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A B S T R A C T

Cropping intensity has undergone dramatic changes worldwide due to the effects of climate changes and human
management activities. Cropping intensity is an important factor contributing to crop production and food se-
curity at local, regional and national scales, and is a critical input data variable for many global climate, land
surface, and crop models. To generate annual cropping intensity maps at large scales, Moderate Resolution
Imaging Spectroradiometer (MODIS) images at 500-m or 250-m spatial resolution have problems with mixed
land cover types within a pixel (mixed pixel), and Landsat images at 30-m spatial resolution suffer from low
temporal resolution (16-day). To overcome these limitations, we developed a straightforward and efficient pixel-
and phenology-based algorithm to generate annual cropping intensity maps over large spatial domains at high
spatial resolution by integrating Landsat-8 and Sentinel-2 time series image data for 2016–2018 using the Google
Earth Engine (GEE) platform. In this pilot study, we report annual cropping intensity maps for 2017 at 30-m
spatial resolution over seven study areas selected according to agro-climatic zones in China. Based on field-scale
sample data, the annual cropping intensity maps for the study areas had overall accuracy rates of 89–99%, with
Kappa coefficients of 0.76–0.91. The overall accuracy of the annual cropping intensity maps was 93%, with a
Kappa coefficient of 0.84. These cropping intensity maps can also be used to enable identification of various crop
types from phenological information extracted from the growth cycle of each crop. These algorithms can be
readily applied to other regions in China to generate annual cropping intensity maps and quantify inter-annual
cropping intensity variations at the national scale with a greatly improved accuracy.

1. Introduction

Due to the combined influences of global climate change, human
activities and urbanization, cropping intensity has undergone dramatic
changes worldwide. Cropland refers to all agricultural land, including
permanently cultivated land, newly cultivated land, fallow land, and
land in a grassland-farming rotation (Liu et al., 2005). Increasing
cropping intensity (one to three crops per year) is one of the most ef-
fective ways to increase grain yields from limited cropland (Liu et al.,
2013). Cropping intensity is not only an important factor contributing
to crop production and food security at local and national scales (Iizumi
and Ramankutty, 2015; USDA, 1994; Wu et al., 2018), but also is tightly

linked to ecosystem and human health (Wu et al., 2014; Zhang et al.,
2014). Cropping intensity data can greatly improve food production
assessments and predictions and therefore represent a critical input
layer for many global climate, land surface, and crop models (Belcher
et al., 2004; Dietrich et al., 2012; Meylan et al., 2013).

Several remote sensing approaches have been developed during
recent decades to identify cropping intensity at moderate spatial re-
solution (Biradar and Xiao, 2011; Quarmby et al., 1992). Many studies
have generated annual cropping intensity maps by analyzing crop
phenological cycles within a single year using high-temporal-resolution
vegetation index (VI) data, including the enhanced vegetation index
(EVI) and normalized difference vegetation index (NDVI), which are
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typically calculated from Moderate Resolution Imaging Spectro-
radiometer (MODIS) images at 500-m and 250-m spatial resolutions
(Galford et al., 2008; Sakamoto et al., 2005; Wardlow et al., 2007).
Phenology has been used to quantify cropping intensity by counting the
number of VI peaks and troughs within a year (Biradar and Xiao, 2011).
Annual cropping intensity maps have been derived from MODIS data
based on a peak detection method with reference to agro-meteor-
ological observations (Yan et al., 2014). Annual crop intensity maps of
mainland China at 500-m spatial resolution were developed for
2005–2012 using an iterative moving-window method and evaluated
using visually interpreted time series data (Li et al., 2014). Another
recent study constructed the annual cropping intensity maps of Asia for
2009–2012 using MODIS images (Gray et al., 2014). However, MODIS
pixels frequently include a mixture of different crop types due to the
limitation of their moderate spatial resolution. Croplands often vary in
field size, particularly in hilly regions, where crops are typically smaller
than one MODIS pixel, which can result in sub-pixel heterogeneity in
crop type and intensity.

To overcome MODIS sub-pixel heterogeneity, it is necessary to use
remote sensing images with higher spatial resolution, such as Landsat
images (30-m resolution) to determine cropping intensity (Jain et al.,
2013; Lenney et al., 1996). Some studies have applied the Landsat
threshold method to estimate cropping intensity using season-specific
NDVI thresholds to distinguish cropped and uncropped land in a given

season (Fan et al., 2014; Lenney et al., 1996). One study found that the
Landsat threshold method was more accurate than the MODIS time
series peak method for mapping the cropping intensity of smallholder
farms (< 2 ha) (Jain et al., 2013). However, the Landsat threshold
method requires at least one good-quality Landsat image during each of
the growing seasons, but the availability of good-quality Landsat data is
much lower than that of MODIS data. On average, only 10–15 good-
quality global Landsat datasets are obtained each year; only 5–8 are
obtained in pluvial regions due to low temporal resolution and heavy
cloud cover (Li and Roy, 2017; Zhu and Woodcock, 2014). In some
years and regions, no good-quality Landsat data can be obtained during
an entire cropping cycle due to extensive and frequent cloud cover and
shadow. Therefore, the data required to identify cropping intensity are
not guaranteed in most agricultural regions worldwide. Although
Landsat offers improved spatial resolution over MODIS, it may not be
able to provide the necessary temporal resolution to identify cropping
intensity.

