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Abstract: The phenology-based approach has proven effective for paddy rice mapping due to the
unique flooding and transplanting features of rice during the early growing season. However, the
method may be greatly affected if no valid observations are available during the flooding and rice
transplanting phase. Here, we compare the effects of data availability of different sensors in the critical
phenology phase, thereby supporting paddy rice mapping based on phenology-based approaches.
Importantly, our study further analyzed the effects of the spatial pattern of the valid observations
related to certain factors (i.e., sideslips, clouds, and temporal window lengths of flooding and rice
transplanting), which supply the applicable area of the phenology-based approach indications. We
first determined the flooding and rice transplanting phase using in situ observational data from
agrometeorological stations and remote sensing data, then evaluated the effects of data availability in
this phase of 2020 in China using all Landsat-7 and 8 and Sentinel-2 data. The results show that on the
country level, the number of average valid observations during the flooding and rice transplanting
phase was more than ten for the integration of Landsat and Sentinel images. On the sub-country level,
the number of average valid observations was high in the cold temperate zone (17.4 observations),
while it was relatively lower in southern China (6.4 observations), especially in Yunnan–Guizhou
Plateau, which only had three valid observations on average. Based on the multicollinearity test,
the three factors are significantly correlated with the absence of valid observations: (R2 = 0.481) and
Std.Coef. (Std. Err.) are 0.306 (0.094), −0.453 (0.003) and −0.547 (0.019), respectively. Overall, these
results highlight the substantial spatial heterogeneity of valid observations in China, confirming the
reliability of the integration of Landsat-7 and 8 and Sentinel-2 imagery for paddy rice mapping based
on phenology-based approaches. This can pave the way for a national-scale effort of rice mapping
in China while further indicating potential omission errors in certain cloud-prone regions without
sufficient optical observation data, i.e., the Sichuan Basin.

Keywords: rice mapping; data availability; phenology; China; Landsat; Sentinel-2

1. Introduction

As a major staple grain for more than a half of the global population, rice agriculture
is critical for food security [1,2], water resource security [1,3,4], greenhouse gas (methane)
emissions [2,5–7], and zoonotic infectious disease transmission [8,9]. In China, the role
of rice is even more important, as the country is home to the largest rice planting area
(29.9 million hectares, about 18% of the global rice planting area in 2019) and production in
the world [10]. Rice consumption in China is the highest globally, and over 65% people
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eat rice as their staple food [11,12]. Thus, accurate information on the area and distribu-
tion of paddy rice in China is of significance for understanding food security and other
environmental issues related to rice.

Great efforts have been made on paddy rice mapping in different regions [13–19]. The
existing mapping strategies can generally be divided into two categories, first, machine
learning approaches which using features from multiple aspects including spectral, spatial,
texture, and temporal perspectives; and second, phenology-based approaches which use
the unique phenological characteristics of the specific cultivation phases of rice. An increas-
ing number of recent studies have tended to use phenology-based approaches for large
scale paddy rice mapping, as it depends less on ground truth data [20]. Phenology-based
rice mapping algorithms focus on a unique paddy rice phenological feature, namely, that
rice fields are usually flooded prior to transplanting rice seedlings from a nursery into the
fields [21–23]. The plant–water interaction of electromagnetic waves in visible light as well
as in the microwave spectrum is affected, producing a unique signal of rice paddies when
observed with optical remote sensing or weather-immune radar sensors [24,25]. Specifi-
cally, Land Surface Water Index (LSWI) values are temporarily greater than Normalized
Difference Vegetation Index (NDVI) or Enhanced Vegetation Index (EVI) values during the
flooding and rice transplanting phase up until the closed canopy phase [21]. However, there
are uncertainties in this algorithm that prevent the acquisition of accurate transplanting
signals, such as the setting of α (LSWI + α>EVI or NDVI), although finer-resolution images
and the predefined temporal window have reduced these uncertainties in application
studies [26,27].

Moderate Resolution Imaging Spectroradiometer (MODIS) data is an important source
for rice mapping thanks to its hyper-temporal resolution (twice daily). Based on this
approach using eight-day time series MODIS data, continental scale paddy rice area dis-
tribution has been depicted in China, South Asia, and Southeast Asia [28–34]. However,
these MODIS-based paddy rice maps are affected by mixed pixel issues, especially in
Asia, where smallholder-based fragmented fields dominate the agricultural landscape [35].
The freely available Landsat and Sentinel archives offer unprecedented opportunities to
map these fragmented rice fields [36–39]. Profiting from these characteristics, new efforts
have attempted retrospective continuous change detection and classification of paddy
rice [27,40,41]. However, the existing efforts using 30-m medium resolution observations
have mainly been conducted at local or regional scales. High frequency and cloud-free
observations are important for monitoring crops [42,43]. However, the effects of satellite
observations on national-scale rice mapping studies have not yet been investigated.

