good- 
quality observations per pixel of less than 20 among four data sources. 

The combination among Landsat-7/8 and Sentinel-2 time-series dataset 
provides 10–210 good-quality observations per pixel, with 50.76 % of 
pixels having over 100 good-quality observations. 

Because MSI, ETM + and OLI sensors differ in their imaging methods, 
spectral range, and spatial resolution, normalization of images from 
these different sensors is essential before compositing (Nguyen et al., 
2020). We selected OLI data as the wavelength standard and utilized 
ordinary least-squares regression coefficient to transform blue, red, near 
infrared (NIR), and shortwave infrared (SWIR) bands of MSI and ETM +
dataset (Roy et al., 2016). To reconcile the differences in spatial reso-
lutions between Sentinel-2 and Landsat, we applied a bicubic method to 
resample each band of the ETM+, and OLI data to 10 m × 10 m. 

2.2.3. National statistics data 
We used the national cropland and sowing area statistics for 2017 at 

prefecture-level city scale to evaluate our cropland intensity maps. 
These statistical data were summarized by professional field surveys and 
can be accessed from National Bureau of Statistics of China. 

2.2.4. Existing cropping intensity maps of China 
We collected available cropping intensity maps which covered China 

for comparison in the Discussion section. (1) The FS02 dataset is 
generated based on agricultural census statistics and a land cover map, 
including 0.5◦ resolution maps of rice paddy and its rotations, and a 
database contains difference cropland rotation area (Frolking et al., 
2002). (2) The KW20 dataset consists of planting sequence, growing 
period and distribution area of various cropping systems on a global 
scale, derived using monthly growing data (Waha et al., 2020). (3) The 

Fig. 2. Distribution of croplands based on 2015 NLCD-China.  
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YH14 dataset contains China’s multiple cropping intensity map for 2002 
with 500 m spatial resolution, produced by peak-finding algorithm 
based on field observations and MODIS data (Yan et al., 2014). (4) The 

ZL13 dataset describes multiple cropping index and efficiency of China 
in 2005 at the 250 m resolution, using decision tree model based on 
connection between crop phenology and MODIS EVI value (Zuo et al., 

Fig. 3. (a-d) Distributions of good-quality observations per pixel in data obtained from various sensors during the study period. (e) Histograms of area percentage 
and amount of good-quality observations from various sensors. (f) Total observations and good-quality observations within each agricultural region. Box denotes the 
maximum, third quartile, median, first quartile, and minimum of total pixels. 

Fig. 4. Data and workflow for phenology- and object-based cropping intensity mapping.  
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2013). (5) The QB17 dataset includes China’s cropping intensity data 
during 1982–2013 applying wavelet features-based method (Qiu et al., 
2017). (6) The GCI30 dataset is a global cropping intensity dataset of 30 
m resolution using phenophase-based mapping framework. We calcu-
lated the corresponding area proportions and MCI for GCI30 within 
China based on the dataset provided (Zhang et al., 2021a; Zhang et al., 
2021b). 

2.3. Method 

The data and workflow to produce annual cropping intensity map are 
shown in Fig. 4. First, cropland data were separated out of the National 
Land Cover Database for 2015 to make a cropland mask. Second, we 
calculated three vegetation indexes using preprocessed, integrated 
Landsat-7/8 and Sentinel-2 dataset with 10 m resolution for each 
cropland region. We then used an object-based simple non-iterative 
clustering (SNIC) algorithm to segment crop fields. Third, an algo-
rithm based on peak-finding and thresholds was applied to identify the 
MCI of each cropland object in China. The accuracy of generated product 
was evaluated using data collected from a large number of sample points 
via the cropland mask. Phenological analysis was performed based on 
visual interpretation. We also compared our results to national statistics 
in terms of the cropping intensity and spatial distribution in China. 