Sentinel-2 is an Earth observation mission by the European Union
Copernicus Program that systematically acquires optical imagery at
high spatial resolution. The mission is a constellation of two satellites
that were launched in June 2015 (Sentinel-2a) and March 2017
(Sentinel-2b). Sentinel-2 sensors have spatial resolutions of 10, 20, and
60 m, and include 13 bands in the visible, near infrared, and shortwave
infrared part of the spectrum. Together, the Sentinel-2 satellites have a

Fig. 1. Locations and cropland types of the seven study areas in China. A is located on the Northeast China Plain (123.5296°E - 126.5111°E, 43.1943°N -45.2910°N);
B on the North China Plain (114.2911°E - 116.8191°E, 36.3114°N - 38.2581°N); C on Guanzhong Plain (108.7615°E - 111.0956°E, 33.9207°N - 35.7769°N); D on Tai
Lake Pain (116.8555°E - 119.2689°E, 31.0419°N - 33.0357°N); E on the Sichuan Basin (103.3805°E - 105.5170°E, 29.7363°N - 31.5264°N); F on Dongting Lake Plain
(111.8394°E - 114.0955°E, 28.9197°N - 30.8397°N); and G on the Central Guangxi Plain (108.2154°E - 110.2461°E, 22.5774°N - 24.4670°N).

L. Liu, et al. Remote Sensing of Environment 239 (2020) 111624

2



high revisit frequency of 5 days. Sentinel-2 data provide spectral in-
formation and spatial resolution similar to those of Landsat data.
Integration of Landsat and Sentinel-2 data would significantly improve
the temporal resolution of observations (Li and Roy, 2017) and could
provide an effective solution to the problems of the low availability of
Landsat data and the low spatial resolution MODIS in mapping crop-
ping intensity. Thus, there is a need to assess the potential of such data
integration and its application to crop phenological cycle identification
for mapping cropping intensity over large areas, to complement data
products already derived from time series MODIS images (Griffiths
et al., 2019; Jain et al., 2013; Xiong et al., 2017a; Xiong et al., 2017b).

In this study, we developed a straightforward algorithm to effi-
ciently integrate Landsat and Sentinel-2 time series data and apply the
resulting data to mapping cropping intensity information at large
scales. We selected seven study areas across China to assess the results
using field-scale sample data. The main objective of this study was to
integrate time series data from multiple remote sensors and extract
cropping intensity with high precision and high spatial resolution over
large scale domains.

2. Materials and methods

2.1. Study area

China has the largest multiple cropping areas in the world (Wu
et al., 2018), with multiple cropping systems developed over a period
exceeding 2000 years (Guo, 1986). In recent decades, nearly half of
China's arable land has been devoted to multiple cropping systems (Yan
et al., 2018a). To assess the accuracy and large-scale applicability of the
improved algorithm proposed in this study, we selected seven study
areas (A–G) representing all major grain-producing regions in China,
each with an area of 200 km × 200 km, divided according to agro-
climatic zones (Fig. 1), which are defined based on climate variables
that influence crop growth and yield (Van Wart et al., 2013; Zuo, 1996).
Three of the study areas (A, B and C) are in northern China; these sites
experience mostly sunny days throughout the year and are covered
mainly by large fields. The remaining four areas (D, E, F and G) are in
southern China, have mostly cloudy and rainy weather year-round and
are covered mainly by small-size cropland fields (Table 1).

2.2. Landsat and Sentinel-2 images and pre-processing

2.2.1. Image selection
To map cropping intensity in 2017, remote sensing data acquired by

Landsat and Sentinel-2 between August 2016 and July 2018 were used,
because cropping intensity in 2017 included winter crops (e.g., winter
wheat and winter rapeseed) from 2016 to 2017 and 2017 to 2018. The
Google Earth Engine (GEE) cloud computing platform (Gorelick et al.,
2017) hosts both Sentinel-2 images (MSI) and Landsat images including
Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and
Operational Land Imager (OLI) images. At the time that we conducted
our image analyses, all Sentinel-2 images in GEE were top-of-atmo-
sphere reflectance (TOA) data, all Landsat 7/8 data were TOA data, and
some Landsat data were surface reflectance (SR) data. We used

Sentinel-2 and Landsat TOA data in this study (Table 2).

2.2.2. Image quality assessment
All bad-quality observations were identified, including cloud, cloud

shadow, cirrus, and snow, as well as Landsat 7 ETM+ scan line cor-
rector (SLC)-off gaps, which accounted for up to 22% of the pixels
within an image (Arvidson et al., 2006). We used ETM+ metadata to
identify SLC-off gaps in the images. The FMask algorithm (Foga et al.,
2017; Zhu et al., 2015) was used to identify cloud, cloud shadow, cirrus,
and snow/ice observations during ETM+, OLI and multispectral in-
strument (MSI) data processing.

We counted total observations and good-quality observations for the
individual pixels in the seven study areas during the study period (8/
2016–7/2018) (Fig. 2). Among the individual pixels, there were>7
good-quality observations from ETM+ data, 23 from OLI data, and 81
from MSI data. There were much more MSI data than Landsat (ETM+
and OLI) data in terms of both total and good-quality observations.
Notably, MSI data represented two times more data than the total of
ETM+ and OLI data among good-quality observations over all study
areas. Integrating ETM+, OLI, and MSI data resulted in>114 ob-
servations for the study areas, such that a large amount of phenology
information was extracted for cropping intensity determination.