The current phenology-based paddy rice mapping approaches are mainly affected by
data availability in the important phenology phases, e.g., flooding and rice transplanting.
Only 10–15 valid global Landsat scenes are obtained on average per year, and the avail-
ability is worse in pluvial regions [44–46]. If good-quality observations are not available
for identification of flooding and rice transplanting signals due to cloud, shadow, or other
reasons [33,40], the resulting paddy rice maps may have a higher omission error. Moreover,
the different overpass times of satellites and spatio-temporal differences in cloud coverage
affect both the seasonal and inter-regional variability of optical data, leading to further
varied performance on specific rice types (early, middle, or late rice). Therefore, revisitation
cycles and cloud cover are the main limitations on the effective use of satellite data in agri-
culture [47]. While many studies have discussed cloud contamination in satellite imagery
as the main barrier to phenology-based paddy rice mapping in cloud-prone regions, few of
these studies have provided quantitative results on factors related to cloud cover and other
issues with satellite image availability. Therefore, there is a need to assess the quality of
satellite observations (e.g., Landsat, Sentinel) during the flooding and rice transplanting
phase in different regions and its influence on phenology-based paddy rice mapping over
large areas.

Here, we conducted a quantitative analysis of all available Landsat-7 and 8 and
Sentinel-2 observations during the flooding and rice transplanting phase in China in 2020 in
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order to better understand the potential and applicability of phenology-based approaches.
This study aims to answer three questions. (1) Can sufficient observations be captured in
the flooding and rice transplanting phase by integrating Landsat-7 and 8 and Sentinel-2
imagery over the whole China? (2) Are there spatial variations between valid observations
in different regions of the country, and which areas can obtain good performance relying
on such phenology-based approaches? Finally, (3) what are the major factors limiting data
availability for rice mapping?

2. Materials and Methods
2.1. Study Area

China is the country with the largest rice production and consumption in the world.
The paddy rice fields are mainly distributed in the alluvial plains and river basins along
the major rivers and coastal areas in eastern China, where the climate and topography are
suitable for paddy rice growth. In China, the continental monsoon climate can be classified
as subtropical in the south and temperate in the north [33]. The south of China mainly has
a mixture of single- and double-rice cropping systems, while the north is dominated by a
single rice crop per year due to the lower temperature.

However, the rice planting pattern in China has experienced obvious changes in
recent decades due to many factors. For example, the rice cropping intensity in southern
China has shown a downward trend and even abandonment due to urbanization, land
marginalization, agricultural policy adjustments, and an increase in the opportunity cost of
farming [48–51]. Another change of concern is the northward shift of the rice production
center due to the warming climate [26,52,53]. Therefore, it is essential to determine whether
this change pattern can be captured through sufficient remote sensing observations.

2.2. Data
2.2.1. Landsat and Sentinel Data

All available Landsat ETM+ and OLI Collection 1 Tier 1 surface reflectance (SR) data
and Sentinel-2 Level-2A SR data from the Google Earth Engine (GEE) platform covering
China in 2020 (a total of 190,291 scenes) were used to investigate the availability of medium-
resolution optical data for phenology-based paddy rice mapping approaches. Landsat-7
and 8 and Sentinel-2 SR data were atmospherically corrected in GEE [54,55]. The Landsat
SR data include a Quality Assessment (QA)(pixel_qa) generated by CFmask [56–58] that can
mask invalid observations, including clouds, cloud shadows, snow etc., while Sentinel-2
data have a quality layer (QA60) which supports cloud-masking preprocessing.

The Sentinel-1 C-band Synthetic Aperture Radar (SAR) data archived in the GEE
platform were used in this study in order to analyze whether they can potentially fill
the gaps in cloud-prone regions with limited optical observations. The Sentinel data, are
obtained by two satellites have a resolution of 10 m and a six-day temporal resolution. The
Sentinel-1 SAR Ground Range Detected (GRD) dataset is a calibrated and ortho-corrected
product and has both one- and two-polarization bands (VH, VV), which have been widely
used for rice classification [59].

