
Abstract
Due to the 10-bit design of SEAWIFS instrument and the signal
transmission, many SEAWIFS satellite images are expected to
have lower digitization noise and corrupted impulse noise. In
this paper, we first analyze the characteristics of impulse
noise and propose a new rank-ordered filter based on the
difference of sequence for mean/standard, which is named as
Statistical Ratio Rank Ordered Differences (SRROD) filter.
Second, we describe the impulse noise detection and removal
algorithm in detail. Compared with the median filter and
other existing filters, the SRROD filter could effectively remove
impulse noises while preserving other valid pixels without, or
only with minor, modification. Through adjusting the lower
and upper threshold values, different filter performance
could be achieved. We also discuss the blind parameters
optimization for non-recursive implementation. Based on the
assessment of the distribution map of performance estimator
� according to different lower and upper threshold pairs, a
nearly optimal threshold could be obtained. Finally, some
concluding remarks are also presented in this paper.

Introduction
During remote sensing image acquisition, transmission, and
processing, due to the limitation of instrumental design,
environmental and atmosphere conditions, channel transmis-
sion errors, signal encoding processing, and other reasons,
images can be corrupted by some stochastic and randomly
distributed black and white noises, which are usually called
impulse noise, or salt and pepper noise. Salt and pepper
noises severely degrade the image quality and limit quantita-
tive assessment. Therefore, noise removal is very important
for remote sensing imagery and other image processing, and
it is also significant in improving the resultant effect of
image segmentation, feature extraction, image recognition,
and classification.

At present, image filtering is the main method for
removing noises from an image. The goal of impulse noise
removal is to suppress the noise while preserving the integrity
of edges and detail information. Conventional linear filters,
such as mean filters, are not very effective for the removal of
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salt and pepper noise; while some nonlinear filters, for exam-
ple, the median filter (Turky, 1971; Lin and Willson, 1988)
and order statistic (OS) filters (Kim, 1986, 1995; Bovik, 1983),
can efficiently reduce most of the salt and pepper noise in
the image with its edges and texture information degraded to
varying degrees. Another limitation is the robustness of these
algorithms; that is, the performance of the algorithms
decreases significantly when the percentage of impulse noise
in the image increases. To overcome this problem, some new
algorithms have been recently proposed: the multistage
median filters (Wendt et al., 1986; Coyle et al., 1988, 1989;
Lin et al., 1990), center weighted median (CWM) filters
(Hardie et al., 1993; Ko et al., 1991; Sun et al., 1992), general
weighted median (WM) filters and weighted order statistic
(WOS) filters (Yli-Harja et al., 1991), length adaptive median
filter (Lin and Willson, 1988), decision-based median filter
(Florencio and Schafer, 1994), stack filters (Coyle et al., 1988,
1989; Lin et al., 1990; Wendt et al., 1986), permutation filters
(Barner et al., 1994), and rank-conditioned, rank-selection
filters (Hardie, 1994). Most of these filters have demonstrated
better performance than the median filter in the removal of
impulse noise and detail preservation. However, because
most of these approaches are typically implemented uni-
formly across an image, they also tend to modify pixels that
are undisturbed by noises. In addition, some researchers
introduced impulse noise filter using fuzzy logic techniques
(Zhang and Wang, 1997; Wang and Zhang, 1998). These
algorithms are based on fuzzy impulse detection and fuzzy
noise cancellation techniques. Although there is some effec-
tive improvement, there are still difficulties to create the fuzzy
rule like other fuzzy systems, especially when no training
images are provided.

In this paper, a novel, non-linear, adaptive algorithm is
proposed for the removal of impulse noise from SEAWIFS
images. The paper is organized as follows: the mathematical
model of random-valued impulse noise is described; the
detailed algorithm and image-processing technique based on
Statistical Ratio Rank Ordered Differences (SRROD) filter is
studied; the experimental results of applying our filter to
SEAWIFS impulse noise removal is discussed; a non-iterative
optimization of filter parameters is discussed; and finally,
the conclusion.