The numbers of total and good-quality observations for individual
pixels varied spatially during the study period (Fig. 3a-g, Fig. 4a-g).
About 87.11%, 89.97%, 61.53%, 44.10%, 44.66%, 47.52%, and
73.34% of pixels had>200 total observations in regions A–G, respec-
tively (Fig. 3h). About 87.82%, 98.84%, 70.71%, 56.03%, 18.11%,
48.37%, and 13.24% of pixels had> 100 good-quality observations for
regions A–G, respectively (Fig. 4h). The numbers of total and good-
quality observations in northern China greatly exceeded those in
southern China. The highest numbers of good-quality observations
within a single pixel occurred in regions A and B, and the lowest
numbers occurred in regions E and G. These results indicate that
cropping intensity cannot be determined by counting growth cycles
without the use of MSI data, and that the accuracy of this method may
be much higher in northern China than in southern China.

2.2.3. Imagery harmonization
Due to subtle differences in band wavelengths among ETM+, OLI,

and MSI images, remote sensing data must be unified to obtain com-
parable results. Therefore, we harmonized the ETM+ and MSI data to
the standard of the OLI data. For ETM+ data, bands 3 (red), 4 (near

Table 1
A summary of elevation, topography, mean annual precipitation and air temperature, and major crops in each of seven study areas in China.

Region Elevation (m) Topography Temperature (°C) Precipitation (mm) Main crops

A <200 Plain 5–7 350–700 Wheat, corn, soybeans, rice
B <50 Plain 11–15 500–700 Winter wheat, corn, soybeans
C 320–800 Plain, hills 12–14 550–660 Winter wheat, cotton
D <50 Plain 15–17 800–1100 Rice, rape
E 120–150 Plain, hills 20–22 1000–1600 Rice, sugar cane, rape
F < 250 Plain 16–17 1100–1400 Rice, rape
G 120–150 Hills, plain 20–22 1000–1600 Rice, sugarcane, rape, vegetable

Table 2
Numbers of time series images available between August 2016 and July 2018.

Landsat 7 Landsat 8 Sentinel-2 Total

A 292 379 2292 2963
B 254 298 2132 2684
C 230 302 1429 1961
D 190 189 1866 2245
E 171 243 1258 1672
F 115 145 1698 1958
G 126 218 1623 1967
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infrared), and 5 (shortwave infrared) were transformed using the or-
dinary least squares regression coefficient (Roy et al., 2016). For MSI
data, as the wavelength (near infrared) of band 8A matched that of OLI
better, bands 4 (red), 8A (near infrared), and 11 (shortwave infrared)
were selected and transformed using the ordinary least squares re-
gression coefficient (Zhang et al., 2018). Due to differences in the
spatial resolution of OLI and MSI data, MSI data were resampled to
30 m × 30 m using bicubic resampling.

2.2.4. Vegetation indices
NDVI (Tucker, 1979) and land surface water index (LSWI) (Xiao

et al., 2005) values were calculated from TOA data, and the resultant
times series VI data were used for phenology-based identification of
cropping intensity. NDVI and LSWI were calculated from remote sen-
sing data (Eqs. (1) and (2)).

= −
+

NIR RED
NIR RED

NDVI
(1)

= −
+

NIR SWIR
NIR SWIR

LSWI
(2)

Where RED is the TOA values of the red band (630–680 nm); NIR is
the TOA values of the near infrared band (845–885 nm); and SWIR is
the TOA values of the shortwave infrared band (1560–1660 nm).

2.2.5. Preparation of 10-day composite images
As remote sensing data from each sensor have a high degree of

overlap and sidelap, it is possible to have two observations in many
regions at different times on the same day. However, there are subtle
differences between the vegetation indices. In addition, different sen-
sors can cover the same region within a few days; the resulting images
will also result in some differences among observed VI values.
Therefore, to generate time series of equal lengths and intervals, we
obtained 10-day composite NDVI values by calculating the maximum of
all possible observed NDVI values during a 10-day period and a 10-day
composite LSWI dataset by calculating the average of all possible

Fig. 2. Numbers of total observations and good-quality observations per pixel for various sensors (box represents the maximum, the third quartile, median, first
quartile and minimum of all pixels in each study area).

Fig. 3. Numbers of total observations for individual pixels during the study period. (a – g) show the spatial distributions of total observation numbers in each study
area (A – G) respectively. (h) shows histograms of total observation numbers in all study areas.
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observed LSWI values during a 10-day period (Running et al., 1995).

2.2.6. Gap filling and smoothing
Good-quality observations sometimes cannot be obtained in some

regions during certain periods due to the influence of cloud, snow, or
other factors. These gaps were filled by time-series linear interpolation
based on good-quality observations before and after the time step
(Kandasamy et al., 2013).

Uncertain factors such as aerosols and bidirectional reflectance can
affect VI datasets by introducing various noise components. Although
composite images and the removal of bad-quality observations are often
applied in VI time series dataset processing, residual noise can remain
in the dataset, impeding further analyses and resulting in the failure of
cropping intensity determination. Therefore, such VI values should be
smoothed to remove noise components before application. In theory,
the NDVI curve should be continuous and smooth due to the narrow
range of plant growth. To maximize the accuracy of NDVI values, we
adopted the Savitzky–Golay filter to reconstruct these NDVI datasets,
using a moving window of 9 observations and a filter order of 2, be-
cause the growth period of most crops exceeds 90 days (Fischer et al.,
2002). Because LSWI varies under dry and wet conditions and LSWI
smoothing was unnecessary, we did not reconstruct the LSWI dataset in
this study.

2.3. Algorithms for identifying cropping intensity in a year for individual
pixels

We developed an algorithm that uses the phenology of each pixel to
identify and map cropping intensity, as shown in the workflow chart
(Fig. 5).

