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Abstract Mapping rice cropping systems with optical
imagery in multiple cropping regions is challenging due to
cloud contamination and data availability; development of
a phenology-based algorithm with a reduced data demand
is essential. In this study, the Landsat-derived Renorma-
lized Index of Normalized Difference Vegetation Index
(RNDVI) was proposed based on two temporal windows
in which the NDVI values of single and early (or late) rice
display inverse changes, and then applied to discriminate
rice cropping systems. The Poyang Lake Region (PLR),
characterized by a typical cropping system of single
cropping rice (SCR, or single rice) and double cropping
rice (DCR, including early rice and late rice), was selected
as a testing area. The results showed that NDVI data
derived from Landsat time-series at eight to sixteen days
captures the temporal development of paddy rice. There
are two key phenological stages during the overlapping
growth period in which the NDVI values of SCR and DCR
change inversely, namely the ripening phase of early rice
and the growing phase of single rice as well as the ripening
stage of single rice and the growing stage of late rice.
NDVI derived from scenes in two temporal windows,
specifically early August and early October, was used to
construct the RNDVI for discriminating rice cropping
systems in the polder area of the PLR, China. Comparison
with ground truth data indicates high classification
accuracy. The RNDVI approach highlights the inverse
variations of NDVI values due to the difference of rice
growth between two temporal windows. This makes the
discrimination of rice cropping systems straightforward as
it only needs to distinguish whether the candidate rice type

is in the period of growth (RNDVI< 0) or senescence
(RNDVI> 0).

Keywords Normalized Difference Vegetation Index
(NDVI), Renormalized Index of NDVI (RNDVI), rice
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1 Introduction

Paddy rice is one of the three most important crops in
China, accounting for nearly 35% of the total sown area of
cereal crops in 2010 (National Bureau of Statistics of
China, 2010). Over 95% of the rice area is located in
southern China, the Middle-lower Yangtze River Plain, the
Sichuan Basin, and northern China (Xiong et al., 2009). As
China is undergoing rapid land use changes due to
urbanization, a large amount of farmland has recently
been transformed (Chen, 2007), and favorable agricultural
policies have heavily impacted household-based rice
cropping patterns (Li et al., 2012). Information on the
distribution of paddy rice cultivation is essential for field
management and yield estimation (Thenkabail, 2003),
optimal water resource utilization (Bouman and Tuong,
2001), and greenhouse gas emission monitoring (Li et al.,
2005).
Remote sensing has been used to discriminate rice

cropping systems for decades; and the launch of the
Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument in 1999 spurred a considerable
number of publications (Xiao et al., 2005; Sakamoto et
al., 2006; Xiao et al., 2006; Sakamoto et al., 2009a). Time-
series of MODIS vegetation/water indices (e.g., Normal-
ized Difference Vegetation Index, NDVI; Enhanced
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Vegetation Index, EVI; and Land Surface Water Index,
LSWI) are commonly utilized in rice cropping systems
classification and hold considerable potential for large-
scale monitoring (Xiao et al., 2005, 2006). However, a
major issue for temporal profiles of vegetation indices
derived from satellite images with moderate to coarse
spatial resolution is the mixed-pixel effect that prevents
accuracy (Sakamoto et al., 2005, 2009b; Xiao et al., 2005,
2006; Wardlow et al., 2007; Peng et al., 2011). This may
well explain why most to-date MODIS time-series analysis
has been conducted primarily in northern China, pre-
dominantly large flat plains with simple cropping patterns
(Zhang et al., 2008). In southern China, cultivated land
plots are small and fragmentized, and the pattern of
cropping systems is complex (double to triple annually).
The agricultural management practice founded in house-
hold units tends to change rice planting patterns year by
year. Therefore, time-series analysis of MODIS and other
sensors of coarse spatial resolution to classify cropping
patterns are limited in this region. Synthetic aperture radar
(SAR) data (e.g., European Remote Sensing Satellite and
ENVISAT) can also be utilized in regional rice cropping
systems delineation, and has great potential in subtropical
and tropical areas due to its all-weather observation
capability, as in the Mekong River Delta (Liew et al.,
1998; Bouvet et al., 2009). However, the cost and
inaccessibility of SAR data limits extensive investigations.
Another important optical data option is Landsat

