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A B S T R A C T   

Coastal zones are essential ecosystems due to their provision of invaluable ecosystem services. However, the 
geomorphologic characteristics of coastal zones are becoming more complex and changeable due to global 
warming, sea-level rise (SLR), and the intensification of anthropogenic activities. Therefore, accurate and timely 
knowledge of coastal land cover types (including tidal flats, coastal vegetation, and year-long water cover) is 
needed for coastal research and sustainable management. To date, land cover products for coastal areas are 
mainly derived from moderate resolution imaging spectroradiometer images, but few studies have used Sentinel- 
1 synthetic aperture radar (S1) and Sentinel-2 Multispectral Instrument (S2) images, which can provide more 
detailed maps. We developed a Rule-based Time Series Classification (RTSC) approach to map coastal land cover 
types at a 10 m resolution, combining S1/S2 time-series images (2015–2019) and Google Earth Engine (GEE). 
These products were developed for the coastal zone of the Yellow Sea (YS), East Asia, which is an essential 
ecosystem protecting a coastal population of 60 million people from storms and SLR effects. Accuracy assessment 
showed that the annual maps of coastal land cover had high overall accuracy. The coastal land cover types for the 
YS in 2019 comprised 3593.42 km2 of tidal flats, 28,506.98 km2 of coastal vegetation, and 5436.92 km2 of 
coastal year-long water. The interannual dynamics of the coastal land cover area in the YS during 2015–2019 
were smaller. This study provides a promising method that combines S1/2 time series, a RTSC approach, and 
GEE to map coastal land cover areas at large scales. The 10 m resolution maps generated in this study are the 
most current dataset of coastal land cover types for the YS, and they potentially provide a basis for the sus-
tainable management and conservation of this important coastal zone.   

1. Introduction 

The coastal zone is the interface between terrestrial and marine 
ecosystems (Adger et al., 2005; Mentaschi et al., 2018). It provides 
essential habitats for wildlife fauna and flora, acts as a carbon sink 
(Bauer et al., 2013; Pendleton et al., 2012), and suppors the sustainable 
development of coastal communities. However, coastal geomorphologic 

processes at a global scale are becoming more complex, sensitive, and 
changeable as a result of climate change and anthropogenic activities 
(Jevrejeva et al., 2016; Schuerch et al., 2018; Wang et al., 2020a). Ac-
cording to the coastal ecosystem investigations (Murray et al., 2014; Sun 
et al., 2017; Yim et al., 2018; Liu et al., 2018; Chen et al., 2019), loss of 
coastal wetlands is mainly caused by direct conversion to cropland and 
aquaculture ponds (Kirwan and Megonigal, 2013). Therefore, this study 
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accurate annual maps of land cover, which includes coastal vegetation 
(e.g., cropland, saltmarshes, and mangrove forest), tidal flats (also 
commonly known as intertidal flats or coastal non-vegetated areas), and 
year-long water (e.g., aquaculture ponds and rivers) (Fig. 1), are 
essential and necessary for future coastal sustainability. 

Fieldwork is a routine method for tracking and mapping coastal land 
cover. However, their unacceptable costs in terms of time and effort 
restrict their use over long periods and on a large spatial scale (Choi 
et al., 2014; Wang et al., 2019). In practice, satellite remote sensing (RS) 
has been increasingly considered as an important tool for providing 
regular observations of land cover dynamics (Gong et al., 2019). Over 
the past half-century, several studies generated coastal land cover maps 
at different spatial scales using diverse RS images (Table1), including 1 
km (Bartholomé and Belward, 2005), 500 m (Friedl et al., 2010), 300 m 
(Arino et al., 2008), 30 m (Gong et al., 2013), and 10 m (Gong et al., 
2019). However, these maps may not meet the requirements of coastal 
zone management given that these maps do not include coastal land 
cover heterogeneity. As a result, several studies provided mapped the-
matic products for single features such as salt marshes (Sun et al., 2021) 
and tidal flats (Murray et al., 2019; Jia et al., 2021). However, these 
products either have a relatively coarse time resolution, or they provide 
a few years, which is problematic for monitoring this highly dynamic 
and complex system, which requires an overall perspective. 

Although there are many previous studies of the coastal land cover 
(Bhargava et al., 2020; Zhang et al., 2020), their maps seldom clearly 
differentiate tidal flats, vegetation, and year-long water at the coastal 
zone. Recently, Chen et al. (2020) revealed the changes of Spartina 
alterniflora in the Yellow River delta during the period of 2012–2019 
using Worldview-2 (0.5 m), GF-1 (2 m), GF-2 (1 m), and GF-6 (2 m) data. 
Although very high spatial resolution data have been used to generate 
more detailed maps, several omission errors may exist in large-scale 
applications. The challenges for RS applications in the YS coastal zone 
are compounded by issues of frequent cloud cover, phenology with a 
focus on coastal vegetation, and the problem of consistent land cover 
identification in a mixed wave-tide environment. However, time series 
classification algorithms can provide classification rules based on the 

analysis of the vegetation life cycle (Xiao et al., 2005), which has 
considerable advantages in land cover mapping other years across a 
large scale. 