2.2.2. MODIS Data

MODIS data was used in this study to analyze the phenology of paddy rice and scale
up the in situ observed phenology data to the whole study area. The Terra MOD09A1
Version 6 dataset is an eight-day composite surface spectral reflectance product at a spatial
resolution of 500 m. The MCD43A4 Version 6 Nadir Bidirectional Reflectance Distribution
Function (BRDF)-Adjusted Reflectance (NBAR) dataset is a daily product at a 500-m spatial
resolution that combines Terra and Aqua satellite data [60], both of which were used to
determine the start and end of the flooding and rice transplanting phase.
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2.2.3. In Situ Phenology Observation Data of Paddy Rice

The in situ crop phenological data used in this study were derived from the China
Meteorological Data Service Center (https://data.cma.cn/) (accessed on 1 July 2021). We
selected stations with recordings about rice over ten years and collected observational data
from 130 stations for single rice, 61 stations for early rice, and 41 stations for late rice for
the 2011–2013 period. The transplanting dates and tillering dates for single, early, and
late rice in these three years were collected from total of 766 and 712 records, respectively.
Single rice is usually transplanted around May and matures around September all across
China, including middle rice in southern China [61–63], while early rice and late rice
generally grow from April to July and from July to October, respectively. The variation
of the temporal window for the three kinds of rice among the studied years was less
than that of the temporal window in space (Figure S3) [61,62,64]. Therefore, we used the
available phenological observational data from 2011 to 2013 to determine the flooding
and rice transplanting window for data availability analyses in 2020, which is reasonable
considering the stable crop calendar.

2.3. Methods
2.3.1. Determination of Temporal Window of Flooding and Rice Transplanting

Obtaining the appropriate temporal window of flooding and rice transplanting is
critical for paddy rice mapping based on phenology-based algorithms. With the help
of both in situ phenological observation data and remote sensing data, we analyzed
the relationship between phenology-based in situ observation of paddy rice and the re-
mote sensing-based flooding and rice transplanting period in order to determine the
appropriate temporal window. According to the eight-day time series MOD09A1 data
analyses (LSWI + 0.05 ≥ EVI) [26] shown in Figure 1, the remote sensing-based flooding
and rice transplanting period lasted from DOY 137 to DOY 185. The reliability of this
temporal window was further confirmed using the daily BRDF-adjusted MODIS data
(i.e., MCD43A4) (DOY 134–190) (Figure S1). Compared to the in situ phenological obser-
vation data, the remote sensing-based flooding and rice transplanting period covers two
phenology phases: (1) the initial field flooding phase before the transplanting date, and
(2) the second phase, when there is a mixture of water and rice plants from transplanting to
canopy closure [21,25,40]. That is, the flooding and rice transplanting period identified by
remote sensing generally corresponded to the transplanting (DOY 144–159) plus returning
green stages (DOY 159–179) recorded by in situ observations, with a buffer of roughly
10 days (Figure 1). The same matching relationships were found for all three sites in north-
eastern China (Figure S2) as well as for early and late rice in southern China (Figure S2).
Therefore, we defined the start and end of flooding and of the rice transplanting period
(SOF and EOF for short) using the following equation (Equation (1)):{

SOF = the start of transplanting− 10d
EOF = the start of tillering + 10d

(1)

The rice systems in northern and southern China differ due to many environmental
factors, notably thermal conditions. Thus, it was necessary to determine the temporal
windows of flooding and rice transplanting for different rice systems (single rice, early rice,
and late rice). According to the distribution of rice phenology records (Figure 2a) and the
regionalization of rice cropping in China [65], the single rice cropping area was divided
into the northern and southern parts of China at 35◦N. In order to remove abnormal in situ
phenological data, the 25% percentiles of transplanting dates and the 75% percentiles of
tillering dates were taken as the start and end of the flooding and rice transplanting phase.
We obtained temporal windows of DOY 130–190 (mid-May to early July) in northern China
and DOY 120–190 (from early May to early July) in southern China (Figure 2d).

https://data.cma.cn/
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Figure 1. The relationship between site observation-based critical phenological stages of paddy rice
and remote sensed flooding signals of rice paddies. The left figure shows the seasonal dynamics
of the Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI) of rice paddies
(132.234◦E, 46.192◦N) near one agricultural meteorological site (Baoqing site) in Sanjiang Plain,
northeastern China, which were obtained from MOD09A1. In the left figure, the brown arrows mean
the difference between the site-observed transplanting and tillering periods and the start and end of
the flooding signal retrieved from the MOD09A1 data: (1) flooding phase; (2) flooded/open-canopy
phase; (3) closed canopy phase; and (4) post-harvest phase. The right image shows a corresponding
landscape for a rice paddy point from Google Earth in 2011.

Figure 2. Distribution of in situ observed transplanting and tillering dates of (a) single rice, (b) early
rice, and (c) late rice. The areas with single rice, early rice, and late rice are divided into two regions
by the 35◦N, 24◦N, and 24◦N latitude lines respectively. The flooding and rice transplanting windows
of single rice (d), early rice (e), and late rice (f) were identified according to observations (a–c).
The numbers near the black dashed boxes show the start and end dates of the flooding and rice
transplanting windows according to in situ observed phenology data for 2011–2013.
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For double rice in southern China, the rice cropping systems are more complicated
than those in northern China [66–69]. Calendars of early and late rice vary in different
regions; the flooding and transplanting windows can be divided using the 24◦N latitude
line according to in situ phenology data (Figure 2b,c). The flooding period of early rice in
southern China is DOY 100–150 (north to 24◦N, mid-April to late May) and DOY 80–130
(south to 24◦N, late March to early May) (Figure 2e), while the flooding and rice trans-
planting period of late rice in southern China is DOY 190–235 (from early July to late
August, north to 24◦N) and DOY 205–250 (from late July to early September, south to 24◦N)
(Figure 2f).