imagery. The historical images have been underutilized
in mapping multi-year cropping patterns (Bastiaanssen et
al., 2000; Martínez-Casasnovas et al., 2005). Indeed,
Landsat Thematic Mapper (TM) and Enhanced Thematic
Mapper plus (ETM+) data cannot meet the demand of finer
spatial and temporal resolution simultaneously, and,
moreover, overcast and rainy weather during the summer
season in southern China usually yields only a few cloud-
free Landsat images for a given region per year.
Accordingly, only a few studies on rice cropping systems
monitoring with Landsat imagery are reported. In these
studies however, scientists combined certain images
acquired during critical temporal windows showing
distinct and unique spectral features with a local crop
calendar to monitor cropping patterns (Van Niel and
McVicar, 2004; Gusso and Ducati, 2012). It is expected
that the freely available historical multi-decadal Landsat
data will provide more data opportunities to carry out crops
growth monitoring (Hansen and Loveland, 2012).
Rice cropping systems range from single- to triple-

cultivation each year along the latitudinal gradient from
north to south in China. Multiple rice cropping systems
mapping in southern China is more complex than mono-
culture rice system mapping in northern China. In a
previous study, a single-date Landsat image was used to
discriminate single- and double-cropping rice in the
Poyang Lake Region (PLR) with a threshold method (Li
et al., 2012). Landsat time-series analysis alone, however,

cannot discriminate rice cropping systems due to the limit
of imagery availability. In this paper, a phenology-based
algorithm, the Renormalized Landsat-derived NDVI
(RNDVI) was proposed based on two temporal windows
in which the NDVI values of single and early (or late) rice
changed inversely, and was then applied to map rice
cropping systems in the PLR. The objective of this study is
twofold: (i) to assess the potential of the RNDVI approach
derived from Landsat imagery in discriminating rice
cropping systems at the regional scale; and (ii) to compare
the performance of the RNDVI and threshold methods. If
feasible, the RNDVI approach can be applicable in other
regions with double to triple rice cropping systems.

2 Materials and methods

2.1 Study area

Located in northern Jiangxi Province and the central
Yangtze River Basin, Poyang Lake is the largest freshwater
lake in China. It collects water from five major rivers (the
Ganjiang, Fuhe, Xinjiang, Raohe, and Xiushui) in Jiangxi
Province, and then flows into the Yangtze River through
the outlet in Hukou County (Fig. 1). Throughout the year,
the natural water surface area of Poyang Lake changes
tremendously due to the fluctuations of water level,
varying from approximately 3,500 km2 in the summer
season to about 600 km2 in the winter season (Li, 2012).
This unique hydrological phenomenon profoundly effects
agricultural production in the PLR. The PLR is one of the
major rice production areas in China and covers twelve
counties or districts around the lake (Fig. 1) with a total
paddy field area of 6,147 km2 (Li et al., 2012). According
to the Jiangxi Statistical Yearbook from 2002 to 2010
(http://chinadataonline.org/), the sown area of rice
accounts for more than 90% of the total sown area of all
crops and the output of rice makes up over 95% of the total
output of grain in the PLR.
There are two characteristic rice planting systems in the

PLR each year, namely double cropping rice (DCR) and
single cropping rice (SCR). DCR consists of early rice and
late rice that are sequentially cultivated in the same paddy
field. It generally begins with sowing in late March, and
harvest in mid-late July for early rice, and then late rice
seedlings transplantation in late July (sometimes in early
August) and harvest in late October. SCR is often called
single rice (or middle rice) locally. Sowing begins in late
May, and harvesting ends in early October. Many factors
may influence farmers’ preferences of rice cropping
practices year by year, including agriculture policies,
market price, labor force, and irrigation conditions. In a
previous study we found that the favorable agriculture
policies enacted since 2004 have directly motivated
farmers to plant more DCR in this region (Li et al., 2012).
For any given paddy field, the cultivation of SCR and
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DCR is spatially independent. The calendar of annual rice
growing systems in the PLR (Fig. 2) was established with a
time interval of ten days according to the agro-meteor-
ological datasets (Li et al., 2012). However, the actual rice
calendar may be advanced or postponed for a few days due
to meteorological factors like flood and drought. The
temporal development of paddy fields can be characterized
by three main periods: 1) the land preparation, flooding,
and seedlings transplantation period; 2) the growing period
(vegetative, reproductive, and ripening phases); and 3) the
fallow period after harvest (Le Toan et al., 1997).
According to the International Rice Research Institute,
the vegetative phase starts at germination, continues
through seedling, transplanting, tillering, and ends at
stem elongation. The reproductive phase begins at panicle
initiation and heading, and ends at flowering. The ripening

phase covers the milk grain, dough grain, and maturity
grain stages.
In the past, land reclamation via levee building has been