Since 2015 the S2 mission has provided an unprecedented quantity 
of publicly available data. Many recent reports showed the usefulness of 
S2 images for coastal land cover mapping (Bergsma et al., 2020; Jia 
et al., 2021; Tassi and Gil, 2020; Tian et al., 2020). The corresponding 
relatively high spatial resolution and observation frequency can help in 
the mapping of these fragmented areas. However, some of the extracted 
features using S2 may contain errors due to the tidal conditions at the 
time of image acquisition (Zhu et al., 2019), or the omission of seasonal 
characteristics (Sun et al., 2021). Therefore, more research is needed to 
produce accurate, detailed, and updated coastal land cover maps in the 
YS. SAR sensors, which are independent of clouds and day/nighttime, 
have an improved capability for capturing vegetation structures and 
surface water in coastal zones (Ottinger et al., 2017; La et al., 2017). The 
combination of microwave and optical imagery is expected to provide 
complementary information. Preliminary applications have been made 
in the areas of near-daily river discharge (Brombacher et al., 2020), 
mangrove forest (Chen et al., 2017), intertidal topography (Salameh 
et al., 2020), and agricultural ponds (Prasad et al., 2019). Despite these 
studies, however, the potential for the synergistic combination of radar 
and optical imagery to improve coastal land cover mapping at a large 
scale remains unknown. 

Therefore, the objectives of this study were to (1) develop a basic 
approach that combines S1/2 images to map coastal land cover at a 10 m 
resolution; (2) apply the Rule-based Time Series Classification (RTSC) 
approach to evaluate the dynamics of coastal land cover; and (3) 
generate maps of the coastal land cover of the YS from 2015 to 2019. 

2. Study area and dataset 

2.1. Study area 

The YS is located in the Western Pacific Ocean (32◦–40◦N, 
120◦–127◦E) between three countries: China, North Korea, and South 

Fig. 1. Typical coastal land cover types in the Yellow Sea (YS). (a–c) cropland, aquaculture ponds, and a dam in the reclamation area, (d–g) P. australis, S. salsa, 
S. alterniflora, and tidal flats, (h) year-long seawater. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Korea (Fig. 2). The YS is an essential part of a broader regional 
ecosystem in East Asia (Murray et al., 2014), and protects the coastal 
population from storms and SLR (Small and Nicholls, 2003). The region 
as a maritime monsoon climate, with a mean air temperature from 14 ◦C 
to 20 ◦C and annual precipitation from 1000 mm to 1200 mm. Between 

May and July, the sea surface temperature increases from 10 ◦C to 28 ◦C. 
The Bohai Sea, located in the northern part of the YS, includes the bays 
of Liaodong, Bohai, and Laizhou (Koh and Khim, 2014). These bays are 
one of the main way stations along the East Asian-Australasian Flyway 
for hundreds of thousands of migratory waterbirds species (Murray 

Table 1 
Previous studies on coastal land cover mapping, including algorithms and datasets with varying spatial resolution.  

Methods Optical data Radar data Optical +
Radar data  

≤10 m(e.g., S2; worldview-2; 
GF) 

30 m(e.g., Landsat, SPOT) 250 m–500 m (e.g., 
MODIS) 

S1/2 (10 m) 

Visual image 
interpretation 

Ma et al. (2019) Niu et al. (2012), Han et al. 
(2019) 

Bartholomé and 
Belward (2005)    

Unsupervised 
classification 

Gong et al. (2019); Jia et al., 
(2021); Sun et al., (2021) 

Amani et al. (2018), Murray 
et al. (2019), Zhang et al. 
(2019), 

Bontemps et al. (2010), 
Bansal et al. (2017) 

Mohammadimanesh et al. 
(2018),   

Supervised classification Seto and fragkias. (2007); Feng 
et al. (2019); Chen et al. (2020) 

Nielsen et al. (2008), Gong 
et al. (2013) 

Friedl et al. (2010)  Held et al. 
(2003)  

Pixel and time-series 
statistics-based 
methods   

Wang et al. (2020a,b)   This 
study  

Fig. 2. (a) Map showing the location of the YS in the coastal zone of East Asia (b) Distribution of water and non-water sampling points for algorithm development. 
River data (i.e., primary, and secondary rivers) are from the Center for Geographic Analysis at Harvard University (available at https://worldmap.harvard.edu/). 
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et al., 2014). In this study, river data were used to divide the study area 
into nine sections (i.e., Fig. 2, A–I) to improve calculation efficiency and 
statistical analysis of the results. 

2.2. Datasets 

2.2.1. Sentinel-1 SAR and Sentinel-2 MSI images 
Sentinel-1A/B satellites carry onboard a C-band synthetic aperture 

radar instrument that operates at 5.405 GHz, four different modes, and a 
revisit cycle of 12 days at the equator. S1 images acquired in ascending 
and descending orbits between January 1, 2015 and December 31, 2019, 
were selected (Fig. 3a) in GEE. The ESA Sentinel-1 observation strategy 
defines the Interferometric Wide swath model, which has provided dual- 
polarization (VV and VH) imagery. Each tile has high geometric accu-
racy and was generated with the Sentinel-1 Toolbox (Mahdianpari et al., 
2019). 