2.3.2. Statistics of Valid Landsat-7 and 8 and Sentinel-2 Observations

The valid satellite observations were acquired by removing bad quality pixels affected
by clouds, circus, terrain shadows, and sensor issues (i.e., Landsat ETM+ scan line corrector
(SLC)-off). Cloud-affected observations in Landsat data can be identified by a data quality
assessment (QA) layer [56–58]. The Landsat ETM+ scan line corrector (SLC)-off gaps,
accounting for 22% of the pixels within an image [70], can be identified from its metadata.
Terrain shadows were identified using the solar azimuth and zenith angles and the Shuttle
Radar Topography Mission (SRTM) digital elevation model (DEM) [71]. For Sentinel-2, the
clouds and circus can be identified according to the Level-1C cloud mask product [72].

We counted the total valid observations of Landsat and Sentinel-2 during the flooding
windows of single rice, early rice, and late rice in China in 2020. In order to compare the
differences among various regions, we calculated the average valid observations by region
using the following equation:

Averagerice,sensor
region = ∑

Nregion
pixel nrice

sensor/Nregion (2)

where Averagerice,sensor
region is the regional average number of valid observations from different

sensors or their combinations during the rice flooding season, nrice
sensor is the number of valid

observations from one or the combination of two or three sensors in one pixel during the
single, early, and late rice flooding seasons, and Nregion is the total number of Landsat or
Sentinel-2 pixels in a certain region (the whole country or the six sub-regions in China). The
valid observation statistics were compiled separately for the six sub-regions with different
rice cropping intensity and phenology patterns.

In addition, we calculated the percentage of valid pixels with more than one observa-
tion for rice mapping in the whole China and six main rice cropping regions:

Percentrice,sensor,region = Nrice,sensor/Nregion (3)

where Percentrice,sensor,region is the percentage of a pixel that can be used for rice identifica-
tion in a certain region with a certain satellite observation, Nrice,sensor is the total number
of Landsat or Sentinel-2 pixels with at least one valid observation, and Nregion is the total
number of Landsat or Sentinel-2 pixels in a certain region.

Sentinel-1 acquires imagery regardless of the weather by operating day and night,
performing C-band synthetic aperture radar imaging [73]. Therefore, we used all available
Sentinel-1 images as good-quality observations.

Here, we defined the effective identification of paddy rice as instances in which remote
sensing was able to capture the flooding and rice transplanting signal of the rice paddy. We
defined one valid observation in the flooding and rice transplanting phase as the minimum
requirement for effective identification of paddy rice. We defined valid observation in a
specific region as the achievement of effective identification of paddy rice, meaning that
the number of the valid observations of all pixels in the region was more than one, that is,
the percentage of identifiable pixels in the region was almost 100%.
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2.3.3. Effects of Sidelaps, Growing Season Length, and Clouds on Data Availability

Valid observations from Landsat-7 and 8 and Sentinel-2 images during the flooding
and rice transplanting period can be affected by many factors, including cloud frequency,
sidelaps, and transplanting season length.

The cloud contamination and frequency were obtained from the QA-based cloud
mask of the MOD09GA data. The systematic sidelaps of scene paths of the satellites were
obtained by overlaying all of the Landsat-7 and 8 and Sentinel-2 scene boundaries in
shapefile format. The degree of sidelaps increases from the equator to the poles, caused by
fixed satellite orbits and the shape of the earth [74–76]. Transplanting season length data
were obtained as described in Section 2.3.1. The explanatory variables utilized in the model
included two continuous variables, one representing the average amount of cloud and the
other the overlap of each grid. Correlation analyses between valid observations and the
two factors (cloud frequency and sidelaps) were performed. A dummy variable indicating
the transplanting seasons of different rice in different regions was assigned as a continuous
variable from 1 to 6 (e.g., the transplanting season of single rice in northern China had a
value 1).

A multivariate linear regression analysis by Ordinary Least Square (OLS) was im-
plemented using Stata13.0 in order to evaluate how the three factors shape the pattern of
valid observation across China. The OLS model is a type of global regression model that is
not impacted by spatial autocorrelation or homogeneity in the feature space [77,78]. More
specifically, the regression model was specified as follows:

Y = β0 + β1Cloud + β2Overlap + β3Trans + ε (4)

where Y is the number of valid observations, β0 is the intercept of the regression model,
β1, β2, and β3 are the regression coefficients for cloud, overlap, and the transplanting
season length, respectively, and ε is the regression residual.

