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Changes in terrestrial tropical carbon stocks have an impor-
tant role in the global carbon budget. However, current 
observational tools do not allow accurate and large-scale 
monitoring of the spatial distribution and dynamics of carbon 
stocks1. Here, we used low-frequency L-band passive micro-
wave observations to compute a direct and spatially explicit 
quantification of annual aboveground carbon (AGC) fluxes 
and show that the tropical net AGC budget was approximately 
in balance during 2010 to 2017, the net budget being com-
posed of gross losses of −2.86 PgC yr−1 offset by gross gains 
of −2.97 PgC yr−1 between continents. Large interannual and 
spatial fluctuations of tropical AGC were quantified during 
the wet 2011 La Niña year and throughout the extreme dry 
and warm 2015–2016 El Niño episode. These interannual fluc-
tuations, controlled predominantly by semiarid biomes, were 
shown to be closely related to independent global atmospheric 
CO2 growth-rate anomalies (Pearson’s r = 0.86), highlighting 
the pivotal role of tropical AGC in the global carbon budget.

Tropical terrestrial biomes contribute to the interannual variabil-
ity of the global terrestrial carbon balance, which in turn is essen-
tial to changes in the global atmospheric CO2 concentration1. Thus, 
accurate monitoring of temporal and spatial changes in carbon 
stocks across the tropics is key for better predicting the evolution 
of atmospheric CO2 over the coming century. However, at present 
no method exists for spatially explicit quantification of the tropical 
land sinks and sources1. Current observational tools are impeded 
by signal saturation in dense forests2 and sparse spatial or temporal 
sampling3, thus the spatial distribution and trends of carbon sources 
and sinks across the tropics remain poorly resolved1.

Results from top-down atmospheric inversions that are consis-
tent with vertical CO2 profiles4 indicate that the long-term tropical 
net CO2 flux is close to zero, but there are too few in situ surface CO2 
stations to distinguish carbon sinks from tropical forest regrowth 
and carbon sources from deforestation. Bottom-up approaches using 
ground forest inventory and satellite data suggest that tropical defor-
estation represents large emissions 0.57–1.3 PgC yr–1 (refs. 5–7). A 
more diffuse carbon sink is observed in undisturbed and regrowing 
forests8, but a decline of the forest carbon sink in the Amazon9 and 
a strong reduction of this sink during extreme EI Niño events have 

also been reported10. However, forest inventory data are also scarce 
in the tropics1 and semiarid woody biomes are critically under-sam-
pled, even though they cover 40% of the tropical land area11.

The interannual variability of carbon fluxes from tropical land 
to the atmosphere is also coupled with climatic conditions, and the 
increased frequency of drought events is a threat to tropical forest 
biomes12. Major droughts in 2005, 2010 and 2015–2016 represent 
a testing ground for understanding how the frequency of extreme 
climatic events may affect the carbon balance in future. Recent stud-
ies suggest that the tropics switched to acting as a net source during 
the 2015–2016 EI Niño13–15, findings that are supported by model 
simulations16. However, observations of the spatial distribution of 
this major flux anomaly are still unavailable, limiting the attribution 
of the EI Niño anomaly to specific tropical continents and biomes1.

Remote sensing is poised to advance the mapping of vegetation 
structure and quantify the stocks and changes of aboveground car-
bon (AGC) in vegetation3,5,17. Although static maps of AGC have 
been produced from remote sensing3,5,18,19, these maps generally dif-
fer in terms of both magnitude and spatial patterns and are avail-
able for only a single epoch, and therefore cannot be used to assess 
interannual variations in carbon stocks17.

Vegetation optical depth (VOD), retrieved from passive micro-
wave satellite observations and related to the water content of vegeta-
tion mass20–22, offers possibilities for monitoring AGC dynamics15,23,24 
because of its key features: frequent observations that provide daily 
tropical coverage and independence of the effects of atmospheric and 
cloud contamination23. The new VOD product used in this study, 
hereafter L-VOD, has recently been produced using low-frequency 
(L-band, 1.4 GHz) microwave observations from the Soil Moisture 
and Ocean Salinity (SMOS) satellite25,26. The radiometer onboard 
the SMOS satellite has superior sensitivity to carbon density than 
previous higher-frequency passive microwave VOD products and is 
able to retrieve the overall AGC stocks even in dense tropical eco-
systems15,27,28. By contrast, high-frequency VOD products29 saturate 
in vegetation with carbon stocks higher than 100 MgC ha−1 (ref. 23).

Here, we used L-VOD to derive spatially explicit representations 
of changes in AGC (Methods) during 2010–2017 across the pantrop-
ics (consisting of tropical America, Africa and Asia between 23.45° 
N and 23.45° S, excluding Australia), which are known to have a 
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pivotal role in the global terrestrial carbon sink1. The L-VOD data-
set enabled us to gain insights into the dynamics of tropical AGC 
and the covariation with climate, anthropogenic forest cover distur-
bances and changes in the global atmospheric CO2 concentration.