Sentinel-2A/B are a wide-swath, high spatial resolution, multi- 
spectral imaging mission. The S2 Level 1C images used were gener-
ated from the European Space Agency’s Sentinel Scientific Data Hub. All 
S2 images collected by the study were processed into the 
atmospherically-corrected surface reflectance from the sensors. The S2 
images are from June 23, 2015, to December 31, 2019. With the assis-
tance of Quality Assessment (QA) bands, good quality observations of S2 
images covering the YS coastal zone were obtained (Fig. 3b). In this 

study, we acquired and pre-processed all the S2 images with good 
quality from GEE for the interval of 2015–2019. 

2.2.2. Training datasets for algorithm development 
The training datasets of coastal water and non-water for algorithm 

development were manually and randomly identified using Google 
Earth images. Additionally, fieldwork photos from the Global Geo- 
referenced Field Photos Library at the University of Oklahoma (Xiao 
et al., 2011), were also included. Finally, a set of 6025 sampling points 
was used for algorithm development, including a number of 3420 water 
and 2605 non-water points (Fig. 2). Besides the abovementioned water 
and non-water sampling points, 12 regions of interest (ROI), of 
comparatively large size, were taken as training data to analyze the 
signatures of non-water and water areas in S1/2 images (Fig. S1). The 10 
non-water ROIs included: 8 ROIs representing different types of coastal 
vegetation such as cropland (ID = #1 and #2), saltmarsh (ID = #3, #4, 
and #5), and forest (ID = #6, #7 and #8), and 2 ROIs representing tidal 
flats (ID = #9 and #10). Two ROIs were also selected in seawater areas 
with different turbidity conditions: low turbidity (ID = #11) and high 
turbidity (ID = #12) (Fig. S1 for ID reference). 

3. Algorithms for coastal land cover mapping 

We developed a Rule-based Time Series Classification (RTSC) 

Fig. 3. S1/2 images covering the YS coastal zone. (a) The number of observations in S1. (b) The number of good observations in S2. (c–d) Monthly images collected 
by S1/S2 included in this study. 
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algorithm to classify coastal vegetation, tidal flats, and year-long water 
using S1/2 images, as shown in the workflow chart. The workflow was 
divided into three steps (Fig. 4): (a) input data, (b) classification, and (c) 
validation and comparison. 

3.1. Extraction of surface water and vegetation 

In order to perform per-pixel detection of the surface water and 
vegetation, several spectral indices were first calculated in the GEE. 
These indices were: Nominalized Difference Vegetation Index (NDVI, 
Tucker, 1979) (Eq. (1)), Enhanced Vegetation Index (EVI, Huete et al., 
2002) (Eq. (2)), Land Surface Water Index (LSWI, Xiao et al., 2005) (Eq. 
(3)), and modified Normalized Difference Water Index (mNDWI, Xu, 
2006) (Eq. (4)). These indices are correlated with vegetation greenness 
(NDVI, EVI), vegetation water (LSWI), and open surface water 
(mNDWI), respectively. 

NDVI =
ρNIR − ρRed

ρNIR + ρRed
(1)  

EVI = 2.5 ×
ρNIR − ρRed

ρNIR + 6 × ρRed − 7.5 × ρBlue + 1
(2)  

LSWI =
ρNIR − ρSWIR1

ρNIR + ρSWIR1
(3)  

mNDWI =
ρGreen − ρSWIR1

ρGreen + ρSWIR1
(4) 

Here, ρBlue, ρGreen, ρRed, ρNIR and ρSWIR1 denote the blue band (458–523 
nm), green band (543–578 nm), red band (650–680 nm), near-infrared 
band (ρNIR, 785–900 nm), and short-wave infrared band (ρSWIR1, 
1565–1655 nm) of S2 imagery. 

Although mNDWI is widely used as a standard for detecting surface 
water (Xu, 2006; Rokni et al., 2014), it may have errors due to the mixed 
pixels of water bodies and other coverage (e.g., mudflats and 

vegetation), especially in the coastal zone. For this reason, we used a 
combination of mNDWI and vegetation indices to detect surface water, 
which was successfully applied to Landsat images time series. Based on 
the randomly samples points and distribution frequency of water and 
non-water category are shown in Fig. 5(a–e) and our previous experi-
mental results (Wang et al., 2021; Zou et al., 2017; Liu et al., 2020), we 
considered the features of NDVI, EVI, mNDWI, and LSWI from S2 images 
for the major coastal land cover types (Fig. S2), and VH images from S1 
for water and non-water. We generated coastal land cover maps of 
surface water bodies and vegetation. The mapping algorithms are 
described below and summarized in Table 2. However, water inundation 
signals in the coastal zone are directly linked to the combined and highly 
variable effects of rivers, wind, waves, and tides. S1 data are very 
responsive to non-water cover (e.g., cropland, saltmarsh, and lowland 
forest) and water (Veloso et al., 2017). Despite some lands cover types 
such as beaches and mudflats (Fig. S3), the threshold VH < − 28 for the 
S1 VH data could readily identify water (Fig. 5f). Therefore, we gener-
ated a surface water mask using the combined algorithm of [(mNDWI >
EVI) or (mNDWI > NDVI) and (EVI < 0.1) and (VH < − 28)]. This 
method also demonstrates that S1/2 image time series have substantial 
advantages in coastal zone mapping (see Section 3.1 for more details). 