2.3.1. Phenology and signature analyses of cropping intensity
We selected four typical sites representing single, double, and triple

cropping intensities, using local questionnaires and Google Earth
images. We created time series of NDVI and LSWI values at these sites to
examine phenological characteristics of cropping intensity (Fig. 6).
NDVI values gradually increased during the green-up stage, reaching a
peak when crops matured, and then decreased from the senescence
stage until harvest. Thus, cropping intensity could be determined from
the number of crop growth cycles, as identified using the NDVI value
profile by extracting the start and end periods of the plant growth cycle

from troughs in the NDVI time series.
Multiple NDVI waves can occur in winter crop growth cycles due to

decreased NDVI during the vernalization period (Fig. 6b, November
2016 to June 2017) (Becker-Reshef et al., 2010). Some noise also re-
mained in the NDVI temporal profile, which can result in multiple NDVI
waves per crop growth cycle (Fig. 6d, October 2017 to February 2018).
The start and end periods were defined as before the sowing period and
after the harvest period, respectively, and were therefore characterized
by bare soil. These periods were extracted by identifying bare soil
during all troughs in the data. LSWI values are much lower for bare soil
than for green vegetation, which makes them an important indicator for
bare soil and for identifying the start and end periods of plant growth
cycles (Boles et al., 2004; Chen et al., 2018; Dong et al., 2015). How-
ever, in some areas with early and late rice crops, the harvest of early

Fig. 4. Numbers of good-quality observations for individual pixels during the study period. (a – g) show the spatial distributions of good-quality observation numbers
in each study area (A – G) respectively. (h) shows the histograms of good-quality observation numbers in all study areas.

Fig. 5. Workflow schematic for phenology- and pixel-based cropping intensity
mapping (top-of-atmosphere reflectance (TOA), National Land Cover Database
(NLCD), normalized difference vegetation index (NDVI), land surface water
index (LSWI), start of season (SOS), and end of season (EOS)).
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rice and transplanting of late rice usually occurs within a 2-week period
between June and September (Fig. 6c, July in 2017), and LSWI values
increase rapidly after late rice is transplanted. Therefore, bare soil be-
tween these two cropping periods may not be captured using LSWI
values if no suitable observations are acquired, which makes NDVI
values critical during this 2-week period. Therefore, another supple-
mentary algorithm was applied to account for the short rice harvest-
ing–transplanting period when it could not be identified.

Non-crop (e.g., weed) plants can grow before crop planting or after
harvest (Fig. 6a, February to May 2017); their maximum NDVI values
are typically much lower than those of crops. Therefore, the crop
growth cycle can be identified using maximum NDVI values from the
plant growth cycle.

The start and end of the growing season (SOS/EOS) of each crop
growth cycle was extracted based on phenological characteristics and
used to calculate cropping intensity.

2.3.2. Algorithm for crop intensity mapping

Step 1. A simple peak-finding method was used to identify all peaks
and troughs in the NDVI time series data based on a moving
window. If the NDVI value at a certain time was higher than those
before and after that time, then it was defined as a peak. If an NDVI
value at a certain time was lower than those before and after that
time, then it was defined as a trough.
Step 2. During a trough period, bare soil was identified based on a
dynamic threshold method, such that maximum and minimum LSWI
values were calculated throughout the entire period. Recent studies
indicated that in northern China, areas where LSWI values are< 0
was identified as bare soil (Biradar and Xiao, 2011; Dong et al.,
2015), while in southern China, areas where LSWI value are< 0.2
can be identified as bare soil (Chen et al., 2018) due to higher soil
moisture levels. Thus, the maximum LSWI threshold was set at 0.2
and the minimum LSWI threshold was set at 0. The potential and
final LSWI thresholds were identified (Eqs. (3) and (4)).

= + − ×T LSWI LSWI LSWI( ) 0.15P min max min (3)

=
⎧

⎨
⎩

<
≤ ≤

>
T

T
T T

T

0 ( 0)
(0 0.2)

0.2 ( 0.2)
F

P

P P

P (4)

where TP is the potential LSWI threshold, TF is the final LSWI threshold,
and LSWImax and LSWImin are the maximum and minimum LSWI values
during the two years, respectively. We used the final LSWI threshold to
identify the period of bare soil (LSWI<TF).

Step 3. Because a short rice harvesting–transplanting period can be
overlooked, a supplementary algorithm was applied. When NDVI
values were between 0.2 and 0.5, the pixels were considered a
mixture of bare soil and vegetation. Pixels with NDVI values above
0.5 were considered fully vegetated (Sobrino et al., 2001). Thus, the
threshold for the maximum NDVI value during a crop's growth
period was set to 0.5. Areas where the maximum NDVI value
was< 0.5 were identified as non-cropped, and areas where the
NDVI value was larger than 0.5 were not identified as bare soil.
When there were two neighboring waves, if the maximum NDVI
values of both waves were>0.5 and the NDVI value of the trough
between the two waves was smaller than 0.5 between June and
September, then both waves were identified as crop growth cycles
(Eq. 5).

> > <NDVI and NDVI and NDVI0.5 0.5 0.5a b c (5)

where NDVIi is the NDVI value at time i, a and b are the peaks of the
two waves, respectively, and c is the trough between the two waves.

Step 4. If the maximum NDVI value of the wave was<0.5, then the
wave was not detected as a crop growth cycle. Thus, all crop's
growth cycles were identified.
Step 5. The SOS and EOS periods of all crops were identified using
the NDVI ratio method (Eq. 6) (White et al., 1997).