2.3.1. Vegetation index calculation 
Identifying alterations in the composition of soils, surface water, and 

crops over a cropland field is challenging, requiring spectral bands or 
vegetation indexes that response obviously to these factors (Zhang, 
2015). The Normalized Difference Vegetation Index (NDVI) is the most 
extensively utilized index in cropping studies because it carries infor-
mation about the canopy growth of crops (Gao et al., 2017; Chen et al., 
2018). The Enhanced Vegetation Index (EVI) corrects the effects of 
aerosol scattering and the soil background. The Land Surface Water 
Index (LSWI) contains SWIR reflectance, which exhibits sensitivity to 
soil and crop moisture. We constructed time-series data for these three 
vegetation indices based on local phenological information and the 
image acquisition time, using blue, red, NIR, and SWIR spectral bands 
from the integrated Lansat-7/8 and Sentinel-2 data, as shown in Eqs. 
(1)–(3): 

NDVI =
NIR − RED
NIR + RED

(1)  

EVI = 2.5 ×
NIR − RED

NIR + 6RED − 7.5BLUE + 1
(2)  

LSWI =
NIR − SWIR
NIR + SWIR

(3) 

where RED, BLUE, NIR, SWIR represent the top of atmosphere 
reflectance values in TOA imagery of red, blue, near-infrared, short-
wave-infrared bands, respectively. 

2.3.2. SNIC object-based segmentation 
To reduce noise among mixed-pixel time-series data, we performed 

object-based segmentation to analyze cropping intensity on a large 
scale. For each of the four seasons (winter, spring, summer, fall), we 
composited five bands from the Sentinel-2 data: blue, green, red, NIR, 
and the NDVI. The median values were used to create a layer stack for 
each season. Then, we used simple non-iterative clustering (SNIC) seg-
mentation algorithm (Achanta and Süsstrunk, 2017), to segment all 
cropland areas extracted from NLCD-2015. Because SNIC runs within a 
single iteration and enforces connectivity from the start of the run, it has 
low memory requirements, high computation efficiency and segmenta-
tion quality (Achanta et al., 2012; Achanta and Süsstrunk, 2017). The 
SNIC algorithm can be implemented on GEE and typically has six pa-
rameters. Based on characters of the size and shape in cropland field 

parcels for China, the following parameter settings were optimal for 
cropland region classification (Fig. 5): super-pixel seed location spacing 
= 6, compactness factor = 5, and connectivity = 8. The same segmen-
tation parameters were used throughout the study area. 

2.3.3. Time-series data construction 
Average vegetation indices for each image were calculated for the 

cropland object. To minimize subtle differences in object-based vege-
tation indices among images, maximum NDVI and EVI composites, and 
mean LSWI composite were computed for each 10-day period. 

We filled the data gaps for each cropland object in images caused by 
cloud cover using time-series linear interpolation of valid data. Noise 
generated by cloud, snow, and other factors lead to dramatic fluctua-
tions in NDVI and EVI time-series data, which complicates the analysis 
and extraction of crop seasonal characteristics (Fischer et al., 2002). 
Therefore, we denoised and reconstructed the NDVI and EVI datasets 
using the Savitzky-Golay filter (Fig. 6). Thus, gap-filled and smoothed 
composite vegetation indices dataset was generated for each cropland 
object. 

2.3.4. An object-based cropping intensity algorithm 
Pixel-based phenological and threshold algorithms have been used 

successfully to extract cropping intensity values for several climate re-
gimes and irrigation management types at various spatial scales in China 
(Liu et al., 2020). The object-based cropping intensity algorithm is built 
upon this algorithm incorporating cropland objects into the analysis. 
NDVI and EVI values gradually increase as a crop enters the growth 
stage; both reach their peaks when the crop canopy is closed. As the crop 
enters the reproductive growth stage, NDVI and EVI begin to decline 
until harvest (Fig. 7). Thus, for each index, values before and after a 
given time point can be compared to identify the peaks and troughs for a 
given cropland object. 

As winter crops enter the hibernation period, NDVI values begin to 
decline, resulting in double peaks in the NDVI curve. A similar phe-
nomenon occurs when there is weed growth prior to the planting of a 
single crop. We applied the dynamic threshold method to distinguish 
these two phenomena using the LSWI time-series curve (Dong et al., 
2015). First, the potential LSWI (Tp) threshold was calculated using Eq. 
(4), based on the maximum and minimum LSWI values (LSWImax and 
LSWImin, respectively). Second, the final threshold (TF) was calculated 
using Eq. (5), based on maximum and minimum TF of 0.2 and 0, 
respectively, in consideration of the difference in soil moisture between 
South and North China. Finally, LSWI was compared to (TF) to identify 
periods when the soil was bare (LSWI < TF). 