Coastal vegetation (e.g., lowland forest, saltmarsh, and cropland) is 
composed of green plants with high EVI and NDVI values, which are 
used to detect vegetation changes throughout the year (Huete et al., 
2002). However, these indices are affected by water and soil within the 
pixels (Wang et al., 2020b). LSWI can be used to classify vegetation and 
exclude surface water (Xiao et al., 2004). In our previous studies, this 
algorithm [(EVI ≥ 0.1 and NDVI ≥ 0.2) and LSWI > 0] has been applied 
to MODIS (Xiao et al., 2009) and Landsat-5/7/8 (Liu et al., 2020; Wang 
et al., 2020b) data for vegetation mapping. Here, we also used this 
method to produce a coastal vegetation map among the coastal land 
cover types on the YS. 

Fig. 4. Workflow chart showing the different steps in the application of the RTSC algorithm. (a) Input of S1/2 time-series data, (b) Classification of the target coastal 
land cover types, (c) Validation and comparison using field data and Google Earth VHR images. See the text for detailed information. 
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3.2. Annual frequency estimates of surface water bodies and coastal 
vegetation 

Tidal dynamics, vegetation phenology, and infrequent observations 
present great challenges to the capturing of coastal land cover features 
using a single image (Wang et al., 2020a; Liu et al., 2020). For this 
reason, time series image data are widely used to track land surface 
dynamics (Zhu and Woodcock, 2014; Kuenzer et al., 2015). The QA60 
bit-mask band was used to identify those observations covered by opa-
que and cirrus clouds, which are considered bad-quality observations 

(Traganos et al., 2018). The remaining observations are considered to be 
good-quality observations (Jia et al., 2021). Here, the combination of 
S1/2 time series data produced an accurate open surface water body for 
each year using Eq. (5), from which the water body frequency was 
calculated using Eq. (6). 

∑
Water=

{
1 (MSIEVI < 0.1) and [(MSImNDWI > MSIEVI) or (MSImNDWI > MSINDVI)] and (SARVH<− 28)

0 Other values

(5)  

Fwater =

∑
water

∑
good

(6) 

Here, 
∑

water is the observations of water calculated using Eq. (5), 
Fwater is the frequency of the water (Eq. (6)),

∑
good is the number of 

annual valid observations. Thus, we identified those pixels with masked 
out invalid observations, or excluded them from this study. In the same 
way, the coastal vegetation frequency was calculated using Eq. (7) and 
Eq. (8). 
∑

vegetation =
{

1 MSIEVI⩾0.1 and MSINDVI ⩾0.2 and MSILSWI > 0
0 Other values (7)  

Fig. 5. (a) Frequency distribution of (mNDWI-EVI) for water and non-water sampling pixels. (b) Scatter density plots of EVI and (mNDWI-EVI) of all sampling pixels. 
(c) Frequency distribution of (mNDWI-NDVI) for water and non-water sampling pixels. (d) Scatter density plots of EVI and (mNDWI-NDVI) of all sampling pixels. (e) 
Frequency distribution of EVI for water sampling pixels. (f) Frequency distribution of the VH band from S1for water and non-water sampling pixels. 

Table 2 
An overview of the RTSC algorithms used to generate surface water and 
vegetation.  

Land cover Mapping algorithms References 

Vegetation LSWI > 0 and EVI ≥ 0.1 and 
NDVI ≥ 0.2 

Xiao et al., 2009; Wang et al. (2020a, 
b,c); Zhang et al., 2020; Liu et al., 
2020 

Surface 
water 

(mNDWI > EVI) or 
(mNDWI > NDVI) and (EVI 
< 0.1) 

Zou et al., 2018; Wang et al. (2020a, 
b,c)  
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Fvegetation =

∑
vegetation
∑

good
(8)  

3.3. Classification of coastal land cover 

We used a straightforward coastal land cover classification scheme 
(tidal flats, coastal vegetation, and surface water) with different water 
and vegetation frequencies. The frequency maps of the open surface 
water calculated using the MSI and SAR images for the reference year of 
2019 and the 5-year (2015–2019) average showed similar spatial pat-
terns (Fig. 6). It is worth noting that the boundary between coastal water 
and non-water in the SAR images frequency map was more accurate 
than that of the MSI frequency map. Therefore, we combined the optical 
and microwave images to determine the year-long seawater and inter-
tidal zone using the water frequency in each year. 

First, we evaluated different frequency thresholds for the S1/2 im-
ages to identify surface water using the year 2019 as a reference. Pre-
vious studies in China used the value of 75 % to identify inland 
freshwater (Wang et al., 2020b), and 95 % was used to identify year-long 
seawater (Wang et al., 2020a). However, we found that S2 pixels with 
surface water frequency with values ≥90 % presented a relatively stable 
inter-annual variation (Fig. 7 a and c). Frequency maps with VH < − 28 
were generated based on the S1 data, and almost the water frequency 

with values ≥ 50 % had a very minor change (Fig. 7 b and d). Thus, we 
used FwaterMSI⩾90% and FwaterSAR⩾50% to define the year-long 
seawater. We also used 5 % of water frequency to generate the mean 
high-water spring tide line because the potential error range caused by 
the methods was assumed (Fig. 1) (Wang et al., 2020a). Therefore, water 
pixels with a frequency of [(5%⩽FwaterMSI < 90%) and (FwaterSAR <

50%)] were classified as part of the coastal intertidal zone. 
Second, year-long water was obtained using a threshold of 90 % from 

the S2 frequency map and a threshold of 50 % for the S1 frequency map 
to differentiate inland water such as aquaculture ponds and rivers. 
Therefore, water pixels with the frequency 
(FwaterMSI⩾90%)∩(FwaterSAR⩾50%) were classified as year-long water. 