= −
−

NDVI NDVI NDVI
NDVI NDVIratio

min

max min (6)

where NDVIratio is the NDVI ratio; NDVI is the NDVI value at a certain
time; NDVImin represents the NDVI value of bare soil, which is calcu-
lated as the minimum NDVI value over two years; and NDVImax re-
presents the highest NDVI value of crops, which is calculated as the

Fig. 6. Temporal profile of vegetation indices (NDVI and LSWI) for cropping intensity sample sites with (a) single cropping (124.7143°E, 43.6478°N), (b) double
cropping (114.8321°E, 37.3673°N), (c) double cropping (113.2629°E, 29.1703°N), and (d) triple cropping (109.2024°E, 24.1904°N).
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maximum NDVI value of each crop's growth cycle. We selected NDVI
ratio thresholds of 0.1 for SOS and 0.19 for EOS (You et al., 2013).

Step 6. If the SOS or EOS period of the crop was in 2017, then the
multiple cropping index (MCI) was defined as 0.5. If all SOS and
EOS periods of the crop were in 2017, then MCI was defined as 1
(Fig. 6). The MCI in 2017 was mapped using a summary of MCI
values for all crops in 2017.

2.3.3. Regional implementation of algorithms
Cropland data from the National Land Cover Database for China

(NLCD-China) datasets (Liu et al., 2014; Ning et al., 2018) for 2015, at a
scale of 1:100,000, were used to mask all remote sensing datasets to
exclude non-cropland pixels. Using the described algorithm, MCI was
identified using crop phenological information. Because the MCI was
calculated as 0.5, 1.5, or 2.5, cropping intensity was defined as follows:
single cropping, 1 ≤ MCI < 2; double cropping, 2 ≤ MCI < 3; and
triple cropping, MCI ≥ 3. These values were used to generate a crop-
ping intensity map for 2017.

2.4. Accuracy assessment of cropping intensity maps

A stratified random sampling design was used to validate our al-
gorithms and assess their accuracy for mapping cropping intensity. To
reduce the standard error of producer accuracy (PA), user accuracy
(UA) and overall accuracy (OA) (Olofsson et al., 2014), we allocated
samples in each stratum (single, double, or triple cropping) in propor-
tion to the area of the stratum. We randomly selected 100 sample points
among each of the seven study areas (Fig. 7) according to the areal
proportion for validation, including 469 samples for single cropping,
228 samples for double cropping, and 3 samples for triple cropping
(Table 3). Note that the double cropping samples in area A, triple
cropping samples in area F and triple cropping samples in area G (1, 1,
2, respectively) were few (1 to 2), which affected the accuracy assess-
ment. Thus, we decided to increase validation numbers to 10 for each of
these three cases.

As cropping intensity is calculated using the number of crop growth
cycles during a certain period, instantaneous field sampling data cannot
be used to reflect cropping intensity. Field surveys were conducted in
June 2017 to collect ground data samples for training and validation,
focusing mainly on major cropping intensity and crop types in high-
standard basic farmland. These field surveys collected 376 photographs
and 353 questionnaires covering all study areas (Fig. 7). The photo-
graphs recorded representative crop types with geo-referenced in-
formation. Questionnaires were sent to local farmers and government
managers who have owned or managed the high-standard basic farm-
lands. The questionnaire included a set of questions including location,
crop intensity, main crop types, sown area and irrigation status.

Then we generated 30 m × 30 m square buffers using these random
points. We combined the geo-referenced field photographs, ques-
tionnaire results, very high-resolution Google Earth images, and VI
profiles to visually interpret actual cropping intensity for all sample
points. Finally, using the cropping intensity maps and sample data, we
calculated confusion matrices for accuracy assessment.

2.5. Comparison with the national statistical data

The sown areas derived from remote sensing data were compared
with the national statistical data at the county level for validation.
These statistical data were collected from the provincial statistical
yearbook or prefectural statistical yearbook for 2018, which provide
information on the sown area for each county. Although these data
have some problems, the national statistical dataset is the only avail-
able source of data regarding cropping intensity. We selected 112
counties for validation (Table 3); 99% of the area of each selected
county fell within the 7 study areas and sown area data for 2017 were

available in the statistical yearbook. We estimated the sown area of
each county from our cropping intensity data, which were counted
twice (three times) for double (triple) cropping.

3. Results

3.1. Accuracy assessment of cropping intensity maps

A confusion matrix was calculated using the validation sample
points (Section 2.4) and used to assess the accuracy of the cropping
intensity maps (Table 4). The OA was 93% and the Kappa coefficient
was 0.83 over all study areas. The single cropping category had UA and
PA values of 93% and 96%, respectively; the double cropping category
had UA and PA values of 92% and 86%. PA was higher than UA for
single cropping detection but lower for double cropping detection. UA
and PA were higher for single cropping detection than for double
cropping detection.

The accuracy of the cropping intensity maps differed among study
areas, with an OA of 88–99% and a Kappa coefficient of 0.75–0.91. All
cropping intensity maps were reasonably accurate, indicating that the
cropping intensity identification algorithms were generally reliable
when supplemented with of Sentinel-2 imagery. Region A had the
highest accuracy (OA: 99%), followed by region B (OA: 96%, Kappa:
0.91), while region F (OA: 88%, Kappa: 0.75) and region G (OA: 88%,
Kappa: 0.76) had lower accuracies. Generally, the accuracy of cropping
intensity in northern China was significantly higher than those in
southern China. The main reason for this difference was that there were
more high-quality images from northern China than from southern
China. Furthermore, southern China has more complex cropping-in-
tensity and crop-type patterns compared to northern China, which
might also have affected map accuracy. This possibility is supported by
the accuracy in areas where single cropping dominated being higher
than that in areas of complex cropping intensity. Identification of single
cropping using this algorithm requires high-quality observations in only
three periods (before sowing, after harvest and during the maturation
period of crops), each of which lasts a relatively long time. Double
cropping and triple cropping necessitate high-quality observations in
more periods: as well as the three periods mentioned above, observa-
tions are needed from between the harvest of early crops and the
sowing of later crops. Moreover, for double cropping and triple crop-
ping, the duration of each of these periods is relatively short compared
to the duration of the three periods for single cropping.