Impulse Noise Model and Algorithm Consideration
Normally, impulse noise is a result of a random process in
which the digital numbers (DNs) of the corrupted pixels are
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often replaced with values equal to or near the minimum or
maximum value of the allowable dynamic range. The noises
could be positive (maximum), negative (minimum), or a
mixture (salt and pepper). Pixels are degraded by such
noises with probability p. Assuming the original noise-free
image value at pixel location n � [i, j] is v(n), and x(n) is
the observed noise degraded image value, the noise model is
expressed as:

(1)

where e(n) is a random binary number. For an 8-bit, gray
scale image representation (0 � minimum; 255 � maximum),
its value is

(2)

The probability of the black (minimum) value is p0 and the
probability of the white (maximum) value is 1�p0. Normally,
for positive impulse, p0 � 0; for negative impulse, p0 � 1;
and for the salt and pepper, p0 � 1/2. Any mixture of black
and white can be obtained by a different selection of the
probability p0.

More complex impulse noise models are generated by a
random magnitude degradation procedure. The random-
valued impulse noise e(n) is represented as:

(3)

where the impulse generation function si(n) is a set of random
processes representing an ever-present impulse component
with standard deviation �i, and z(n) is a random unsigned
integer value selected at pixel location n. For a specific
example, si(n) could be a series of normal distributions with
different means and standard deviations, and could be
represented as:

(4)

where {pi(t)} are the set of normal distribution functions
with mean value �i and standard deviation �i, and

t is the random noise variable. Normally, t is constrained in
a narrow extent compared to the full allowable range of data
value of an image. Note that the mixture of the signals and
various types of noise makes a single threshold applying in
noise-disturbed image to the removal of impulse noise is not
desirable.

As aforementioned, the goal of impulse noise removal is
to suppress the noise while preserving the edges and struc-
ture or texture information. More strictly, in many remote
sensing applications, especially in quantitative remote sens-
ing retrieval and image classification, users generally expect
that impulse noise can be removed as much as possible while
preserving the undisturbed pixels without modification. There-
fore, to assess the effectiveness of the proposed impulse noise
removal algorithm, three factors (percentage of the impulse
noise removed, the edge and texture preservation, and pixel
value modification) should be considered and compared. In
addition, the algorithm complicity, computational speed, and
efficiency are the other factors to consider.

In the next section, we will introduce a novel non-linear
adaptive algorithm for removal of impulse noise from the
image and minimizing undisturbed pixel modification that
helps preserve edges, structure, and texture information.

N( mi, si
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Algorithm Implementation and Experimental Results
Design Strategies
This algorithm first sorts pixel-by-pixel similar to some rank
ordered filters in a local window. Then, a sequence of local
statistics based on the mean values and standard deviations
in the local window are calculated, sequentially subtracted,
and compared with two predefined thresholds: i.e., a lower
threshold employed for black noise detection and an upper
threshold employed for white noise detection. If noise is
detected, the pixel value is modified and replaced by rank-
ordered mean (Abreu, 1996) or other appropriate local
window statistics as described below.

Let v(n), x(n), and y(n) represent the pixel values of the
original noise-free image, the impulse-noise-corrupted image,
and the filtered output image, respectively. The impulse
noise removal scheme of our proposed algorithm could be
summarized as the following steps:

(1) First, consider the real-valued 2D sequence {x(n)}, and
define X(n) as a w � w element observation vector that
contains the elements of a w � w window centered around
x(n) such as X(n) � [xi(n); (i � 1, 2, . . . , w2)]. In this
case, the xi(n)s correspond to a left-to-right, top-to-bottom
mapping from the w � w window to the 1D vector. The
observation samples can be also ordered by rank, which
defines the vector R(n) � [ri(n); (i � 1, 2, . . . , w2)], where
ri(n) are the elements of X(n) arranged in a descent order
such that r1(n) � r2(n) � . . . � rw2(n).

(2) Next, denote as a
subset sequence in vector R with its elements coming from
rp(n) to rq(n), where 1 � p 	 q � w2. The iterative compu-
tation of the downward differences of the ratios between
the truncated mean values and the standard deviations,
denoted as {Ki}, is based on the following equations:

(5)

(6)

(7)

where are the mathemati-
cal expectation, variance and standard deviation for 1D rank
ordered subset sequence , respectively.