the major way to increase farmland from lake area
(Shankman and Liang, 2003). The levee system protects
about 55% of fertile rice fields from floods in the PLR (Li,
2012) (Fig. 1). The polder area is mainly distributed along
the lake and river delta areas with an elevation of less than
30 m. Paddy fields in the polder area are generally flat and
concentrated. A levee map of Poyang Lake (Fig. 1) was
visually interpreted and digitalized based on the Levee
Atlas of Jiangxi Province (Jiangxi Province Department of
Water Resources, 1999), field surveys, and one ETM+
scene (Table 1). In this paper, the polder area in the PLR
was used as an experimental area to test the potential for
rice cropping systems discrimination with the RNDVI.

Fig. 1 Location of the study area showing the distribution of the Poyang Lake and polder area in the PLR. Note that the area between the
two parallel black solid lines is the middle part of Landsat-7 ETM+ scene (path/row, 121/40), approximately 22 kilometers wide. This area
is also known as Scan Line Corrector (SLC) on image without data gaps.
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2.2 Landsat images and pre-processing

Three Landsat path/row scenes cover the polder area of the
PLR: 121/40, 121/39, and 122/40. Multi-temporal TM/
ETM+ images (30 m, 18 scenes in total, see Table 1) from
2010 were acquired. Among them, three TM images (No.
4, No. 8, and No. 14 in Table 1) were gathered from the
Center for Earth Observation and Digital Earth (CEODE),
Chinese Academy of Sciences (CAS) (http://ids.ceode.ac.
cn/), and the other 15 scenes were available from the
Global Visualization Viewer (GloVis) of USGS (http://
glovis.usgs.gov/). Image to image registrations for the
three TM scenes were conducted with the Root Mean
Square Error (RMS error) to less than a half pixel (15 m).
Images obtained from USGSGloVis are standard level-one
terrain-corrected (L1T) products. They have undergone
systematic radiometric and geometric corrections and
overall geometric fidelity with ground control points and
a digital elevation model ensured (NASA Goddard Space
Flight Center, 2011). In 2003, the Scan Line Corrector
(SLC) mechanism on-board Landsat 7 permanently failed.
Therefore, for the ETM+ SLC-off images used for rice
cropping systems classification, multi-image adaptive local
regression proposed by the International Scientific Data
Service Platform, Computer Network Information Center,
CAS (http://datamirror.csdb.cn) was applied to fill in gaps
to improve data usability. This method generally used 1‒2

images (same path/row) acquired during a similar time
frame in adjacent years.
Cloud contamination is another issue during the rice

growing season, obscuring paddy fields and leading to
underestimation of the corresponding NDVI. All cloud
contaminated observation sites were excluded from further
analysis. Furthermore, each Landsat image (121/40) was
atmospherically corrected using the Fast Line-of-sight
Atmospheric Analysis of Spectral Hypercubes (FLAASH)
algorithm (Adler-Golden et al., 1999) in the Environment
for Visualizing Images (ENVI, Version 4.7) software to
obtain surface reflectance for NDVI calculation. FLAASH
incorporates the Moderate Resolution Transmission
(MODTRAN) 4 radiative transfer code. In this study,
model parameters describing the mid-latitude summer- and
winter-atmosphere and rural aerosols together with 2-band
(K‒T) aerosols retrieval were utilized in FLAASH.
NDVI is a useful indicator of plant growth condition

(Tucker, 1979), and is calculated as a normalized ratio
between Red and Near-infrared (NIR) bands:

NDVI ¼ ð�NIR – �RedÞ=ð�NIR þ �RedÞ, (1)

where �NIR and �Red stand for the surface reflectance
measurements of NIR and Red bands, respectively,
which in turn correspond to the fourth and third bands of
Landsat TM/ETM+ images. The values of NDVI range
from minus one (‒1.0) to plus one (+ 1.0), and negative

Fig. 2 Rice growth calendar at ten-day intervals in the PLR. There is a time interleaving between early- and late-rice from late June to
late July. That is because local farmers normally leave several rice fields which are about ten percent of the total area of double cropping
rice annually for raising seedlings of late rice. Late rice will be transplanted right after the harvesting of early rice, with the time difference
less than three days. (DOY, day of year).
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values typically correspond to open water and positive
values (over 0.05) represent the amount of green vegeta-
tion present (Myneni et al., 1997).