TP = LSWImin +(LSWImax − LSWImin) × 0.15 (4)  

TF =

⎧
⎨

⎩

0, TP < 0
TP, 0 ≤ TP ≤ 0.2

0.2, TP > 0.2
(5) 

However, in some regions of China, when the early rice is harvested, 
the second rice crop is planted within 2 weeks. The bare soil could not be 
detected due to the abrupt increase in LSWI. Therefore, we applied an 
optimized supplementary algorithm to determine whether the period 
between crop harvesting and planting was short. When time-series NDVI 
data contained two neighboring peaks, if the LSWI was larger than the 
NDVI or EVI within a trough between two peaks, then both peaks were 
considered to represent crop growth (Dong et al., 2016). 

Because some non-crop plants may grow, we set a threshold for 
NDVImax to 0.5 during the plant growth cycle. For each object, if 
NDVImax ≥ 0.5, the object was defined as crop cover; and if NDVImax <

0.5, the object was defined as having no crop cover. 
Based on these definitions of crops growth, we used NDVI ratio to 

detect the start (SOS) and end of season (EOS) according to remaining 
peaks with crop cover (Mishra et al., 2021), as follows: 

L. Liu et al.                                                                                                                                                                                                                                       
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Fig. 5. Simple non-iterative clustering (SNIC) object-based cropland segmentation. (a) Median composite images composed of blue, red, NIR bands and NDVI for 
each season: (1) spring (March–May 2017), (2) summer (June–August 2017), (3) autumn (September–November 2017), and (4) winter (December 2017 to February 
2018). (b) Segmentation results and Google Earth images: located at (1) 125.1839◦ E, 43.6368◦ N, (2) 115.3938◦ E, 38.6803◦ N, (3) 115.1250◦ E, 30.1088◦ N, and (4) 
110.0370◦ E, 21.2697◦ N. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. NDVI time-series data were smoothed using Savitzky-Golay filter.  
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NDVIratio =
NDVI − NDVImin

NDVImax − NDVImin
(6) 

where NDVImin is computed as the minimum NDVI value over a 2- 
year period. NDVImax is computed as the maximum NDVI value within 
crops growth duration. 

We set SOS as the day when NDVIratio rised to 0.1, and set EOS as the 
day when NDVIratio drop to 0.19, respectively. We determined the MCI 
by identifying the period when SOS and EOS occurred. When either SOS 
or EOS of a crop growth cycle occurred during 2017, the MCI was 0.5; 
when both occurred during 2017, the MCI was 1 (Liu et al., 2020). 
Finally, we summed and round down the MCI values of all crop growth 
cycles for each object in 2017, because decimals represent incomplete 
growth cycles. The cropping intensity map for 2017 was thus created. 

2.3.5. Accuracy assessment 
We estimated precision following to stratified sampling principle 

(Olofsson et al., 2014). First, we partitioned cropping intensity map into 
three strata: single-, double-, and triple-cropping. These three strata 
accounted for 78 %, 21 %, and 1 % of the cropping intensity map, 
respectively. The sample size was calculated by stratified random 

sampling (Cochran, 1977). Second, we used the cropland area of the 
nine agricultural regions to determine sample allocation to three strata 
(Table 1). In order to ensure that there are a certain number of sample 
points in three strata of each region, we randomly generated the cor-
responding number of sample points selected from each of these three 
strata according to the proportion of regional area (total 4,235 samples). 

Fig. 7. True color images of cropping regions in 2017 obtained from Google Earth and vegetation indices curves for (a) single-cropping (center coordinates: 86.0829◦

E, 41.4483◦ N), (b) double-cropping (center coordinates: 112.8943◦ E, 23.6309◦ N), and (c) triple-cropping sample cropland objects (center coordinates: 110.9192◦

E, 21.5349◦ N). The red lines indicate the cropland boundaries for object-based segmentation. The orange rectangles indicate the sample cropland objects. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Number of sample points in each agricultural region.  

Regions Single cropping Double cropping Triple cropping Total 

A 794 10 10 814 
B 519 22 10 551 
C 402 361 10 773 
D 230 24 10 264 
E 27 10 10 47 
F 349 46 10 405 
G 513 271 10 794 
H 290 108 10 408 
I 120 49 10 179 
Total 3244 901 90 4235  
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Fig. 8. Ground truth sampling points used for validation.  