Moreover, the importance of the three factors to valid observations can be acquired
from the normalization of the three regression coefficients. We assumed that the larger
absolute value of standardized regression coefficient means more significant impact of the
corresponding independent variable on the dependent variable [79]. The standardized
regression coefficients β′i can be calculated as follows:

β′i = βi(Si/SY) (5)

where βi are the raw regression coefficients and Si and SY are the standard deviation of
independent variable Xi and dependent variable Y, respectively.

3. Results
3.1. Pattern of Data Availability during the Flooding and Rice Transplanting Period in China

Considering all the available Landsat-7 and 8 and Sentinel-2 images in 2020, the
regional average number of valid observations during the flooding and rice transplanting
period of single rice in northern China is 17.4, and the areal percentage with more than
one valid observation is as high as 99.9%. The average number of valid observations for
single rice, early rice, and late rice in southern China is 8.95, 7.7, and 6.4, respectively,
and their respective proportions with more than one valid observation in the region are
99.1%, 99.2%, and 97.1%. In general, the Landsat-7 and 8 and Sentinel-2 images support the
phenology-based rice mapping data at the scale of the whole country.

Compared with Landsat, Sentinel-2 has a greater contribution to the improvement
of the valid observation quality. Specifically, the average number of valid Landsat-7 and
8 observations in northern China during the flooding and rice transplanting period is
five, which is eleven times lower than Sentinel-2. Compared to the Landsat observations,
combining Landsat and Sentinel-2 observations increases the regional average valid obser-
vations of single rice, early rice, and late rice in southern China from 3.02, 2.99, and 1.81
to 8.95, 7.69, and 6.44, respectively. The spatial pattern of the valid observations and the



Remote Sens. 2022, 14, 3134 8 of 19

percentage of identifiable pixels showed that Landsat-7 and 8 can satisfy the effective iden-
tification of single rice in northern China, while the integration of Landsat and Sentinel-2 is
needed for the identification of rice in southern China. Furthermore, the involvement of the
radar data (e.g., Sentinel-1) is necessary for late rice mapping compared to phenology-based
approach in this region, i.e., the Sichuan Basin (Figure 3c).

Figure 3. Spatial distributions of valid Landsat and Sentinel observations during the flooding and rice
transplanting period of: (a) single rice, (b) early rice, and (c) late rice across China in 2020; (d) shows
the average number of valid observations (bars) and the percentage of identifiable rice pixels (lines
with symbols) with various combinations. It should be noted that although northern China is not
suitable for planting early and late rice due to insufficient accumulated temperature, we show the
valid observations during the periods with flooding signals of early rice and late rice in this region in
order to fully demonstrate the distribution of valid observations across China.

We further conducted an analyses of valid observations in the six main rice cultivation
areas, which contribute about 96% and 94% of the total rice area and production in China,
respectively [80] (Figure 4). Generally, the six rice cultivation areas shared similar patterns
of valid observational quality with the entire country (Figure 3). This means that the
combination of Landsat-7 and 8 and Sentinel-2 is necessary except for the identification
of single rice in northeastern China (I), where Landsat itself is sufficient for capturing the
flooding signals during the flooding and rice transplanting periods. As Figure 4 shows,
the average number of valid observations in the main rice cultivation areas exceeded five
when combining Landsat-7 and 8 and Sentinel-2 observations, and the pixels with more
than one valid observation almost cover the entire area. Moreover, the identification of
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late rice in the Yunnan–Guizhou Plateau (II1) and Sichuan Basin (III) regions requires
supplementation with radar data. The number of valid observations during the late rice
flooding and transplanting phase in these regions is less than five without the Sentinel-2
data; the percentage of identifiable pixels increases from 71%, 80%, and 49%, respectively,
when relying only on Landsat fusion data to more than 90%, with an especially large
improvement in III. The valid satellite observations collected for late rice mapping are
significantly worse than those for single and early rice mapping.

Figure 4. Observation availability of the six main rice cultivation areas in China. (a) The main rice
cultivation areas with in situ phenology observation sites: I, single rice in northeast China; II1, single
rice in the Sichuan Basin; II2, single rice in the mid-lower Yangtze River Valley; III, single rice in
the Yunnan–Guizhou Plateau; IV, double rice in the mid-Yangtze River Valley; V, double rice in
southern China. (b) The percentages of identifiable rice paddy pixels with different sensors and
combinations in each main rice cultivation area in China. A, B, C, and D at the x axis represent
Landsat-7, Landsat-8, Landsat-7 and 8, and Landsat-7 and 8 with Sentinel-2, respectively. (c) The
average number of total and valid observations during the flooding and rice transplanting period of
single rice (the first bar), early rice (the second bar), and late rice (the third bar) for various sensors.
The plus sign represents the median of valid observations of all pixels under the combination of all
three sensors in each region.