Third, relatively large coastal vegetation and tidal flats were selected 
to analysis their characteristics of water frequency and vegetation fre-
quency (Fig. 8 a-c). According to the feature of water frequency and 
vegetation frequency of the sample points, the value of 15 % was used to 
classify tidal flats and coastal vegetation (e.g., water frequency from 
MSI ≤ 20 %, Fig. 8d; water frequency from SAR ≤ 10 %, Fig. 8e, and 
vegetation frequency < 15 %, Fig. 8f). Therefore, coastal land cover 
mapping algorithms of coastal vegetation, tidal flats, and year-long 
water were calculated using Eqs. (9), (10) and (11), respectively. 

Year-long water = FwaterMSI⩾90% ∩ FwaterSAR⩾50% (9) 

Fig. 6. Frequency maps of the open surface water. (a1–d1) S2 (MSI) band 8 of four different regions; (a2–d2) S1 (SAR) water frequency map in 2019, (a3–d3) MSI 
water frequency map in 2019, (a4–d4) 5-year frequency map of SAR surface water during 2015–2019, (a5–d5) 5-year frequency map of MSI surface water dur-
ing 2015–2019. 
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Vegetation = 15%⩽FvegetationMSI ∩ FwaterMSI⩽20% ∩ FwaterSAR⩽10%
(10)  

Tidal flats = FvegetationMSI < 15% ∩ (5%⩽FwaterMSI < 90% ∩ FwaterSAR

< 50% )

(11)  

3.4. Implementation of coastal land cover maps of the Yellow Sea for 
2015–2019 

Generally, the boundary between sea and land on the bedrock coast 
was clearly distinguishable in the remote sensing images. However, 
sandy, estuary, and muddy coasts have flat terrain, with more silt and 
sand and wetland vegetation, which is difficult to identify in the image. 
Artificial structures (e.g., reclamation and aquaculture ponds) on the 
seaside can be visually interpreted to form artificial shorelines that 
distinguish the boundaries of reclamation areas and intertidal zones. 
Meanwhile, we used buffer of artificial shorelines for the seaside 
boundary (Chen et al., 2019; Wang et al., 2020c). Existing research 
shows that if the effective observation of coastal pixels can detect the 
frequent occurrence of coastal surface water during the entire period 
(Pekel et al., 2016), then “water occurrence” can be used as an inland 
boundary (Mentaschi et al., 2018) (Fig. S4). Therefore, regarding the 
landside boundary of the coastal zone in this study, the maximum 
impact ranges for tides and storm surges are considered to be more 
effective and suitable criteria. Finally, we processed all the images using 

the algorithms described in Eqs.(9), (10) and (11) to generate annual 
coastal land cover maps of the YS between 2015 and 2019. 

3.5. Validation of coastal land cover maps in 2019 and inter-comparison 
with other maps 

We used the stratified random sampling points approach (Murray 
et al., 2019; Wang et al., 2020a,b,c; Liu et al., 2020) and Google Earth 
images each year to assess the accuracy of the YS coastal land cover map. 
The procedure used was as follows. (i) The results of this study are 
partitioned into three types only (tidal flats, vegetation, and year-long 
water). (ii) Random points were formed in each class using ArcGIS, 
and then we translated them into 10-m circle buffers of the sample 
points as the pixel samples. A total of 5822 validation areas of samples 
each year were generated for the validation of three coastal land cover 
map layers (Fig. S5). (iii) Each pixel sample for each year was checked 
against historical Google Earth imagery for the corresponding year and 
labeled as the pure coastal land cover pixel sample to avoid the sampling 
error caused by yearly surface changes. (iv) A confusion matrix was 
calculated to validate the accuracy of the results (see Section 4.1 for 
further information). 

After obtaining the data of coastal land cover based on microwave 
and optical time series images, they were compared with other relevant 
land cover datasets in the scope of the study area. Table 3 lists general 
information about the land cover datasets included for comparison. The 
2017 10 m FROM-GLC10 map (Gong et al., 2019) was developed at 
Tsinghua University (THU), using S2 images in GEE. In the FROM- 

Fig. 7. Example of surface water body areas obtained using different frequency thresholds.  
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GLC10 map, coastal vegetation classes such as cropland, forest, grass-
land, and shrubland were included. Therefore, we compared the coastal 
vegetation areas defined in FROM-GLC10 with the vegetation areas that 
we obtained in our dates (NBU/OU map) in 2017 and in the same re-
gions. The global tidal flats dataset from 1984 to 2016 was developed by 
the University of Queensland (UQ) (Murray et al., 2019), using Landsat 
images in GEE and random forest algorithms. Therefore, we analyzed 
the tidal flats map the NBU/OU dataset (2015–2016) and the UQ tidal 
flats dataset (2014–2016). The China 1 km land cover map in 2015 (CAS 
map) was developed by the Chinese Academy of Sciences (CAS) using 