Fig. 9. Annual cropping intensity map in 2017.  
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Third, we extracted the NDVI, EVI, and LSWI temporal profiles of each 
sample point from GEE, and distinguished the temporal profiles of the 
sample points based on visual interpretation and field site data (Fig. 8). 
Finally, the sample points were overlaid with cropping intensity map, 
and the cropping intensity information corresponding to the 4,235 
sample points was extracted to calculate a confusion matrix for accuracy 
evaluation and area estimation. 

2.3.6. Comparison with national agricultural statistical data 
We calculated the estimated area proportions and used these results 

to estimate the sowing area of each region and prefecture-level city. We 
also collected regional sowing area data from provincial and prefectural 
statistical yearbooks published in 2018, which provided statistical data 
for 2017. We then compared the sowing area data from two different 
sources. Due to a lack of relevant data in the statistical yearbooks, we 
excluded some prefectural cities from this analysis. 285 prefectural cities 
were selected finally for verification. 

3. Results 

3.1. Area estimates of cropping intensity in 2017 

The cropping intensity map shows the distribution of cropping sys-
tems within China (Fig. 9). At the national scale, the map estimates a 
single cropping system area of 1.189 × 106 km2 ± 7.90 × 103 km2 (±
denotes the 95 % confidence interval), accounting for about 79.26 % of 
the cropland area, followed by a double cropping system area of 0.306 
× 106 km2 ± 8.03 × 103 km2 (~ 20.41 %) and triple cropping system 
area of 5.00 × 103 ± 1.75 × 103 km2 (~ 0.33 %). By calculation, the 
national average MCI is 1.21. 

The distribution of cropping intensity indicated that cropping sys-
tems shifted from single to multiple cropping from north to south. 
Northern China has generally larger crop fields and more limited ther-
mal conditions; therefore, single cropping is dominant. In comparison, 
most double-cropping systems clustered within central and southern 
China, whereas triple-cropping systems scattered sporadically across the 
southern regions planted with many types of crops with varying growth 
cycles. 

The regional-scale distribution of various cropping system is shown 
in Table 2. Single cropping systems were mostly found in the Northeast 
China Plain, accounting for 24.20 % of all single cropping systems area 

of the cropping intensity map and 19.18 % of all cropland. Double- 
cropping systems were majorly found from Huang-Huai-Hai Plain, 
which accounted for 40.56 % of the double cropping area and 8.28 % of 
all cropland, respectively. Triple cropping systems were largely 
distributed across the Yangtze Plain, which accounted for 36.84 % of 
triple-cropping area and 0.12 % of all cropland, followed by Southern 
China. The MCI was highest in Huang-Huai-Hai Plain (1.45), followed 
by Yangtze Plain (1.35) and Southern China (1.34). 

Total Single (%), Total Double (%), Total Triple (%) represent single- 
, double-, and triple-cropping area of each region, accounting for the 
proportion of total single-, double-, and triple-cropping area in China, 
respectively. Total cropland (%) represents the single-, double-, and 
triple-cropping area of each region, accounting for the proportion of 
overall cropland area of China. 

3.2. Reliability of annual cropping intensity map 

3.2.1. Accuracy based on validation points 
The accuracy values for the 2017 annual cropping intensity map of 

China, obtained using the validation points, are displayed in Table 3. 
The respective producer and user accuracy (PA, UA) values were 97.36 
± 0.01 % and 98.58 ± 0.00 % for single cropping, 94.33 ± 0.03 % and 
89.90 ± 0.02 % for double cropping, and 78.26 ± 0.00 % and 84.44 ±
0.08 % for triple cropping. Therefore, the performance of the phenology- 
based mapping algorithms declined gradually as the increase of MCI 

Table 2 
Statistical summary of cropping system area (103 km2) in each region of China.  