3.2. Impacts of Clouds, Sidelaps, and Transplanting Season Length on Data Availability for
Rice Mapping

Clouds, sidelaps, and transplanting season length are three factors influencing data
availability for rice mapping. All the three factors showed a divergent pattern in northern
and southern China (Figure 5). First, the cloud cover during the flooding and rice trans-
planting phase in southern China is generally higher than that in the north, due to less
precipitation in northern China [81]. Second, there is a higher frequency of sidelaps in
northeastern China compared with southern China, which is consistent with the pattern
of valid observations. Third, the flooding and rice transplanting phase of single rice lasts
about 60 days, from May to July, which is longer than early rice (~50 days, from April to
May) and late rice (~45 days, from July to August). This longer transplanting duration
tends to lead to more observations.

We further quantified the contributions of different factors to data availability. Figure 6
shows that both the cloud cover and the transplanting length have a significantly negative
effect on valid observations, while sidelaps are positively correlated with valid observations.
It can be seen from Table 1 that the multivariate OLS model had a higher adjusted R2 value
(0.481). Additionally, the model passed the F test and multicollinearity test (Mean VIF < 10),
and had no autocorrelation (DW = 1.23), that is, there was no correlation between the sample
data and the model was appropriate. As expected, clouds, sidelaps, and transplanting
season length were all found to be important predictors of valid observations. In terms
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of the overall magnitude of effects, we found that transplanting length and cloud cover
explained a greater proportion of the variance in valid observations than sidelaps, with
standardized coefficients of −0.547, −0.453, and 0.306, respectively. These attribution
analyses explain the spatial pattern addressed above.

Figure 5. The spatial distributions and the average number of valid Landsat-8 observations (a,d),
cloud (b,e), and overlap (c,f) during the period with flooding signals of single rice, early rice, and
late rice at 1◦ × 1◦ grids; (g) shows the start, end, and length of the time window with flooding
signals of rice paddies as determined in Section 3.1. The insets in (a–c) are the corresponding
frequency diagrams.
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Figure 6. Relationships between spatial valid observations and (a) cloud and (b) overlap. Data are
based on the statistic of three variables of these three rice types at 1◦ × 1◦ grid.

Table 1. Relationships between valid observations and clouds, sidelaps, and transplanting length in
China based on Ordinary Least Squares (OLS) regression models.

Explanatory Variables Coef. (Std. Err.) Std. Coef.

Clouds −0.048 *** (0.003) −0.453
Sidelaps 1.216 *** (0.094) 0.306

Transplanting length −0.398 *** (0.019) −0.547
Constant 4.232 *** (0.160)

Pseudo R2 0.481
Mean VIF a 1.27

Observations 1035
*** indicates statistical significance at the 1% levels. a Mean VIF tests the degree of multicollinearity among the
independent variables.

4. Discussion
4.1. Data Availability in the Transplanting Phase for Phenology-Based Rice Mapping

Phenology-based rice mapping is dependent on the extraction of flooding signals,
which mainly relies on the quantity and quality of observations captured during the trans-
planting season. Therefore, we conducted statistical analyses to identify the number of
Landsat-7, Landsat-8, and Sentinel-2 valid observations in the flooding and rice transplant-
ing phase rather than the entire growing season of rice [25,43] across China.

In this study, we examined the spatial pattern of the Landsat and Sentinel-2 valid
observations during the flooding and transplanting phases of three major rice plantings
(single rice, early rice, and late rice) in China in 2020 by using the Google Earth Engine
platform to target the best satellite or virtual constellation selection for using phenology-
based rice mapping efforts across China. The advantages of this study have two aspects:
(1) determination of rice transplanting phase by integrating in situ observations and remote
sensing; and (2) attribution analyses of data availability for rice mapping.

First, a suitable temporal window to detect the flooding signal of paddy rice fields is
key to the phenology-based approach. Other land types (e.g., water and wetlands) have
flooding signals for a longer period, such as snowmelt in temperate and mountainous
regions and summer flooding [33], which interferes with rice flooding signal extraction
and causes misclassification and omission errors. Previous studies have applied different
approaches to determine the flooding and rice transplanting phase to avoid potential
commission errors in phenology-based rice mapping. For example, Zhang determined
the flooding and rice transplanting phase (from SOF to EOF) in northeastern China as the
period between the date of LST 5 ◦C and EVI 0.35 [26], while other studies have defined the
temporal window for all pixels in certain eight-day composites according to agricultural
observations [29,82–84]. In this study, we determined the SOF and EOF of single rice, early
rice, and late rice in different areas; our results are supported by the previous work on
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the temperate- and pixel-based time windows proposed by Zhang [26]. In addition, our
methods to define the temporal window based on remote sensing data and agricultural
phenology observational data greatly alleviates the inaccuracy of using observational data
alone [29,83]. Furthermore, our results can be applied in the southern China, where remote
sensing data is severely missing, the accumulated temperature is suitable for rice growth in
most of the year, and LST does not help to define the flooding and rice transplanting phase.