3.2. Comparison of cropping intensity maps with national statistical data

We compared the cropping intensity maps with the national statis-
tical data for 2017 at the county level. The sown areas obtained from
the cropping intensity maps and the national statistical data at the
county level had a significant linear relationship, with R2 of 0.82
(Fig. 8). Mean error (ME) and root mean square error (RMSE) are two
statistical measures that can be used to compare two datasets. The ME
was 24,351 ha and RMSE was 38,569 ha for all seven study areas
(Table 5). The sown area was greater in the cropping intensity maps
than in the national statistical data for all study areas, mainly because
the cropland area was larger in NLCD-China than in the national sta-
tistical yearbook. The results of accuracy assessment indicated that
region A had the strongest correlation (RMSE: 32,519 ha, ME:
20,645 ha), followed by region B (RMSE: 34,295 ha, ME: 22,495 ha),
whereas region F (RMSE: 43,970 ha, ME: 14,807 ha) and region G
(RMSE: 46,131 ha, ME: 36,691 ha) had weaker correlations. The cor-
relation was much stronger for northern China than for southern China.

C

3.3. Maps of cropping intensity in 2017

We mapped cropping intensity in 2017 at 30 m spatial resolution
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using the algorithms described in Section 2.3. Fig. 9 shows the resulting
cropping intensity maps for each of the seven study areas. The spatial
distribution of cropping intensity was consistent with climate factors

and topographical characteristics.
In Region A, cropping intensity was dominated by single cropping of

crops such as maize, soybean or paddy rice due to the relatively cold
weather in winter. Double cropping was also detected in extremely
small areas due to double vegetable planting. In Regions B and C,
double cropping is widely applied by planting winter wheat and maize.
However, the local government has promoted a “one cropping for
fallow, one cropping for rainfed” policy since 2014 due to a lack of
groundwater and rainfall in winter around Hengshui City in Region B;
therefore, farmers have abandoned double cropping and adopted single
cropping for soybean, cotton, peanut, oil sunflower, and other grains.
Maize is planted only at great distances from the Wei and Yellow Rivers
mainly due to a lack of water for irrigation in Region C. Thus, single

Fig. 7. (a - g) Spatial distributions of validation points in each study area (A – G, respectively). (h) Numbers of survey questionnaires and field photos collected in all
study areas.

Table 3
Numbers of sampling points and counties used for validation in each study area.

A B C D E F G Total

Sampling point Single cropping 99 33 72 65 77 65 58 469
Double cropping 1a 67 28 35 23 34 40 228
Triple cropping 0 0 0 0 0 1a 2a 3

County 4 42 19 15 13 11 8 112

a Number increased to 10.
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cropping was also detected in Regions B and C.
In Regions D and F, due to warm climate and abundant rainfall, two

seasons of paddy rice or winter rapeseed–rice systems are generally
adopted per year for double cropping. However, only one season of rice
was planted per year during the study period due to a lack of rural labor
in economically developed regions, leading to the detection of single

cropping. In region E, due to varied topography and water availability,
there was a complex pattern of multiple cropping systems. In Chengdu
Plain, in the western part of region E, winter rape–rice or winter
wheat–maize are widely adopted for double cropping. By contrast, one
season of rice or maize per year is planted for single cropping in the
hilly eastern part of Region E. In Region G, single cropping was iden-
tified in areas where fruit, sugarcane, and cassava were planted,
whereas double or triple cropping was detected in areas planting rice,
maize, and vegetables.

4. Discussion

4.1. Integration of times series Landsat and Sentinel-2 imagery

The algorithm used to identify cropping intensity in previous studies
have mainly been based on moderate-resolution images (i.e., MODIS
products) (Biradar and Xiao, 2011; Gray et al., 2014; Li et al., 2014; Liu
et al., 2012; Xiao et al., 2006; Xiao et al., 2005; Yan et al., 2014).
However, the accuracy of data products based on these algorithms is
limited due to high sub-pixel heterogeneity (Jain et al., 2013). For
example, the cropland area own by 90% of farmers in China is< 0.2 ha
(Li et al., 2006). One study found that field size is very small in most
areas of southern and eastern China (Fritz et al., 2015). In particular,
cropping systems in southern China are characterized by smallholder
farms, and the field size of most croplands is< 0.04 ha, although many
croplands have been reclaimed over the past 10 years (Tan et al., 2013).
Thus, the 500-m resolution of MODIS is clearly insufficient (Ozdogan
and Woodcock, 2006; Podwysocki, 1976).

Both Landsat and Sentinel-2 provide high spatial resolution images
(10–30 m) at sixteen days and six days temporal resolution. (Zhang
et al., 2018). Integration of Landsat and Sentinel-2 data greatly increase
(at least twofold) the temporal frequency of good-quality observations
(Li and Roy, 2017), providing an opportunity to generate high-resolu-
tion cropping intensity maps based on phenology analysis (Griffiths
et al., 2019; Wang et al., 2019; Zhong et al., 2019). Such an improve-
ment allows high-resolution crop type mapping and agricultural mon-
itoring by tracking crop phenology.