The reason for applying a normalization in Equation 7 is
that the varying characteristics of local structures over the
whole image could not be captured by one global function.
By employing the normalization, one can remove the
shiftness effects of pixel values.

(3) Compare Ki with a predefined or specified lower threshold
Cl, (Cl R
, namely, Cl is a positive float-valued constant,
and in most cases we have Cl [0, 1.0]). If Ki � Cl, the
pixel values with subscript ranging from i to w2 in vector
R(n), that is, ri (n), ri
1 (n), . . . ,rw2 (n), will be detected as
black noises. Let k denote the total number of black noises
in current local window centered around pixel n, in which

we will have from Equation 7; if no noise
presents, simply let k � 0.

(4) Similar to Step 2 above, compute the normalized upward
differences of the ratios between the truncated mean values
and the truncated standard deviation by using the following
equation, and denote this upward sequence as {Li}:

(8)
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(5) Compare Li with predefined or specified upper threshold
Cu, (Cu R
, namely, Cu is a positive real number constant,
and in general, Cu [0, 1]). If Li � Cu, the pixel values with
subscript from 1 to i in vector R(n), that is, r1(n), r2(n), . . . ,
ri(n), will be detected as black noises. Let l denote the total
number of black noises in current local window centered

around pixel n, in which we will have from

Equation 8; if no noise results, simply let l � 0;
(6) Determine whether the center pixel n in local window is

noise pixel or not by using Equation 9. If an impulse noise
is detected, replace it with its rank-ordered mean (ROM)
value or other localized estimation:

(9)

For highly corrupted images, median of may be
preferable.

(7) Move the window to the next pixels from left to right and
from top to bottom according to the Steps from 1 to 6 until
all pixels in noisy image are processed, and the final
filtered output image, y(n), is obtained.

The filtering algorithm described here works well in
either a non-recursive or recursive implementation. In recur-
sive fashion, a higher valued threshold pair than non-
recursive implementation should be given, resulting in less
noise removal and less pixel modification in each iteration,
but better noise removal and detailed information preserva-
tion in the final result. Meanwhile, users can change the
upper threshold and lower threshold and the local window
size in each iteration if necessary, so that optimal filtering
result may be achieved.

Comparative Experiment on Natural Images
We evaluated the proposed method with an 8-bit, 256 � 256
test image(“Lena”) shown in Figure 1a corrupted at the rate
from 5 percent to 20 percent. Figure 1b and 1c show the
corrupted image with 15 percent random-valued impulse noise
and the restored image by our filtering method, respectively.

Three previously published algorithms including the
median filter, the standard two-state non-recursive SD-ROM fil-
ter (Abreu et al., 1996) and the decision-based filter (Florencio
and Schafter, 1994) are incorporated for comparison. As
performance measures, we used the peak signal-to-noise ratio
(PSNR) with a unit of decibel (DB), the mean absolute error
(MAE), and the percent pixels modification (PPM) defined as:

(10)PSNR � 10 log10 ±
a
N

n�1
G2

a
N

n�1
(y(n)�x(n))2

≤ ,

Rl→(n2�k
1)

y(n) � ex(n) if rw2�k
1(n) 	 x(n) 	 rl(n)
m(Rl→(n2�k
1)(n)) ifx(n) � rl(n) or x(n) � rw2�k
1(n).

0 � l �
w2�1

2

�
�

(11)

(12)

where N is the total number of pixels in an image, N0 is the
number of pixels with DN changed, and G is the maximum
allowable data value for the image pixels. A good noise
removal algorithm should have relatively high PSNR, low
MAE, and low PPM.

Table 1 lists the comparative results of our experiment.
All algorithms are implemented using a 3 � 3 window.
Clearly, our filter provides significant improvement over the
other tested methods for random-valued impulse noise. Note
that the decision-based median filter and our filter are
implemented recursively for 20 percent impulse noise
removal. Interestingly, significant decrease of PPM and little
loss of MAE and PSNR are acquired for our filter than the
non-recursively implementation for 15 percent impulse
noise. This may imply that a carefully designed, recursive
implementation of our filter could maximize the filtering
performance.