2.3 Establishment of Renormalized Index of NDVI
(RNDVI)

Beginning on September 18, 2010, an 8-day ground survey
of different rice cropping systems (late rice and single rice)
was conducted across the PLR (Fig. 1). Handheld global
positioning system (GPS) receivers (Trimble Juno-SB)
were used to collect each site’s geographical location
information (latitude, longitude, and elevation). 148 GPS
points of rice field were recorded: 57 for single rice and 91
for late rice. To ensure the validity of these GPS points, all
of the observed paddy sites were located within cropland-
dominated areas. The linear distance between any two GPS
points was at least 1.0 km. However, about 15%‒25% of
the GPS records coincided with SLC-off gaps for each
ETM+ scene. The gaps are noticeable along the edge of
each scene and gradually diminish towards the scene
center. Furthermore, the precise locations of the missing
scan areas vary from scene to scene. It therefore is
impossible to construct temporal profiles of NDVI with
those GPS points. That said, eight sample points (four for
single rice and late rice each) located in the gap-free region
were used to delineate the temporal dynamics of rice
growth at the field level (Fig. 1).
NDVI values of DCR exhibited a bimodal distribution,

while those of SCR displayed a unimodal distribution
(Fig. 3). During the rice growth periods, high NDVI values
were approximately 0.80‒0.90 in the panicle initiation to
heading stage, while low NDVI values were around 0‒0.20
during the flooding/transplanting stage. Before the sowing
of early rice (February to early March), paddy fields were
primarily covered by shallow water or exposed soils. The
corresponding NDVI values were generally below 0.40
and occasionally negative due to waterlogging in the rice

fields. This phenomenon is more common for SCR than
DCR. In fact, the waterlogging issue is one reason for
cultivating a single rice crop per year. After transplanting,
the NDVI values increase rapidly and then reach a plateau
during the period of panicle initiation to heading. As rice
plants develop into the ripening phase, i.e., milk, dough,
yellow-ripe, and mature stages, their leaves gradually turn
from green to a yellowish golden color due to a decrease in
chlorophyll pigmentation. Correspondingly, NDVI values
decline during the rice ripening stage and then drop
significantly just after harvesting. The post-harvest paddy
fields were mainly composed of residual rice plants and
exposed soils. The corresponding NDVI values generally
varied from 0.20‒0.40.

Land cover of rice fields for any given rice type (early,
single, and late rice) cycle through shallow water (0.10‒

Table 1 List of Landsat TM/ETM+ images of 2010 used in this study. Note that No. 13 and No. 14 refer to the scenes of P/R 121/39 and 122/40 and

other 16 time-series scenes are from 121/40

No. Date Cloud cover/% Sensor Usage No. Date Cloud cover/% Sensor Usage

1 01/14/2010 0 TM a 10 08/18/2010 3 ETM+ a, d

2 02/23/2010 0 ETM+ a 11 09/19/2010 5 ETM+ a, d

3 03/11/2010 0 ETM+ a 12 10/05/2010 0 ETM+ a, b, c, d, e

4 03/19/2010 0 TM a 13 10/05/2010 0 ETM+ b, c

5 04/28/2010 13 ETM+ a 14 10/04/2010 0 TM b, c

6 05/30/2010 34 ETM+ a, d 15 10/21/2010 39 ETM+ a, d

7 06/15/2010 43 ETM+ a, d 16 11/06/2010 0 ETM+ a

8 07/25/2010 1.3 TM a 17 11/22/2010 24 ETM+ a

9 08/02/2010 3 ETM+ a, d, e 18 12/08/2010 0 ETM+ a

In the column of “Usage”, a = calculating NDVI; b = interpreting the levee map in the PLR; c = interpreting paddy field map in the PLR; d = choosing training samples
for single- and double-cropping rice fields; e = developing the RNDVI algorithm.

Fig. 3 Temporal dynamics of NDVI curves constructed with
typical paddy fields sampling sites in the PLR. Note that the
negative NDVI values imply the corresponding paddy fields which
were caused by waterlogging from January to early March.
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0.15 m depth), growing rice plants, and exposed soils
phases during the entire growth period. Generally, there is
one high value (for growing rice plants) and two low
values (for shallow water or exposed soils) in the NDVI
curve for each season of paddy rice (Li et al., 2012).
Temporal profiles of NDVI differ significantly between
rice cropping systems during a given temporal window.
Based on the NDVI variations of different cropping rice,
several time windows were determined (Li et al., 2012).
The RNDVI was created using the principle similar to that
of the NDVI equation with two NDVI values of SCR and
DCR (early rice or late rice) within two temporal windows
in which the NDVIs showed inverse changes. The formula
of the RNDVI is defined as follows:

RNDVI¼ðjNDVIt1j–jNDVIt2jÞ=ðjNDVIt1jþjNDVIt2jÞ, (2)

where t1 and t2 refer to the acquisition date of each scene
in which the derivative NDVI values of single rice (field)
and early or late rice (field) should change inversely.
NDVIt1 and NDVIt2 are the NDVI values calculated from
two Landsat images acquired during two different
temporal windows with Eq. (1). Similarly, the value
range of the RNDVI varies from ‒1.0 to+1.0. Negative
RNDVI values indicate that the NDVIs of the candidate
rice type increased from t1 to t2, thus identifying a growing
period while positive RNDVI values show that the NDVIs
of the other candidate rice type decreased from t1 to t2, i.e.,
a senescencing period.
It is important to note that NDVI temporal dynamics of

SCR and DCR show noticeable differences from May to
October, an overlapping growth period. As displayed in
Fig. 3, the high NDVI values of early, single, and late rice
appear in June, August, and September, respectively, while
the low values of corresponding rice types appear in late
April to early May, late June to early July, and late July to
early August, respectively. From the perspective of
individual rice plants’ growth process, they all undergo a
growth period as the NDVI values increase from zero to
peak values, and a senescence period as the NDVI values
decrease to low values. It is interesting to note that NDVI
values of SCR and DCR show exactly the opposite trend
between early June and October. Therefore, for early/late
rice and single rice, it was easy to find two critical temporal
windows with corresponding opposite values of NDVIs for
the RNDVI calculation.

2.4 Classification of rice cropping systems with RNDVI

In subtropical regions, it is difficult to collect good-quality
time-series Landsat images due to cloud coverage. Two
major approaches were distinguished based on whether
single-date or multi-temporal images would be used. As
single rice and early (or late) rice have a time interval of
over a month (Fig. 2), there are two temporal windows in
which the NDVI values of the two types of rice are inverses

of each other. The first window is the period when early
rice is in its senescencing stage while single rice is just in
the growing stage. The second is the period when single
rice is in the senescencing stage while late rice is in the
growing stage. Thus, the RNDVI was proposed to
discriminate SCR and DCR based on whether the
candidate rice type is in a stage of growth (RNDVI< 0)
or senescence (RNDVI> 0) between two observations. In
this paper, time-series temporal profiles of NDVI at the
field level served as indicators for describing the physical
properties of the paddy rice system. A paddy rice calendar
was used to select temporal windows for constructing the
RNDVI according to acquired Landsat images. The paddy
field map served as a mask to avoid interference from other
land cover types. Two images (acquired on August 2 and
October 5, 2010) were utilized to calculate the RNDVI for
the rice cropping map (Fig. 4).

A paddy field distribution map from 2010 was used as a
base map for rice cropping systems classification. The base
map was visually interpreted with three cloud-free Landsat
TM/ETM+ images (Table 1) and updated based on the
paddy field map of the 2000 National Land Cover Dataset
developed by the Chinese Academy of Sciences. The
paddy field map of 2000 was also interpreted from Landsat
imagery with a validated accuracy over 90% (Liu et al.,
2005). Since the polder area in the PLR is flat and low (less
than 30 m above sea level), visual interpretation ensured a
high accuracy (over 95%) of rice paddy distribution.

2.5 Accuracy assessment and comparison

The accuracy assessment of classification results for SCR
and DCR identified using the RNDVI approach was

Fig. 4 The flowchart for mapping rice cropping system
using the RNDVI derived from Landsat images in the PLR.
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evaluated with ground truth points of paddy rice collected
in 2010 and regions of interest (ROI) of single- and late-
rice generated based on phenological rice features. A
unique physical feature of paddy fields is that the
corresponding land-cover cycles through exposed soils,
shallow water, and rice plants annually. Remotely sensed
observations captured these phenological and physiologi-
cal changes. Based on this physical feature, 225 ROI
polygons (37,923 pixels) were generated to carry out
accuracy assessments using a confusion matrix. These
polygons were chosen from seven ETM+ images (Table 1)
and followed three basic rules. First, the ROI polygons
were distributed in farmland. Second, they were not
affected by cloud or cloud shadow and SLC failure. Third,
and most importantly, the ROIs of single rice fields are
covered by shallow water or exposed soils or a mixture for
two images (acquired on May 30 and June 15, 2010), and
covered by rice plants for the other two images (August 2
and August 18, 2010). For those of double rice, fields are
covered by shallow water or exposed soils or a mixture for
one image (August 2), and covered by rice plants for the
other five images (May 30, June 15, September 19,
October 5, and October 21).
In addition, in a previous study, a threshold method of