During 2010–2017, tropical AGC change represented a small 
net increase of +0.11 [+0.08,+0.13] PgC yr−1 (the range represents 
the minimum and maximum of AGC changes estimated by ten 
calibrations; a positive value indicates net accumulation (sink) of 
carbon in aboveground biomes; Fig. 1a). This net carbon budget is 
composed of gross losses of −2.86 [−2.31, −3.05] PgC yr−1 offset by 
gross gains of +2.97 [+2.41, +3.15] PgC yr−1 estimated at the spatial 
resolution of the SMOS grid (25 × 25 km). Tropical Asia was a net 
mean sink of +0.12 [+0.09, +0.13] PgC yr−1 (Fig. 1g) and tropi-
cal Africa and South America were almost neutral with a flux of 
−0.03 [−0.04, −0.02] PgC yr−1 (Fig. 1c) and +0.02 [−0.02, +0.05] 

PgC yr−1 (Fig. 1e), respectively. Carbon stocks increased slightly in 
woodland, shrubland and savannah regions, particularly in tropical 
Africa, whereas changes in forest, grassland and cropland were close 
to zero (Fig. 1b).

Over the study period, AGC peaked in 2011 in response to the 
strong La Niña event and decreased subsequently over the tropics 
(Fig. 1a). Strong La Niña conditions prevailed from late 2010 to 
early 201230 (Fig. 1a), resulting in a transient increase of tropical 
AGC of +2.36 [+1.97,+2.57] PgC, mainly from tropical America 
(+1.34 [+1.13,+1.61] PgC; Fig. 1e) and Asia (+0.75 [+0.61,+0.84] 
PgC; Fig. 1g). In tropical America, the peak of AGC in 2011 is 
mainly observed in forests and shrublands or savannahs and sug-
gests recovery of vegetation following the 2010 drought (Fig. 1a), 
mainly driven by a wet climatic anomaly (Supplementary Fig. 13a 
and Supplementary Text 6).
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Fig. 1 | Temporal variations in annual AGC in the tropics (continents and biomes), expressed as the difference from 2010 values. a,c,e,g, Annual 
variations in AGC in the tropics (a; n = 51,395) and in the tropical regions of Africa (c; n = 25,058), America (e; n = 19,777) and Asia (g; n = 6,560), 
respectively. b,d,f,h, Corresponding changes in AGC are shown for three biomes (forest; shrubland, woodland and savannah; grassland and cropland) in 
the tropics (b) and in the tropical regions of Africa (d), America (f) and Asia (h), respectively. The ranges represented by shading around the line show the 
minimum and maximum of AGC changes estimated by ten calibrations (Supplementary Table 1). The background shading shows the intensity of La Niña 
(blue) and El Niño (red) events defined by MEI.
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A strong El Niño event developed in mid-2015 and persisted 
until mid-2016 (Fig. 1a)13. This event caused a drop of tropi-
cal AGC of −0.95 [−1.00, −0.76] PgC in 2015—of which −0.74 
[−0.86, −0.62] PgC was in Africa (Fig. 1c) and −0.20 [−0.26, −0.1]  
PgC was in America (Fig. 1e)—which was attributed mainly to 
extremely dry and warm climatic conditions (Supplementary  
Fig. 13a and Supplementary Text 6). The 2015 loss in Africa  
occurred in all biomes, with the largest losses in woodland, shru-
bland and savannah regions. By contrast, carbon losses and gains 
were evenly balanced in tropical Asia in 2015. Of note, AGC losses 
continued in 2016, with a biomass loss of −0.65 [−0.82, −0.38] 
PgC, mostly in Asia (−0.35 [−0.50, −0.26] PgC) followed by Africa 
(−0.19 [−0.22, −0.15] PgC) and America (−0.12 [−0.3, +0.11] 
PgC), in response to more severe anomalies in both surface soil 
moisture and land surface temperature in 2016 compared with 2015 
(Supplementary Fig. 13a and Supplementary Text 6). Combining 
the two years 2015 and 2016 together, the average AGC carbon 
losses (−0.80 [−0.59, −0.96] PgC yr−1) are in the range of the net 

land–atmosphere abnormal CO2 source simulated by land surface 
models (−1.1 [−2.5, +0.1] PgC yr−1)16.