Application in SEAWIFS Noise Removal
A 1285 � 1616, 8-channel SEAWIFS image corrupted by
impulse noise in East Asia obtained on 05 January 2001 is
used for our experiment and subjective evaluation. The
nominal spatial resolution is 1.1 km for all bands. For
simplicity, only Channel 2 is selected for visualization and
assessment in this paper. Different filtering results compared
between our algorithm, median filter, and decision-based
median filter are illustrated in Figure 2. Similar results are
also obtained in other channels but will not be discussed
here.

Figure 2a shows an enlarged original Level 1B image of
SEAWIFS products corrupted with evident impulse noise.
Visualization of the full scene image shows that the impulse
noise is random and inhomogeneous in a small area, but
approximately more homogeneous in a larger area. Noise
density can reach over 30 percent in some small local
windows while in other areas only a few new noises or no
noise may be found. The overall average noise probability

 PPM �
N0

N
� 100%

 MAE �
a
N

n�1
`y(n)�x(n) `

N
, and
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Figure 1. Restoration of the image “Lena” by
the SRROD algorithm. (a) Original 256 by 256,
8-bit/pixel image. (b) Corrupted image with
20 percent random-valued impulse noise.
(c) Restored image by SRROD algorithm.

TABLE 1. COMPARATIVE RESTORATION RESULTS IN PSNR, MAE AND PPM AT

DIFFERENT RATES OF RANDOM-VALUED IMPULSE NOISE

Percentage of Impulse Noise

Algorithm Factors 5% 10% 15% 20%

Median PSNR 31.02 dB 29.74 dB 28.74 dB 28.08 dB
MAE 3.31 3.93 4.4 4.87
PPM 65.07% 68.78% 70.78% 72.63%

SD-ROM1 PSNR 29.66 dB 28.31 dB 27.46 dB 27.01 dB
MAE 3.44 4.58 5.26 6.01
PPM 38.47% 55.67% 63.86% 72.13%

Decision-based PSNR 32.35 dB 29.86 dB 28.06 dB 27.72 dB
Median2 MAE 1.73 3.54 4.6 3.92

PPM 23.01% 54.69% 62.51% 33.72%
SRROD filter2 PSNR 32.68 dB 30.23 dB 29.21 dB 28.75 dB

MAE 1.68 2.91 3.37 3.23
PPM 25.04% 39.10% 46.33% 37.76%

1implemented two state approach with recommended standard
thresholds.
2implemented recursively at 20 percent impulse noise.

(a) (b) (c)
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may be lower than 10 percent. Figure 2b shows the median
filtering result for the image in Figure 2a. From Figure 2b
we can see that, although the impulse noise can be fully

removed from the image, the texture and edge information
has also been severely blurred. From Figure 2c we can see
that the decision-based, median filter performs much better
than the median filter, although some undisturbed pixels are
also classified as impulse pixels, which we will discuss in
the next paragraph. The image shown in Figure 2d is the
final result filtered by our approach. This is performed
within a 3 � 3 window size, and with Cl � 0.25, Cu � 0.25.
Compared Figure 2d with Figure 2a–c, we find that our
method can not only successfully remove nearly all of the
impulse noise, but most importantly, preserves its texture
and edge information perfectly.

By subtracting the filtered image from the original
image, we obtain the difference image before and after
filtering. Thus, we can analyze changes of pixel values
between original and filtered images. Figure 2e shows the
difference image obtained by subtracting original image
(Figure 2a) from the median filtering resulted image (Fig-
ure 2b); while the difference image shown in Figure 2f and g
are obtained by subtracting original image from the filtering
result image by using the decision-based median (Figure 2c)
and the method proposed in this paper (Figure 2d), respec-
tively. In these difference images the medium gray pixels
represent the unchanged pixels after noise removal; white
represents pixels with increased data value; and black
represents pixels with decreased data value. Figure 2e
demonstrates the dramatic, altered data values almost for
most of the pixels in original image by median filtering;
however, images illustrated in Figure 2f and 2g show that
almost all impulse noises are removed with only a few
altered pixels by both the decision-based, median filter and
our approach. Manual verification of Figure 2f and 2g shows
that some of the undisturbed bright pixels are misclassified
as white noisy pixels by the decision-based median filter;
this situation rarely occurs in the filtered image by our
approach. Therefore, Figure 2g well delineates the location,
characteristics, and intensity of impulse noises of the orig-
inal image, where white indicates the occurrence of black
noises and black indicates the occurrence of white noises in
original image.