Regions Cropland 
area 

Single cropping Double cropping Triple cropping MCI 

Single area Total 
Single 

Total 
cropland 

Double area Total 
Double 

Total 
cropland 

Triple 
area 

Total 
Triple 

Total 
cropland  

(%) (%) (%) (%) (%) (%)  

A  288.97 287.82 ±
0.37  

24.20  19.18 1.13 ± 0.37  0.37  0.08 0.02 ±
0.00  

0.42  0.00  1.00 

B  195.90 187.49 ±
1.56  

15.77  12.50 8.20 ± 1.56  2.68  0.55 0.21 ±
0.00  

4.20  0.01  1.04 

C  276.84 152.22 ±
3.78  

12.80  10.15 124.20 ±
3.78  

40.56  8.28 0.42 ±
0.09  

8.47  0.03  1.45 

D  91.75 84.20 ± 1.75  7.08  5.61 7.58 ± 1.75  2.48  0.51 0.06 ±
0.03  

1.26  0.00  1.08 

E  10.29 9.72 ± 0.12  0.82  0.65 0.57 ± 0.12  0.19  0.04 0.02 ±
0.00  

0.40  0.00  1.06 

F  143.36 130.67 ±
2.47  

10.99  8.71 12.48 ±
2.47  

4.07  0.83 0.22 ±
0.09  

4.34  0.01  1.09 

G  285.29 188.37 ±
4.19  

15.84  12.56 95.08 ±
4.30  

31.05  6.34 1.84 ±
1.03  

36.84  0.12  1.35 

H  145.62 106.21 ±
3.27  

8.93  7.08 38.34 ±
3.29  

12.52  2.56 1.07 ±
0.35  

21.45  0.07  1.28 

I  62.20 42.40 ± 2.48  3.57  2.83 18.67 ±
2.56  

6.10  1.24 1.13 ±
0.73  

22.61  0.08  1.34 

Total  1500.20 1189.10 ±
7.90  

100.00  79.26 306.24 ±
8.03  

100.00  20.41 5.00 ±
1.75  

100.00  0.33  1.21  

Table 3 
Confusion matrix based on validation points in the 2017 cropping intensity map 
of China derived from the object- and phenology-based algorithm.  

Classification Reference (validation) OA 
(%) 

Kappa 

Single 
cropping 

Double 
cropping 

Triple 
cropping 

UA 
(%) 

Single 
cropping 

3198 46 0 98.58 
± 0.00 

96.68 
± 0.01 

0.90 

Double 
cropping 

88 810 3 89.90 
± 0.02 

Triple 
cropping 

0 14 76 84.44 
± 0.08 

PA(%) 97.36 ±
0.01 

94.33 ±
0.03 

78.26 ±
0.00   

L. Liu et al.                                                                                                                                                                                                                                       



International Journal of Applied Earth Observation and Geoinformation 124 (2023) 103504

10

from single- to multiple-cropping regions. The overall accuracy (OA) 
was 96.68 ± 0.01 % and the Kappa coefficient was 0.90. 

The accuracy of the resulting map for China in 2017 is shown in 
Fig. 10. The OA varied from 91.69 % to 99.89 %, with a Kappa coeffi-
cient range of 0.78–0.94. These reasonably high accuracy values indi-
cate that the improved mapping framework was dependable for 10–30 
m scale imagery. From a regional perspective, the Northeast China Plain 

had the highest OA (99.89 ± 0.00 %), and the Qinghai-Tibet Plateau had 
the highest Kappa (0.95). In addition, The mapping accuracy within 
northern China was generally greater than within southern regions, 
which can be attributed to a variety of factors. For example, there was 
less cloud and rainy weather in northern China during the study period; 
therefore, more good-quality observations were available in this region. 

Fig. 10. Accuracy of cropping intensity in each agricultural region of China.  

Fig. 11. Comparison between planted area acquired from the resulting map and sowing area from statistics for 2017, in 285 prefectural cities of nine agricul-
tural regions. 
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3.2.2. Area comparison with national statistics 
We compared the 2017 annual cropping intensity map produced in 

this study with national statistics for 2017 at the prefectural level (285 
cities) (Fig. 11). The sowing area calculated from the generated maps 
and national statistics showed a significant linear relationship (R2 =

0.94). The mean error (ME) and root mean square error (RMSE) were 
3.37 × 103 km2 and 6.44 × 103 km2, respectively, for the entire study 
area (Table 4). The sowing area was larger according to the cropping 
intensity map than the national statistics throughout the study area, 
mainly because NLCD-China showed a larger cropland area of 1.50 ×
106 km2 than the national statistical yearbook (1.349 × 106 km2). The 
regional evaluation results indicated that the Sichuan Basin and sur-
rounding regions had the strongest correlation while the Qinghai-Tibet 
Plateau had the weakest correlation. 