Second, we conducted a comprehensive analysis on the drivers of data availability
by considering three major factors, including cloud cover, sidelaps, and transplanting
length. We found that cloud coverage has a significant negative effect on valid observations
(β1 = −0.453) and is concentrated in the flooding and transplanting phase of rice in the
southern China because of the heavy monsoon rain season [81,85]. The accuracy of large-
scale rice mapping varies greatly between regions, and a higher omission error is generated
in tropical regions due to the lack of cloud-free optical images [14,16,18,33,69,86]. The
other two factors are significantly positively correlated with valid observations (β2 = 0.306,
β3 = −0.547 for sidelaps and length of temporal window, respectively). The flooding and
rice transplanting phase of single rice is concentrated from May to July, and the length
is about twenty days longer than that of early rice and late rice, from March to May and
from July to September, respectively. This difference is closely related to rice varieties, rice
cropping systems, and field management [23,87–89].

The Group on Earth Observations Global Agriculture Monitoring (GEOGLAM) [90,91]
has developed a table of requirements for satellite-based Earth observation data with the
purpose of demonstrating the spatial, spectral, “cloud-free” temporal resolution, and extant
data requirements for a variety of agricultural monitoring applications or “target products”
based on their experience in agricultural monitoring research. As articulated by the table,
the use of moderate spatial resolution data collected at a more frequent rate is a priority for
crop mask spanning full extent e.g., persistently cloudy and rice-growing areas. Compared
to the study of GEOGLAM, our research suggests more advice as to specific satellite data
requirements (Landsat-7 and 8, Sentinel-1 and 2, or their combination) for single rice, early
rice, and late rice mapping by phenology-based approach across China (Figures 7 and 8).

Figure 7. Spatial patterns of rice types identifiable by different sensors and combinations in China:
(a–d) represent Landsat-7, Landsat-8, Landsat-7 and 8, and Landsat-7 and 8 with Sentinel-2, respectively.
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Figure 8. Spatial patterns of different sensors and their combinations for meeting the requirements of
remote sensed identification of (a) single rice, (b) early rice, and (c) late rice.

4.2. Implications and Suggestions for Phenology-Based National-Scale Rice Mapping

We found that in northern China, mainly in the northeast of China, which is dominated
by single rice, Landsat-7 and 8 data fusion could support the whole area covered by pixels
with more than one valid observation in the temporal window, while in southern China
the combination of Sentinel-2 and Landsat datasets offered higher spatial and temporal
resolution (~30 m, <5 day) [92], which therefore represents the best choice for single rice and
early rice mapping. However, there are areas in Yunnan, Guizhou, and Sichuan Province
that have no valid observations for late rice and where the assistance of radar data is needed.
Sentinel-1 data, as a kind of SAR data, is anticipated to be a promising data source that can
complement optical data (Sentinel-2 and Landsat) for paddy rice mapping in cloud-prone
tropical and sub-tropical regions [93–95]. Thus, advanced satellite imagery (Sentinel-1/2)
and multiple data fusion are necessary for the further extensive application of pixel- and
phenology-based rice mapping in the whole China, which will alleviate the lack of valid
observations within the temporal window (about one month in length) due to revisit cycle
of singular satellite data (e.g., Landsat) and the vulnerability of optical data to cloud. Zhang
et al. [17] have harmonized Landsat-8 and Sentinel (1 SAR and 2MSI) images to generate a
10 m rice map of three provinces of China by integrating pixel-based classification involving
random forest (RF) with object-oriented simple linear iterative clustering (SLIC).

Here, we used Hunan Province as an example to showcase the effects of data avail-
ability on phenology-based single rice, early rice, and late rice mapping. As depicted in
Figure 7, the valid observations from the combination of Landsat 7 and 8 can support early
rice and late rice mapping in most parts of the Hunan Province, while the Sentinel-2 data
are necessary for single rice mapping in this area; there are small parts of this area that do
not satisfy the identifiable condition without the Sentinel-1 data (Figure 9).