We compared annual maps of cropping intensity identified by
Landsat, Sentinel-2, and integrated Landsat and Sentinel-2 images
(Table 6). The cropping intensity map generated by the integration of
Landsat and Sentinel-2 data had high OA (93%) and Kappa coefficient
(0.83) values, whereas cropping intensity maps generated from Landsat
or Sentinel-2 data had lower OA values (76% and 78%, respectively)
and Kappa coefficients (0.46 and 0.50, respectively). Notably, 5% of
sample points could not be identified as crops based on Landsat images
alone due to a lack of sufficient good-quality observations. In particular,
cropping intensity maps from southern China based on Landsat (in re-
gions F and G) or Sentinel-2 (in regions D and E) data had unacceptably
low accuracy. Comparatively, cropping-intensity maps based on in-
tegrated Landsat and Sentinel-2 images had relatively high accuracy.
Thus, cropping-intensity maps created by integrating Landsat and
Sentinel-2 images had greatly improved accuracy. This improved ac-
curacy resulted from the greater number of high-quality observations
available, which provided more phenological information about crops
for extraction of cropping intensity. We obtained 67–168 high-quality
observations from the integration of Landsat and Sentinel-2 data during
the study period, compared to 25–67 and 39–101 high-quality ob-
servations from Landsat and Sentinel-2, respectively (Fig. 2).

4.2. Algorithm development and critical conditions

Peak counting algorithms have been used to map cropping intensity
in previous studies (Heller et al., 2012; Qiu et al., 2017; Yan et al.,
2018a). However, some crops tend to manifest two NDVI (or EVI) peaks
for each seasonal crop. For example, winter wheat has two similar
peaks and cycles (Fig. 10a, November 2017 to May 2018). The NDVI

Table 4
Accuracy assessment of cropping intensity in each study area. A – Northeast
China Plain, B – North China Plain, C – Guanzhong Plain, D – Tai Lake Plain, E –
Sichuan Basin, F – Dongting Lake Plain, G – Central Guangxi Plain.

Region Cropping
intensity

User
accuracy

Producer
accuracy

Overall
accuracy

Kappa
coefficient

A Single 100% 99% 99% –
Double 80% –
Triple – –

B Single 97% 91% 96% 0.91
Double 96% 98%
Triple – –

C Single 94% 97% 94% 0.85
Double 93% 87%
Triple – –

D Single 94% 94% 92% 0.82
Double 89% 89%
Triple – –

E Single 91% 97% 91% 0.76
Double 91% 75%
Triple – –

F Single 86% 97% 89% 0.77
Double 94% 78%
Triple 80% –

G Single 90% 91% 89% 0.77
Double 88% 85%
Triple 80% 100%

Total Single 93% 96% 93% 0.84
Double 92% 87%
Triple 80% 100%

Fig. 8. Comparison of sown area (thousand ha) obtained from cropping in-
tensity maps with area obtained from national statistical data.

Table 5
Comparison of sown area (ha) derived from cropping-intensity maps and sown
area derived from national statistical data.

A B C D E F G Total

ME 20,645 22,495 28,242 21,033 30,113 14,807 36,691 24,351
RMSE 32,519 34,295 37,817 39,856 42,690 43,970 46,131 38,569

L. Liu, et al. Remote Sensing of Environment 239 (2020) 111624

9



values of both peaks are relatively high (> 0.6), and both cycles are
longer than 90 days. Therefore, it is difficult to identify crop growth
cycles using only the NDVI temporal profile (Gray et al., 2014). Some
studies have used the calendar-year thermal growth season to exclude
the additional winter crop peak by avoiding the identification of au-
tumn growth of the winter crop as a separate crop cycle (Gray et al.,
2014). However, some summer crops (e.g., sugarcane) also have mul-
tiple peaks in each seasonal crop (Fig. 10b, April to October 2017), due
to the impact of bad climate conditions on crop growth and image
quality.

In this study, crop growth cycles were identified based on the simple
principle that bare soil and/or dead vegetation, which can be identified
by LSWI values, must exist before sowing and after harvesting. Our

algorithm successfully mapped cropping intensity at large scales across
China. However, LSWI values were calculated using images from op-
tical sensors, which are affected by cloud and shadow (Zhu et al.,
2015). The accuracy of the algorithm will decrease if no good-quality
observations are available for identification of bare soil, due to cloud or
shadow. Because microwave images from Sentinel-1 can easily pass
through clouds (Periasamy, 2018), Sentinel-1 data can be used to
identify bare soil instead of LSWI data, based on the degree of depo-
larization attained by the illuminated signal at the incident plane
(Periasamy, 2018; Vreugdenhil et al., 2018), further improving results
even during periods of high cloud cover by integrating optical and radar
sensors (Bargiel, 2017; Van Tricht et al., 2018; Veloso et al., 2017).