NDVI derived from one single-date image acquired on
October 5 was used to delineate rice cropping systems in
the PLR in 2010. This study highlighted the phenological
and physiological differences between single rice and late
rice in a critical temporal window (Fig. 2). However,
subjective threshold determination tends to affect classifi-
cation results. Besides, much work will be done to
determine the thresholds when this approach introduced
to other areas. The RNDVI approach proposed in this
study is also a phenology-based algorithm that focuses on
the phenological and physiological changes in different
rice cropping systems within two time windows. The
RNDVI approach is viewed as a developed version of the
threshold method. In this paper, we also compared the
performance of the two methods.

3 Results

3.1 Mapping rice cropping systems and accuracy
assessment

Theoretically, any two time windows with reversed NDVI
values for single rice and early (or late) rice would be
suitable for the RNDVI formula. For example, we could
use the images on June 15 and August 2 (or 18), 2010 to
calculate the RNDVI to differentiate early rice from single
rice and utilize the images on August 2 (or 18) and October
5 (or September 19), 2010 to compute the RNDVI to
distinguish single rice from late rice. However, the images
(June 15, August 18, and September 19, 2010) are partially

cloud-contaminated. The image on October 21, 2010 also
cannot be used for RNDVI computation because some late
rice plants were in the harvesting stage during late October.
In this study, NDVI data from the two Landsat ETM+
images (path/row, 121/40) taken on August 2 and October
5, 2010, were used to establish the RNDVI. From early
August to early October, late rice plants grow rapidly from
green-up after the transplanting stage to the milk grain
stage with increased NDVI values, while single rice plants
undergo a transition from the stem elongation stage to post-
harvest stage with decreased NDVI values. The positive
RNDVI values represented single rice, or SCR, whereas
the negative RNDVI values stood for late rice, viz. DCR.
The paddy field area in the polder area of the PLR was
about 3,366 km2, of which 99.5% was covered by one
scene (path/row, 121/40). We used just the polder area of
the PLR covered by the 121/40 scene as the experimental
area. The classification results showed that the area of SCR
and DCR were 508 km2 and 2,842 km2, respectively.
Figures 5(a) displays the spatial pattern of SCR and DCR
in the polder area of the PLR in 2010. Spatially, DCR was
the dominant planting pattern, while SCR was mainly
located in the lower reach of Xiushui River.
There were 69 observation sites for late rice and only six

observation sites for single rice located in the polder area.
The classification accuracies of late rice and single rice
were 97% and 83%, respectively. The accuracy assessment
for DCR is encouraging. However, that of SCR may not be
convincing due to the limited GPS sampling sites in the
polder area. Meanwhile, the resultant maps of SCR and
DCR were assessed using a confusion matrix based on
ROIs (37,923 pixels) for validation (Table 2). The overall
accuracy was 98.9% with the Kappa coefficient of 0.976.
Besides, accuracy assessment was conducted for the
classification results derived from the threshold method
with the same ground truth data (Table 3), and its results
showed that the RNDVI approach performed much better
than the threshold method in discriminating rice cropping
systems.

3.2 Comparison with the classification results derived from
threshold method

In our previous study, a single-date Landsat scene was used
to discriminate SCR and DCR with a threshold method.
This method may be subjective when determining the
threshold values. The RNDVI approach, which uses two
dates to capture phenological and physiological change
information, is a more developed version of the threshold
method that only uses single date. The results of this study
were compared with that derived from the threshold
method in our previous study (Li et al., 2012) at the farm
and landscape scales. According to the fieldwork, the green
areas within the peony pink ellipse in Fig. 6(a) and the sage
green to gray areas within the peony pink ellipse in
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Fig. 6(b) were all single rice fields in 2010. However, the
results obtained from the RNDVI (Fig. 6(c)) were closer to
the actual situation than those from the threshold method
(Fig. 6(d)). At the landscape scale, the classification results
Fig. 5(b) were derived from one ETM+ image (path/row
121/40, October 5, 2010) with the threshold method. The

major reason for using this single scene to distinguish SCR
from DCR was the obvious difference in growth stages. It
was taken in the period of harvesting or post-harvest for
single rice and the milk grain stage for late rice. Therefore,
paddy fields with an NDVI between 0.55 and 1.0 were
classified as DCR, while paddy fields with positive NDVI

Table 2 Accuracy assessment of the classification map of SCR and DCR based on the RNDVI approach in this study

Class
Ground truth samples (pixels)

Total classified pixels Producer accuracy
Single rice Double rice

Classified results Single rice 13,505 425 13,930 96.9%

Double rice 0 23,993 23,993 100%

Total ground truth pixel 13,505 24,418 37,923

User accuracy 100% 98.3%

Overall accuracy is 98.9%; Kappa coefficient is 0.976.