4.3. Uncertainties and Implications for the Future Studies

This study only considered data availability during the rice transplanting phase for
phenology-based rice mapping, which indirectly solves the classification between rice and
other crops because the flooding and transplanting phase is the unique feature of paddy
rice compared to others. These results were expected to provide valuable information for
the increasingly widely used phenology-based rice mapping efforts. However, we did
not consider data availability with respect to distinguishing rice paddies from wetlands,
water bodies, and other land cover types with the same signal. Additionally, observations
in other phenological phases, e.g., tillering or harvest, may play a critical role in rice
mapping efforts [86,96]. These limitations should be further analyzed in future studies.
We quantified three influencing factors (clouds, sidelaps, and transplanting length) for the
valid observations; however, mixed pixel issues caused by field size [67,97,98], cropping
pattern [66,96,99], and topography [33,100] might limit the effective use of remote sensing
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data as well, and therefore additional works are needed in order to comprehensively
quantify these potential influencing factors.

Figure 9. Guide to the best and most suitable satellite selection for (a) single rice, (b) early rice, and
(c) late rice mapping. We considered the existing common remote sensing data, future conceived
satellite sensors, and their combinations. L7, Landsat-7; L8, Landsat-8; S1, Sentinel 1; S2, Sentinel 2;
C1, Landsat-7 and Landsat-8; C2, Sentinel-1 and Sentinel-2; C3, Landsat-7, Landsat-8, and Sentinel-2;
C4, Landsat-7, Landsat-8, Sentinel-1, and Sentinel-2.

Edaphoclimatic and crop management practices may be important conditioning factors
for phenology-based crop mapping. For territorial planning purposes, there are variations
in land management practices on a seasonal scale in China. Considering this, crop and land
management (especially crop calendars) or edaphoclimatic conditions can vary significantly
among regions. Specifically, southern China is mostly characterized by diverse land use,
land management, and complex conditions; thus, e spatial clustering of the crop phenology
in an area must be performed in order to develop strategies for the temporal stratification
of planting/sowing dates. Many possibilities [66,101–103] have been discussed as potential
strategies to overcome differences in crop calendars and optimize the search for available
remote sensing data.

Fortunately, advanced satellite data and cloud computing technologies have emerged
as potential strategies to overcome the present adversities. The harmonized Landsat and
Sentinel-2 (HLS) dataset [55], a near-daily single-sensor-like surface reflectance time series,
may be available in Asia in the near future. Additionally, cloud-based geospatial analysis
platforms such as GEE and Amazon Web Services (AWS) include very large preprocessed
databases, robust computing capability, and numerous algorithms [104]. Generally, large-
scale rice mapping is promising based on the development of sufficient remote sensing
data sources, robust mapping algorithm with transferability and universal applicability,
and high-performance cloud platforms.

5. Conclusions

Phenology-based algorithms have been increasingly used for large-scale rice mapping,
however, they are largely dependent on the availability of valid satellite observations
during the flooding and rice transplanting phase. However, there are spatial and temporal
differences in the availability of valid images, resulting in differences in rice mapping



Remote Sens. 2022, 14, 3134 15 of 19

accuracy among different rice types and in different regions, which greatly hinders the
high spatial resolution of rice mapping in large areas. Here, we assessed the feasibility
of all the available Landsat and Sentinel-2 imagery for national-scale rice mapping in
China. Specifically, the spatio-temporal pattern of valid observations of these three sensors
(Landsat-7, Landsat-8, and Sentinel-2) and their combinations were characterized for the
flooding and transplanting phase of single rice, early rice, and late rice in China in 2020.
We found that the number of valid observations gradually increased with the combination
of optical sensors. In addition, the number of valid observations of all sensors in northern
China was greater than that in southern China, and the image quality in the flooding
and transplanting phase of single rice was usually higher than that of early and late
rice. Our results show that combining Landsat and Sentinel-2 observations provided
17.4 valid observations in northern China, with 8.95, 7.70, and 6.40 valid observations,
respectively, for single, early, and late rice mapping in southern China. Moreover, we
found that cloud cover, sidelaps, and transplanting length are the main factors influencing
the spatio-temporal pattern of valid observations. The significant negative impacts of
cloud cover and transplanting length are greater than the positive impacts of sidelaps. The
Std. Coef. (Std. Err.) of these three factors are −0.453 (0.003), −0.547 (0.019), and 0.306
(0.094), respectively. These results are helpful in understanding the image quality during
the flooding and rice transplanting phase, and can provide a guide for sensor selection
during rice mapping. Most importantly, our study emphasizes the importance of cloud
interference, which must be dealt with carefully when using images during the flooding
and rice transplanting phase.
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Land Surface Water Index (LSWI) and Enhanced Vegetation Index (EVI) of a paddy rice pixel from
2011 to 2020 in Sanjiang Plain of northeastern China; Table S1: The total number of available images
across the entirety of China in 2018, 2019, and 2020.
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