Fig. 9. Spatial distribution of cropping intensity in each study zone (A - G). Blank areas represent non-cropland areas that were masked in the cropland dataset and
were not classified in this study.
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4.3. Potential sources of uncertainty

Several factors may affect the accuracy of cropping intensity maps
derived from the proposed algorithms. First, we used the NLCD-China
datasets, which are widely used land cover datasets for China (Ning
et al., 2018), to distinguish croplands from other land cover types; the
data source clearly affects the accuracy of the resultant cropping in-
tensity maps. However, the spatial resolution of the NLCD-China da-
taset (100 m) is coarser than the 30-m spatial resolution of the resultant
cropping intensity maps, which may increase the error of our results
(Ozdogan and Woodcock, 2006). Second, to exclude grass and shrubs
before planting or after harvest, our algorithm requires that the max-
imum NDVI value of each cycle exceeds 0.5. Vegetation can interfere
with crop identification, because the maximum NDVI value of the ve-
getation cycle may be similar to that of crops (> 0.6) or shrubs (< 0.4)
due to differences in vegetation types and climate factors (Teluguntla
et al., 2018). The maximum NDVI value of the crop cycle may be<0.5
in poor-quality images. Finally, there were incorrect results among
some “salt and pepper” pixels in comparisons between fields or between
field and non-cropland, particularly in hilly areas, due to noise in the
mixed pixel time series, resulting in errors. We also detected mis-
matches of pixel dimensions across time among the Sentinel-2 data
(Yan et al., 2018b). An object-based identification algorithm for Sen-
tinel-2 Level-2A data may alleviate these problems (Belgiu and Csillik,
2018; Pena-Barragan et al., 2011; Xiong et al., 2017a).

4.4. Advantages of the Google Earth Engine

The GEE is a cloud-based geospatial analysis platform that includes
very large databases, immense computational power, and numerous
algorithms. The GEE facilitates processing large numbers of high-re-
solution images for mapping crop intensity. The GEE provides different

levels of processed imagery products (analysis-ready datasets) in timely
fashion for direct use. Its high-performance computing and parallel-
processing platform can be used to process large-scale geospatial da-
tasets. The GEE requires only 40 min to identify cropping intensity
within an area of 200 km × 200 km from approximately 4 TB of
images. On the other hand, the GEE cannot process extremely complex
algorithms, which would exceed memory limits.

4.5. Implications and future work

Cropland is the most complex land use type as it is affected by both
human activity and the natural environment. Annual cropping intensity
maps can be used to elucidate the impacts of cropland on regional
climate, biogeochemical cycles (e.g., carbon, nitrogen, and greenhouse
gases), and water resources (Biradar and Xiao, 2011). Cropping in-
tensity has undergone extensive changes throughout China due to cli-
mate change and land policy changes (Yan et al., 2018a), as approaches
to increase food production are sought (Wu et al., 2014; Zhang et al.,
2014). Comparison of actual and potential cropping intensity can help
farmers to improve crop planting decisions and policy makers to make
science-based policies to increase food production in food-insecure re-
gions (Wu et al., 2018). In future studies, we will apply these algorithms
extensively to map annual cropping intensity spatially and temporally
throughout China.

Mapping crop types has typically involved the use of all available
images to identify characteristic information for each crop (Griffiths
et al., 2019; Massey et al., 2017; Wang et al., 2019; Zhong et al., 2011).
However, information from the non-growth period interferes with the
extraction of desired crop information. Crop type identification is also
affected by data for other crops within multiple cropping systems. The
algorithms proposed in this study successfully extracted growth cycle
information for each crop, which was then used to map crop types by
identifying crop characteristics within their specific growth cycles.
Phenological information was also extracted throughout the crop
growth cycle, and images of the key phenology periods were selected to
identify each crop type.

5. Conclusion

We developed and implemented a pixel- and phenology-based al-
gorithm for mapping cropping intensity, defined as the number of crop
growth cycles within a specified time period, using integrated time
series data acquired by Landsat and Sentinel-2. The algorithm was
applied to cropland across China. The NDVI time series dataset was
obtained from combined Landsat and Sentinel-2 imagery, and was then
gap-filled and smoothed using a linear interpolation method and
adaptive Savitzky–Golay filter, respectively. Bare soil information was
detected using LSWI values and used to identify crop growth cycles. The

Table 6
Accuracy assessment of cropping intensity identified using imagery from
Landsat, Sentinel-2, and integration of Landsat and Sentinel-2.

Region Landsat Sentinel-2 Landsat and Sentinel-2

Overall
accuracy

Kappa
coefficient

Overall
accuracy

Kappa
coefficient

Overall
accuracy

Kappa
coefficient

A 98% – 99% – 99% –
B 85% 0.69 89% 0.77 96% 0.91
C 71% 0.36 76% 0.49 94% 0.85
D 79% 0.57 67% 0.26 92% 0.82
E 78% 0.43 69% 0.17 91% 0.76
F 64% 0.20 77% 0.51 89% 0.77
G 59% 0.13 68% 0.35 89% 0.77
Total 76% 0.46 78% 0.50 93% 0.84

Fig. 10. Temporal profile of vegetation indices (NDVI and LSWI) for winter wheat (114.8723°E, 37.4842°N) (a) and sugarcane (108.6083°E, 24.2099°N) (b).

L. Liu, et al. Remote Sensing of Environment 239 (2020) 111624

11



OA of the resultant maps was 93% and the Kappa coefficient was 0.83
over all seven study areas. High-accuracy annual cropping intensity
maps, with a spatial resolution of 30 m, were generated by counting
detected crop growth cycles. Compared to cropping intensity maps
based on images with coarse spatial resolution, such as those from
MODIS, the 30-m cropping intensity map exhibited greatly reduced
mixed-pixel effects, more detailed spatial distribution, and greatly im-
proved accuracy, particularly for smallholder farms. Although this al-
gorithm was tested in only seven study areas within major grain-pro-
ducing regions in China, it could be applied throughout China and in
other countries where multiple cropping systems are implemented. The
algorithm could also be applied to quantify inter-annual cropping in-
tensity variation.
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