Landsat-8 OLI images. In this case, we compared the areas of tidal flats 
from the CAS map with the areas of the tidal flats we identified in our 
coastal land cover map (NBU/OU map) in the same year (2015–2016). 
China’s coastal wetland maps (1986–2016) were developed by Fudan 
University (FU) and the University of Oklahoma (OU). This dataset used 
Landsat ETM+/OLI images in the GEE. We compared the areas of tidal 
flats in northern China from coastal wetland maps (FU/OU-Coast-
alWetland map) and our coastal land cover map (NBU/OU coastal land 
cover map) in 2018. The tidal flats in northern China for 2015 (Zhang 
et al., 2019) were developed by Shenzhen University (SZU) and included 

Fig. 8. Location of selected coastal vegetation and tidal flats validation areas of samples and their pixels with varying annual good-quality observations of water and 
vegetation frequency distribution. (a) saltmarsh vegetation; (b) coastal forest vegetation; (c) tidal flats; (d) MSI water frequency map of saltmarsh and coastal forest; 
(e) SAR water frequency map of saltmarsh and coastal forest; (f) MSI vegetation frequency map of tidal flats. 
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mapped tidal flats in northern China (SZU map) using Landsat 8 OLI 
images and GEE. 

4. Results 

4.1. Map of coastal land cover types and accuracy assessment 

The accuracy of the coastal land cover map during 2015–2019 was 
evaluated using the validation areas of samples described in Section 3.5. 
The confusion matrix revealed that the 2019 map had high overall ac-
curacy. The producer’s accuracy and user’s accuracy for the coastal 
year-long water were 97 % and 99 %, respectively, and they were higher 
than those for the coastal vegetation. Tidal flats had a slightly lower 
accuracy among the three coastal land cover types (i.e., user’s accuracy 
of 92 % and producer’s accuracy of 94 %), because several water points 
with very low water frequency were classified as coastal year-long 
water. As far as the specific accuracy evaluation results of each year 
are concerned, it is shown in Table 4. 

Fig. 9 shows the coastal land cover details in seven typical regions 
and Fig. 10 lists the areas of the various types in each section in 2019. 
The total area of coastal land cover types in YS in 2019 was determined, 
which included 3593.42 km2 of tidal flats, 28,506.98 km2 of coastal 
vegetation, and 5436.92 km2 of year-long water. Section B had the 
largest coastal land cover area in the YS, this area is the region with the 
most special development of sedimentary landform system and the most 
abundant tidal flats resources in China, with many tidal flat and salt 
marsh vegetation distributed, followed by section I, D, A, C, H, G, F and 
E. The vegetation in the YS was distributed mainly along the coastlines 
of Sections B, D, and I. Section B had the largest coastal year-long water 
area, followed by Sections C, D, G, A, I, H, E and F. Tidal flats were 
mainly distributed in Sections I, H, B, A, C, F, G, E and D. Section F had 
the smallest coastal land cover area in the YS, as well as the smallest area 
of year-long water. 

4.2. Interannual changes in coastal land cover areas during 2015–2019 

From the perspective of the spatial distribution pattern of land cover 

information along the YS coastal zone (Fig. 11), the areas with large 
interannual variations in the total land cover of the YS coast are mainly 
distributed in northeastern China, North Korea, and western South 
Korea between 2015 and 2019. On the one hand, limited by the time of 
the data source, there are limitations in revealing the changing trend of 
the land cover in the coastal zone on a five-year scale. more significantly, 
resulting in changes in coastal land cover. The total annual coastal land 
cover area varied from 2.42 × 104 km2 in 2016 (the missing data for 
2015 represented only 1.65 × 104 km2) to 3.75 × 104 km2 in 2019, with 
an average area of 2.49 × 104 km2. 

The interval of 2015–2019 shows the following: (1) a stable section 
(section D), the area is dominated by vegetation and perennial seawater, 
with a small area of tidal flats, and the landcover area of the coastal zone 
changed little during the study period; (2) increases in section A and 
section B, the vegetation in the two areas is mainly farmland and salt 
marshes in the reclamation area, and most of the increase comes from 
the increase in the area of tidal flats; and (3) decreases in section C, 
section E, section F, section G, section H and section I. During the 
development of these regions, different land cover types showed 
different trends over five years. Among them, in section C, section E, 
section F, and section G areas, the land cover area of the coastal zone is 
reduced due to the reduction of aquaculture ponds and salt marsh 
vegetation. In parts section H and section I, reclamation provides 
bearing space for alleviating the pressure on coastal land, increasing the 
supply of food or aquatic products, but causing the reduction of coastal 
vegetation and year-long water. Although the protection and ecological 
restoration of coastal wetlands along the coast of the YS has been 
continuously strengthened in recent years, the trend of loss of coastal 
vegetation, tidal flats, and year-long water areas is still severe. 

4.3. Comparison with other maps 

Wang et al. (2020a,b) generated annual maps of tidal flats (FU/OU- 
Tidal Flats) and a map of coastal wetlands in China using Landsat images 
(FU/OU-Coastal Wetland) (Fig. 12). We obtained the areas of the tidal 
flats in China for 2015 and 2018 from these studies and compared them 

Table 3 
Datasets of the land cover maps included for comparison.  