4. Discussion 

4.1. Result comparison with other similar products 

According to the 2017 annual cropping intensity map (Fig. 9) and 
other related products, multiple-cropping area showed substantial 
changes between previous studies and the present one (Table 5). The 
proportion of single-cropping systems expanded from 64.0 % to 79.26 % 
between 2013 and 2017, while that of multiple-cropping systems 
decreased from 36.0 % to 20.74 % of total cropland. However, in 
1995–1996, 1.30 × 106 km2 of cropland (~ 30 %) was estimated to be 
double-cropped, whereas 10 % was triple-cropped. Thus, use patterns of 
the various cropping systems in China have changed significantly. 

Due to the similarity in spatial resolution and study years, the GCI30 
dataset was selected for regional-scale comparison with our CI product. 
The regional comparison results in Table 6 demonstrated that our 
cropping intensity results resembled GCI30 in most regions of China. 
The significant differences were primarily observed in Sichuan Basin 
and surrounding regions as well as Yangtze Plain. In these two regions, 
the calculated MCI in our study was significantly lower compared to the 
GCI30 dataset. 

To further investigate detailed differences between the two products, 
we selected some representative areas within nine agricultural regions 
in China for comparative analysis (Fig. 12). In the regions characterized 
by large field parcels and predominantly single-cropping, such as the 
Northeast China Plain and the Northern arid and semi-arid region, 
GCI30 and our results showed similar cropping intensity distribution. In 
certain regions such as the Yunnan-Guizhou Plateau, there were signif-
icant differences in cropland boundaries due to different cropland masks 
used. In the regions such as Southern China and the Huang-Huai-Hai 
Plain, GCI30 exhibited some fragmented segmentation results and 
scattered pixel misclassifications, possibly influenced by mixed-pixel at 
30 m resolution. However, our object-based approach effectively alle-
viated such issues and performed relatively well even in areas with 
complex climate and small field parcels. 

4.2. Advantages and limitations of our approaches 

Previously, we reported inaccuracies in “salt and pepper” pixels, 
which resulted from the noise in the mixed-pixel data from data source 
(Liu et al., 2020). Moreover, the pixel-based mismatches over the time- 
series Sentinel-2 data should also be noted (Yan et al., 2018). Therefore, 
we used the object-based SNIC segmentation algorithm to divide 

cropland area into field objects. This approach greatly alleviated the 
problem of Sentinel-2 Level-2A pixel dimension mismatches across time, 
and significantly improved the accuracy of the cropping intensity map 
(Table 7). The OA and the Kappa coefficient increased to 97 % and 0.90, 
respectively. 

The time-series remote sensing data used in recent studies for crop 
intensity mapping have obvious limitations (Li and Roy, 2017). For 
instance, MODIS images with low spatial resolution are usually adopted 
for cropping intensity mapping in China (Wu et al., 2018; Mishra et al., 
2021). However, low-spatial-resolution remote sensing data contain 
many mixed pixels, which influences the accuracy of cropping intensity 
mapping (Bégué et al., 2018; Tran et al., 2022). Our study integrated 
Landsat-7/8, and Sentinel-2 times-series dataset to generate 10-m 
cropping intensity maps with high temporal high temporal frequency. 
Compared to works that used only Landsat or Sentinel-2 data, the in-
tegrated data substantially expanded the quantity of high-quality ob-
servations, which is especially significant for field-scale practical 
applications (Yu et al., 2015). 

We selected several areas for comparison of the CI maps from only 
Sentinel-2 and from integrated multi-source data (Fig. 13). In areas with 
low cloud cover, such as the Yangtze River Plain, the results obtained 
from two kinds of data source showed small differences. But in the re-
gions with high cloud cover, such as Sichuan Province, the exclusive use 
of Sentinel-2 data could not overcome the problem of data gaps, leading 
to significant underestimation of area of double or triple cropping. In 
summary, the integration of multi-source data enhanced the probability 
of capturing critical phenological periods of crops and subsequently 
improving accuracy. However, our integration algorithm still had limi-
tations. Despite images from different sensors were normalized, spectral 
inconsistency persisted among them. Therefore, the inclusion of multi- 
source data in the areas with fewer clouds could also introduce subtle 
noise. 

Our study area has a complex topography and a wide variety of 
climate characteristics. Landsat 7/8 imagery of 30 m resolution may 
contain many mixed pixels representing various land cover types, 
despite resampling to a 10 m resolution, which is a major potential 
source of error in cropping intensity mapping. 