Fig. 5 Spatial pattern of different rice cropping systems derived from the RNDVI approach (a) and threshold method (b) with Landsat-7
ETM+ images in 2010 in the polder area of the PLR. The water bodies in blue color were extracted from the Landsat-7 ETM+ scene
acquired on October 5, 2010.

Table 3 Accuracy assessment of the classification map of SCR and DCR based on the threshold method in a previous study

Class
Ground truth samples (pixels)

Total classified pixels Producer accuracy
Single rice Double rice

Classified results Single rice 7,937 5,993 13,930 57.0%

Double rice 0 23,993 23,993 100%

Total ground truth pixel 7,937 29,986 37,923

User accuracy 100% 80.0%

Overall accuracy is 84.2%; Kappa coefficient is 0.697.
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less than 0.54 were classified as SCR. Correspondingly, the
areas of SCR and DCR were 726 km2 and 2,611 km2,
respectively. Compared with the results derived from the
RNDVI, the area of SCR was overestimated while the area
of DCR was underestimated.

4 Discussion

In this study, a phenology-based algorithm, the Renorma-
lized Index of NDVI (RNDVI) was proposed and applied
to map rice cropping systems by using temporal change in
NDVI based on rice phenology. In 2010, the PLR was

predominately cultivated by DCR, implying a very high
intensity of rice planting for a traditional single and double
rice cropping area. This can be illustrated by the multiple-
cropping index (MCI), which is the ratio of total area with
planted and harvested crops to the total cultivated area per
year. The MCI is an important indicator for measuring
cropping intensity (Panigrahy et al., 2011). The rice
cropping index, however, was already up to 184.8% in
the polder area of the PLR in 2010, and the potential of
enhancing rice production in the polder area of the PLR by
increasing the MCI is limited.
Compared with the threshold method, which involves

subjective judgements in determining thresholds, the

Fig. 6 Difference of paddy rice (fields) imaging in the Kangshan Flood Storage Diversion Area in Yugan County during two temporal
windows in 2010. Note that the capital letter S refers to single cropping rice, while D stands for double cropping rice. Figure 6(a): single
rice is in the panicle initiation to heading stage and late rice is in the transplanting stage. Figure 6(b): single rice is in the harvesting or post-
harvest stage and late rice is in the filling/milking stage. Figures 6(c) and 6(d) refer to the classification results obtained from the RNDVI
approach and threshold method, respectively.
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RNDVI approach performs better in discriminating rice
cropping systems. Rice production is household-based in
this study area, and farmers have to sow or transplant rice
within a given period. Nevertheless, the time gap of
sowing or transplanting for various paddies always exists.
For example, there are nearly 7-day variations between the
southern counties (e.g., Nanchang and Xinjian) and the
northern county (Hukou) or district (i.e., Lushan), and
from the west to the east of the PLR, as well. Even in the
same county or district there may be about three days of
difference for a given growth stage. Year-to-year temporal
differences in rice planting in a certain locality may also
reach several days. These differences will be much larger
for the vast area of the middle and lower reaches of
Yangtze River Basin. It is therefore quite challenging to
determine threshold values. For a certain available image
during the growing season, the growth stages of early,
single, or late rice may not be completely identical. This
may yield discrepancies in NDVI within rice cropping
systems. For example, the NDVI of any given late rice field
entering into mature grain stage may be less than 0.55 and
thus may be falsely classified as single rice. By contrast,
the RNDVI approach highlights temporal change in NDVI
caused by rice’s phenological patterns, from land prepara-
tion, flooding for transplanting, tillering, heading to
harvesting. The RNDVI approach has clear scientific
merit and objectivity. For any two temporal windows, if
SCR (or DCR, e.g., early rice or late rice) is in the growing
period while the DCR (or single rice) is in the senescencing
period, the RNDVI approach can be used.
Three factors could affect rice cropping systems