Figure 3a and 3b show histograms of the images before
and after noise removal using the algorithm discussed in
this paper. Note that in Figure 3, the impulse noises are
mainly distributed in places where data values (or digital
number, DN) are less than 450 or more than 800. By compar-
ing the histograms in Figure 2a and 2b, we can see that after
noises being removed from original image, the dramatically
decreased frequency of these DNS in these two regions
contributes to the increase of frequency centered around the
data value 500.
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Figure 2. Comparison of images before and after noise
removal by different approaches. (a) Noisy SEAWIFS image
(portion). (b) 3 by 3 median filter results. (c) 3 by
3 decision-based median filter results. (d) Results from
our algorithm (3 by 3 window, Cl � 0.25, Cu � 0.25).
(e) Shows pixels changed by median filter. (f) Shows
pixels changed by decision-based median filter. (g) Shows
noise types and its location. (Figures 2d, 2e, 2f, and 2g:
white means an increase in the digital number, gray
means no change in the digital number, black means a
decrease in the digital number.)

Figure 3. Changes of histograms before and after noise
removal for image in Figure 2a. (a) Histogram before noise
removal. (b) Histogram after noise removal.
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Blind Parameters Optimization for Non-Recursive Implementation
In this section, we will address the parameters optimization
without training data for non-recursive implementation of
our proposed filter. This procedure can be applied on all
SEAWIFS imagery in general, except that the values of specific
parameters may depend on the quality of the individual
image.

From the histogram shown in Figure 3a, we notice that
most impulse noises in the image are distributed between
the minimum and maximum pixel values, clustered at
different locations as separated “peaks” with different
amplitudes and different widths. Although we cannot
delineate noises and their locations from signals according
to the histogram, we can easily approximate these peaks by
using Equations 3 and 4 described in the noise modeling
section. Under this assumption, we will begin to discuss the
optimization of the thresholds (Cl, Cu).

First, in order to estimate the filtering performance
concerning different (Cl, Cu) values when the original noise
free image is not available, we have developed a quantitative
indicator � which is defined as:

;
(13)

where N0 is the number of pixels that the DN changed.
Generally, the larger the value of �, the better the denoising
efficiency and the less pixel value modification results,
provided that most noises have been removed from the noisy
image; or vice versa. For simplicity, let’s denote function
�(cl, cu) as the estimated � for given lower threshold and
upper threshold (Cl, Cu).

Then, a 400 � 400 subset portion of the degraded
SEAWIFS image from Channel 2 is chosen as the training
sample image. Our experiment shows that this size of image
is an ideal compromise between the noise characteristics of
the full scene image and computational complexity. Next,
we calculate the �(cl, cu) values of input sample image after
each iteration of filtering operation according to various
(Cl, Cu) values ranging from [0, 0.5] at a 0.05 sampling
interval. After that, we will have a two-dimensional �(cl, cu)
matrix according to different (Cl, Cu) values. The �(cl, cu)
matrix are then bilinearly interpolated and are plotted as an
�(cl, cu) distribution map overlaid with contour lines shown
in Figure 4a. Note that the horizontal coordinate represents

� � µ 10 # log10
G2

1
N�N0

a
N

n�1
(y(n)�x(n))2

 if N Z N0

0 if N � N0.

the lower threshold Cl, while the vertical coordinate repre-
sents the upper threshold Cu.