4.3. Implications and future work 

Many factors drive shifts of distribution and area of multiple crop-
ping patterns within China, including natural, socioeconomic, agricul-
tural, labor, and governmental factors (Liu, 2018; Liu et al., 2021). For 
example, shifts in multiple-cropping patterns have been shown to be 
influenced by socioeconomic factors and be spatiotemporally coupled 
with urbanization (Qiu et al., 2020). Detailed information on cropping 
intensity and further research on driving factors are essential for un-
derstanding these changes in agricultural systems (Chen et al., 2020). 
Besides, deep learning techniques can be included to improve the fusing 
of multi-source remote sensing dataset and cropping intensity mapping 
at a larger scale. Our future studies will be oriented towards these 
directions. 

5. Conclusion 

We put forward a novel object- and phenology-based framework to 
map annual cropping intensity with 10 m resolution within China 
implemented on GEE. The generated cropping intensity map obtained 

Table 4 
Correlation between planted area (× 103 km2) acquired from the resulting map and sowing area (× 103 km2) from statistics for 2017 in nine agricultural regions.   

A B C D E F G H I Total 

ME  3.37  1.66  1.48  1.19  0.44  1.58  1.20  1.14  0.47  1.43 
RMSE  6.44  2.36  1.87  1.66  0.65  2.02  1.65  1.65  0.69  2.59 
R2  0.97  0.78  0.91  0.62  0.25  0.98  0.79  0.72  0.83  0.94  
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by identifying crop growth cycles showed high accuracy with an OA of 
96.68 ± 0.01 % and a Kappa coefficient of 0.90. In addition, it signifi-
cantly alleviated mixed-pixel effects and provided spatial data with 
more detailed information particularly for smallholder farms in South-
ern China. The proposed algorithm has broad application prospects 
based on high availability and repeatability. 
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Table 5 
Proportions of various cropping intensity categories in China from different study.   

FS02 
(Frolking et al., 2002) 

KW20 
(Waha et al., 2020) 

YH14 
(Yan et al., 2014) 

ZL13 
(Zuo et al., 2013) 

QB17 
(Qiu et al., 2017) 

GCI30 
(Zhang et al., 2021b) 

Our study 

Study period 1990–1996 1998–2002 2002 2005 2013 2016–2018 2017 
Spatial resolution 0.5◦ 30 arcmin 500 m 250 m unknown 30 m 10 m 
Area 

(%) 
Single 61.7 64.0 66.0 54.0 64.0 74.98  79.26 
Double 27.4 35.7 32.2 39.0 32.8 24.58  20.41 
Triple 10.9 0.3 1.8 7.0 3.2 0.44  0.33 

MCI of China 1.49 1.36 1.36 1.53 1.39 1.25 1.21  

Table 6 
Regional MCI comparison in China of our results and GCI30 (Zhang et al., 2021b).        

Regions       

A B C D E F G H I 

GCI30 Cropping area ratio of cropland(%) Single  99.91  96.79  52.36  87.70  95.30  77.25  54.42  64.45  45.58 
Double  0.09  3.20  46.16  12.16  4.67  22.60  45.22  35.20  52.56 
Triple  0.00  0.00  1.48  0.14  0.03  0.15  0.36  0.35  1.87 
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Our study Cropping area ratio of cropland(%) Single  99.60  95.71  54.98  91.77  94.46  91.15  66.03  72.94  68.17 

Double  0.39  4.19  44.86  8.26  5.54  8.71  33.33  26.33  30.02 
Triple  0.01  0.11  0.15  0.07  0.19  0.15  0.64  0.73  1.82 

MCI of Region 1.00  1.04  1.45  1.08  1.06  1.09  1.35  1.28  1.34  

Fig. 12. Detailed pixel-level comparison of our cropping intensity map and GCI30 (Zhang et al., 2021b). VHR Image represents the vary high resolution image 
obtained from GEE. 

Table 7 
Comparison between accuracy of the cropping intensity map generated using the 
improved algorithm developed in the present study and that of our previous 
study (Liu et al., 2020).  

Algorithm Accuracy assessment 

OA Kappa 

pixel-based 93 %  0.84 
object-based 97 %  0.90  
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Achanta, R., Süsstrunk, S., 2017. Superpixels and polygons using simple non-iterative 
clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 4651–4660. 
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