mapping when using the RNDVI method within critical
temporal windows. The first factor is the limited data
availability due to the impact of frequent cloud cover in the
subtropical area. This problem is universal in the usage of
optical satellite data. However, in July and August of each
year, the PLR, as well as the middle and lower reaches of
Yangtze River Basin, are often under the control of the
subtropical high pressure belt, which usually leads to hot
and dry weather. During September and October, the
region typically has little precipitation. This allows the
acquisition of cloud free or little cloud coverage images
from June to October. According to USGS GloVis and
CEODE, there are 45 TM, ETM+, and Landsat-8
Operational Land Imager (OLI) scenes (path/row = 121/
40) with little cloud coverage (less than 10%) from 2009 to
2013. Among them, 23 scenes were acquired in June‒
October, 17 scenes in November‒March, and five scenes in
April and May.
The second factor is the data loss (22%) of ETM+

images due to the SLC-off failure since 2003. What is
worse, the precise locations of the missing scan lines vary
from scene to scene. Though there are some reports on
gap-filling methods, these methods can not completely
restore data to the original level, as they primarily utilize
existing images such as SLC-on and Landsat 5 to fill the

gap. Therefore, classification errors in rice cropping
systems mapping may be caused by filling the scan gap
with inaccurate data. Also, the Landsat 7 ETM+ SLC-off
problem may make some in situ field survey information
invalid. For example, 15%‒25% of total field sampling
sites collected in this study during mid-late September
were located in the SLC-off area of each image. One
should take the SLC-off issue into consideration prior to
conducting field surveys to avoid fruitless labor. However,
the currently optional Landsat-8 also provides routine
image acquisition that can avoid the SLC-off problem.
Finally, as paddy fields are small and usually mixed with

other land cover types in southern China, the mixed pixel
problem may be a challenge to rice cropping systems
mapping. The use of the paddy map as a mask may greatly
reduce misclassification, as the area of rice fields (over 0.1
ha) is generally larger than one pixel of Landsat image
(0.09 ha). Finer spatial resolution imagery for the land-use
interpretation (especially for rice paddies) will significantly
improve the reliability of intra-rice cropping systems
classification.
In subtropical and tropical Asia, where rice fields are

widely distributed (Thenkabail et al., 2005), using
MODIS-derived vegetation indices to map paddy rice
leads to underestimation of the area of paddy fields due to
the small patch size (Xiao et al., 2005, 2006). This study
further proves that finer spatial resolution images would
provide more information on the regional cropping pattern
(Martínez-Casasnovas et al., 2005; Chen et al., 2011). The
RNDVI derived from Landsat imagery during critical
temporal windows could greatly reduce the data require-
ments for mapping cropping patterns compared with the
time series method. Therefore, this approach will be of
great practical use in other double rice cropping areas, e.g.,
the middle and lower Yangtze River Basin and triple rice
cropping regions like southern China and mainland
Southeast Asia.

5 Conclusions

Multiple rice cropping systems are widely practiced in
tropical and subtropical regions to enhance grain produc-
tion. However, accurate mapping of multiple cropping
systems is very important but usually difficult when using
optical remote sensing data due to weather conditions,
temporal and spatial resolutions, and data availability. Two
main approaches are generally categorized depending on
the utilization of single-date or time-series images. Single-
date discrimination is usually doubted due to the
subjectivity in determining the appropriate thresholds.
Time-series analysis with Landsat imagery is often heavily
restricted by data availability. In this study, a phenology-
based algorithm, the Renormalized Index of NDVI
(RNDVI), was proposed and applied to discriminate rice
cropping systems in the Poyang Lake Region. Although
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multiple images from 2010 were used to delineate the
temporal development of NDVI of different rice cropping
systems, the RNDVI was developed based on only two
temporal windows in which the NDVI values of SCR and
DCR displayed inverse change. The two time windows
refer to two distinct phenological phases: the senescencing
stage of early rice (DCR) and the growing stage of single
rice, and the senescencing stage of single rice and the
growing stage of late rice (DCR). Two dates (scenes)
which display different phenological information for
single- and late-rice were used to calculate the RNDVI
for mapping rice cropping systems in the polder area of the
PLR in southern China. Comparison with ground truth data
showed a high accuracy of 97% for late rice and 83% for
single rice. In addition, the confusion matrix that was based
on the random selection of validation pixels yielded an
overall classification accuracy of 98.9% and Kappa
coefficient of 0.976. The RNDVI approach performed
much better than the threshold method in discriminating
rice cropping systems. This study demonstrated that
Landsat imagery from critical temporal windows hold
the potential for discriminating rice cropping systems at a
regional scale.
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