Note in Figure 4a we have some abruptly skewed con-
tour lines exhibited as rows or columns of strips distributed
on the �(cl, cu) distribution map, which are respectively
labeled as 1, 2, 3 for up-down strips, and a, b, c for left-right
strips. To look closer to these specific strips, the �(cl, cu) are
recalculated with 0.01 cl, cu’s sampling interval, and cl’s
values ranging from [0.05, 0.2], cu’s values ranging from
[0.1, 0.3]. Figure 4b is the resulting fine detailed �(cl, cu) dis-
tribution map. We can still find the up-down and left-right
stripes in this figure.

This result could be interpreted from two aspects. First,
since our algorithm is developed based on the iterative
estimation of the normalized local window statistics, any
exception beyond an ordinary neighborhood statistics will
be detected and treated as noise factors, in which this
feature will not be influenced by the absolute pixel values;
Second, due to the globally clustered characteristic of noises
in the SEAWIFS image, equally changed (Cl, Cu) values will
not surely result in equal quantity of noise being detected.
Therefore, those strip locations could be normally explained
as where the most impulse noise have been removed and
implied, where the impulse noise clustered. Accordingly,
the crosses between those up-down strips and the left-right
strips are where the most black and white impulses are
removed. If we set the (Cl, Cu) values to lower-left corner at
these crosses, we can have more impulse noises removed
and with less amount of ordinary pixels misclassified as
noises, preserving the image content with little influence.

To accurately locate the optimized thresholds, we apply
a Cl and Cu partial differential and second order differential
(Laplacian Operator) (Castleman, 1996) to �(cl, cu) and
overlay it with contour lines shown in Figure 4a and 4b.
The Laplacian transform equation is given by Equation 14:

(14)

which corresponds to the 3 � 3 convolution operator p(cl,
cu) in Equation 15:

. (15)

The results are illustrated in Figure 5a–f.
In Figure 5a and 5b we can see that, the up-down strips

in Figure 4a and 4b are shown as densely clustered, nearly
straight up-down contour lines; the left-right strips in Fig-
ure 4c and 4d are also shown as densely clustered, nearly
straight left-right contour lines in Figure 5c and 5d. Those
crosses shown in Figure 4a and 4b are exhibited as points
with contour lines clustered and interlaced together in Figure
5e and 5f. Those lower-left points close to these points are
the possible point candidates for optimized thresholds, as we
have marked out in Figure 5f. Careful evaluation confirms
that when (Cl, Cu) is set to (0.125, 0.275) for this scene of the
Channel 2 image, best filtering results can be achieved.

Figure 6 shows the full image size processing result
using the optimized threshold pair acquired from subset
training image. It provides a good solution to remove the
impulse noises from the image while preserving the texture
and edge information of image, as well as, keeping the
digital number of the undisturbed pixels without or only
with a little change.

p(cl,cu) �  £
0 �1 0

�1  4 �1
0 �1 0

§


 �(cl, cu 
 1) 
 �(cl,cu�1)]

�2�

�cl2 

�2�

�cu2 � 4�(cl,cu)�[�(cl 
 1, cu) 
 �(cl�1,cu)
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Figure 4. �(cl, cu) distribution map overlaid with contour
lines (Unit: dB). (a) Sampling interval: 0.05, range:
[0, 0.5]. (b) Sampling interval: 0.01, range: cl is [0.05,
0.2], cu is [0.1, 0.3].
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Conclusion
In this paper, a non-linear, adaptive filter to remove impulse
noises from the remote sensed image has been presented.
The key point of the algorithm is to sort the pixel values, to
compute the sequences of standard deviations and means,
and then, to utilize the normalized differences between two
successive standard deviation/mean ratios. Noise detection

is achieved by thresholding these differences. Noise suppres-
sion is achieved by replacing the pixel value with the rank-
ordered mean. The algorithm has been tested on simulated
data and a real SEAWIFS image so that its creditability is
established. By considering the generalized impulse noise
model discussed in the paper, we analyzed the quantitative
relationship between the noise removal performance and the
threshold parameters. Finally, the strategy for retrieval of the
optimized thresholds has also been presented for non-
recursive implementation. These gains can be observed in
terms of both the visual examination and the quantitative
assessment of the restored images.
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