Map name References/ 
Study area 

Data/Time Comparison with this 
study 

FROM-GLC10 
map 

Gong et al. 
(2019)/ 
Global** 

Sentinel–2/ 
2017 

Vegetation in the 
coastal zone+; 2017# 

versus 2017* 
UQ tidal flats map Murray et al. 

(2019)/ 
Global** 

Landsat/ 
1986–2016 

Tidal flats+; 
2015–2016# versus 
2014–2016* 

CAS map Chinese 
Academy of 
Sciences/ 
China▴ 

Landsat/2015 Tidal flats+; 
2015–2016# versus 
2015* 

FU/OU-TidalFlats 
map 

Wang et al., 
(2020a)/ 
China▴ 

Landsat/ 
1986–2016 

Tidal flats+; 
2015–2016# versus 
2016* 

FU/OU- 
CoastalWetland 
map 

Wang et al., 
(2020b)/ 
China▴ 

Landsat/2018 Tidal flats+; 2018# 

versus 2018* 

SZU map Zhang et al., 
(2019)/China 

Landsat/2015 Tidal flats+; 
2015–2016# versus 
2015* 

NBU/OU map This study/ 
Yellow Sea 

Sentinel–1&2/ 
2015–2019 

Vegetation in the 
coastal zone+; 2017# 

versus 2017*; Tidal 
flats+; 2015–2016# 

versus 2015* 

+Objects and different area in China around the YS coastal zone were compared; 
#This study was used; *Related studies were used; **The random forest method 
was used; ▴Visual interpretation method was used; NBU: Ningbo University. 

Table 4 
Confusion matrix for assessing coastal land cover mapping algorithms.  

Year Classification Reference Use. 
acc. 

Ove. 
acc. 

Tidal 
flats 

Vegetation Year-long 
water 

2015 Tidal flats 1514 135 124 85 92 
Vegetation 92 1388 50 91 
Year-long 
water 

56 5 2458 98 

Pro. acc. 91 91 99  
2016 Tidal flats 1514 145 114 85 92 

Vegetation 92 1392 46 91 
Year-long 
water 

41 3 2475 98 

Pro. acc. 92 90 94  
2017 Tidal flats 1635 88 50 92 95 

Vegetation 79 1432 19 94 
Year-long 
water 

40 0 2479 98 

Pro. acc. 93 94 97  
2018 Tidal flats 1596 126 51 90 94 

Vegetation 66 1443 21 94 
Year-long 
water 

69 2 2448 97 

Pro. acc. 93 92 97  
2019 Tidal flats 1632 86 55 92 95 

Vegetation 66 1440 24 94 
Year-long 
water 

37 0 2482 99 

Pro. acc. 94 94 97  

Use. acc. -User’s accuracy (%); Ove. acc.-overall accuracy (%); Pro. acc.- Pro-
ducer’s accuracy (%). 

Y. Liu et al.                                                                                                                                                                                                                                      



ISPRS Journal of Photogrammetry and Remote Sensing 196 (2023) 429–444

439

Fig. 9. Typical coastal land cover, displaying the distribution patterns of vegetation, tidal flats, and year-long water.  
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to NBU/OU maps. The FU/OU-Tidal Flats map reported tidal flats area 
of 887.5 km2, while our dataset estimated the area of tidal flat area of 
835.0 km2 in 2015. However, we detected a smaller tidal flat area in our 
dataset (723.6 km2) than in the FU/OU-CoastalWetland map (823.2 
km2) in 2018(Fig. 12a).; this is because the 10 m spatial resolution S2 
image can detect more open surface water bodies than the 30 m Landsat 
image. Moreover, S1 can overcome the influence of clouds and rain, and 

capture open surface water bodies with a greater frequency. Thus, the 
tidal flat area in this study is relatively low. 

From our maps, the total area of tidal flats was 1140 km2 less than in 
the FU/OU-CoastalWetland map (Wang et al., 2020b) in 2017, but the 
vegetation area was 3455 km2 larger than in the FROM-GLC10 map 
(Gong et al., 2019) in 2018. This difference can be attributed mainly to 
the number of RS images and algorithms used for coastal wetland 

Fig. 10. Distribution of coastal land cover types in different regions of the YS in 2019. Sec. A-I means section A-I.  

Fig. 11. Inter-annual variations of the area of coastal land cover in the different sections. Year percent is the ratio of single type areas to total areas in the YS 
during 2015–2019. 
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mapping (Fig. 12b). Compared with the report on the FU/OU- 
CoastalWetland map using only Landsat images, the combination of a 
large number of optical and microwave Sentinel images in this study 
provides more good-quality observations during the same time interval. 
As a result, the area of tidal flats decreased in view of the inundation of 
water bodies, and the area of vegetation increased due to the increased 
probability of being detected. 

The results obtained in this study are very similar to those obtained 
by Zhang et al. (2019), who mapped coastal wetlands in the SZU map in 
2015 using the random forest algorithm(Fig. 12c). The tidal flat areas in 
the NBU/OU map were well matched with the area of the CAS map and 
FU/OU-TidalFlats map for the provinces of northern China in 2015. The 
tidal flats area in the UQ tidal flats map was 6678.1 km2, while in our 
study it was 1882.7 km2. It is worth noting that only Jiangsu Province 
had a smaller area of tidal flats in our map than in the other datasets. 

5. Discussion 

5.1. Materials and methods for mapping coastal land cover 

Comparison of our maps with others demonstrated some differences 
(Fig. 13). We used an RTSC method to classify coastal land cover and 
combined S1/2 time-series images to detect tidal flats, whereas the UQ 
tidal flats map used the random forest method to identify tidal flats. 

These differences contributed to the discrepancies between the NBU/OU 
map and the UQ tidal flats map (Fig. 13a1–c2). The coastal vegetation 
area of our dataset was highly consistent with the FROM-GLC10 map 
(Fig. 12b and Fig. 13a1 and a3). On the other hand, the SZU map used a 
seaward (40 km) and landward (10 km) buffer along the coastline, while 
we used a “water occurrence” as the inland boundary (Pekel et al., 2016; 
Mentaschi et al., 2018) and the buffer of artificial shorelines as a seaside 
boundary, resulting in a large difference in the area of tidal flats. 
Therefore, the comparison of these maps showed that it is necessary to 
generate detailed maps of coastal land cover types to better reduce the 
data and algorithms on changes in coastal land cover types. 

5.2. Uncertainties in coastal land cover mapping 

The uncertainty of coastal land cover maps of the YS is influenced by 
several factors, including type and quantity of RS data, algorithm, and 
the classification schemes of coastal land cover. In this study, although 
using the QA60 bitmask band removed most of the bad observations 
(Traganos et al., 2018), it was impossible to remove all of them because 
of the limited character of the band. S1 data are very sensitive to water 
and non-water cover (e.g., cropland, saltmarsh, and lowland forest) 
(Reiche et al., 2018; Veloso et al., 2017; Chen et al., 2017), and ac-
cording to the water and non-water areas of samples in 2019, surface 
water can be readily identified based on VH < − 28 (Fig. 5f). Never-
theless, a few lands cover types, such as muddy and beaches, also have 
VH < − 28 (Fig. S3). 

The tidal variations within scenes could also introduce doubtfulness 
into coastal wetlands mapping (Wang et al., 2018; Liu et al., 2015; Jia 
et al., 2021). However, our RTSC mapping method utilized all the 
available S1/2 data to reduce those impacts. Besides, the threshold of 
FwaterMSI = 90 and FwaterSAR = 50 was used to identify tidal flats and 
year-long seawater. This value can result in a mixture of tidal flats and 
open surface water when there are areas of coastal water with very low 
Fwater in some years (Wang et al., 2020c). 

5.3. Future applications in coastal land cover mapping 

The RTSC algorithm and S1/2 time-series images have a potentially 
wide range of applications as the data available increases. These appli-
cations include mapping coastal land cover and monitoring changes 
coastline in multiple regions and other years. Regarding the coastal land 
cover mapping in other regions, the Classification tool can be employed 
by tuning the thresholds of the RTSC-related metrics using regional 
areas of samples. This is supported by recent studies using phenology- 
based approaches to map various major coastal land cover types at 
coarser resolution (Chen et al., 2017; Wang et al., 2020b; Zhang et al., 
2020). Currently, miscellaneous deep learning models and machine 
learning are being deliberated for coastal cover mapping (Feng et al., 
2019; Pashaei et al., 2020). This coastal land cover mapping flow can be 
replaced by coordinating the RTSC parameters and machine learning 
models to classify coastal land cover in future longer time series 
research. 

6. Conclusions 

Obtaining accurate and timely information about the composition 
and distribution of coastal land cover is essential for effective coastal 
sustainability and ecological protection. Moreover, there is a need to 
track the changes of coastal land cover over a large scale. We developed 
an RTSC coastal land cover mapping algorithm, which uses time-series 
microwave images S1 and optical images S2 to identify and map 
coastal land cover types. We generated a more detailed annual map of 
coastal land cover during 2015–2019 with a 10 m resolution in the 
Yellow Sea. This study demonstrates that the combination of S1/2 can 
provide an adequate number of valid observations for coastal land-cover 
mapping. Moreover, the relatively high spatial resolution and revisit 

Fig. 12. Comparison of the land cover area of the coastal zone between the 
dataset obtained in this study and other maps in the provinces of China on the 
YS. (a) Comparison of the tidal flats between our study and the FU/OU- 
CoastalWetland map in 2018. (b) Comparison of the vegetation cover be-
tween our study and that of FROM-GLC10 map in 2017. (c) Comparison of the 
areas of tidal flats between our map in 2015 and the UQ tidal flats map for 
2014–2016, FU/OU-TidalFlats map, the SZU map in 2015, and the CAS map 
in 2015. 

Y. Liu et al.                                                                                                                                                                                                                                      



ISPRS Journal of Photogrammetry and Remote Sensing 196 (2023) 429–444

442

time are useful for detecting small-scale features and areas affected by 
frequent cloud cover, wind, waves, and tides. The developed RTSC 
coastal land cover mapping method has the potential to be applied to the 
mapping of coastal land cover in other years and at other locations, 
globally. The resulting maps provide fundamental information for 
coastal conservation and management, and for policymakers and 
stakeholders.. 
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