Pixels with more than 5% forest losses (covering 16% of the 
tropics) as identified by Hansen et al.31 (Methods), displayed a net 
carbon loss of −0.09 [−0.14, −0.07] PgC yr−1 in the aboveground 
vegetation compartment for 2010–2017 (Supplementary Table 2). 
Net carbon losses due to deforestation were offset by a net carbon 
uptake of +0.20 [+0.14, +0.24] PgC yr−1 across pixels with less 
than 5% deforestation. This sink was found mainly in tropical Asia 
(+0.10 [+0.06, +0.13] PgC yr−1) and America (+0.09 [+0.06, +0.12] 
PgC yr−1). Trends for 2010–2017 showed carbon losses in the arc of 
deforestation of southern Amazonia, in the Democratic Republic of 
Congo and in Indonesia (Fig. 2a,b). The carbon uptake was found 
in the Central African Republic and in the northernmost regions of 
tropical Asia and Central America (Fig. 2a,b).

We defined gross carbon losses as accumulated yearly losses, 
excluding regrowth years. Overall, gross carbon loss from areas of 
deforestation (forest losses >5%) was −0.78 [−0.61, −1.04] PgC yr−1  
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Fig. 2 | Spatial patterns and trends in tropical carbon changes. a–e, Yearly net changes (a), trends (b), gross gains (c) and gross losses (d) in AGC, and 
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calculated by cumulating negative changes in AGC for consecutive years from 2010 to 2017.
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(Supplementary Table 2 and Supplementary Fig. 1b). Areas with 
high gross carbon loss (Fig. 2d) matched well with areas where 
tropical forest cover decreased (Fig. 2e) in the dataset of Hansen 
et al.31 (Methods) (as an illustration, results obtained over a defores-
tation and an afforestation site are shown in Supplementary Fig. 2). 
Carbon gains in Central America, southern and northern regions 
of tropical America, Central African Republic and in the northern-
most regions of tropical Asia and India reflect high recovery rates 
(Fig. 2c) offsetting carbon losses (Fig. 2d) leading to an overall net 
carbon storage in these regions (Fig. 2a). The spatial patterns of the 
areas showing carbon sinks agree well with greening regions as eval-
uated by Chen et al.32 (Supplementary Fig. 3). In parallel, a spatial 
agreement between regions showing browning trends and carbon 
losses was found in eastern tropical Africa and the tropical rainfor-
ests of Madagascar.

There is an ongoing debate about the role of humid versus semi-
arid tropical biomes in controlling the global atmospheric CO2 
growth rate (CGR)33,34. We found a strong association between 
yearly de-trended global atmospheric CGR measured from the 
National Oceanic and Atmospheric Administration Earth System 
Research Laboratory35 and annual tropical AGC fluxes as inferred 
above (r = 0.86, P = 0.03, n = 7; Fig. 3a), supporting previous find-
ings36–38 that tropical biomes dominate the interannual variability in 
atmospheric CGR. Carbon losses of biomass (−1.6 [−1.82, −1.14] 
PgC) during the severe 2015–2016 El Niño accounted for 90% of the 
anomaly in atmospheric CGR (1.7 PgC).

We evaluated the contribution of different biomes to the inter-
annual variability of AGC by separating tropical forests39, semiarid 
biomes (shrubland, woodland and savannah), cropland and grass-
lands. The contribution of semiarid biomes accounts for the largest 
fraction of the interannual variability of tropical AGC fluxes (55.5%), 
with a smaller contribution of forests (36.6%), and croplands and 
grasslands (7.9%) (Fig. 3b), suggesting that semiarid ecosystems 
are among the most important components of the interannual vari-
ability in the tropical AGC30. Interannual variability in the tropi-
cal AGC fluxes is determined predominantly by semiarid biomes 
from tropical America and Africa and by forests from tropical 
Africa and Asia. Likewise, the positive covariation (+0.19 PgC yr−1  
(ref. 2); Supplementary Table 3) of AGC fluxes from tropical for-
ests and semiarid biomes suggests that both biomes act in phase to  
control interannual variability in AGC.

The L-VOD satellite dataset provides insights into recent spatial 
changes of the carbon cycle in the tropics in relation to defores-
tation and tropical extreme climatic events. The dataset was used 
to quantify both AGC losses in the tropics during the 2010 and 
2015–2016 El Niño events and the subsequent recoveries in 2011 
and 2017. In sum, the results show a neutral contribution of the 
tropics to the global carbon budget between 2010 and 2017. L-VOD 
revealed that the recovery in 2017 was weaker than in 2011, which 
could be partly attributed to the warm climatic conditions in 2017 
(Supplementary Fig. 13), which negatively impacted the terres-
trial carbon uptake38,40. Using 2011 as a reference for comparison13, 
our estimations of AGC losses caused by the 2015–2016 El Niño 
were generally lower than estimates from the Orbiting Carbon 
Observatory (OCO-2)13 (which include soil carbon, aboveground 
biomass and river CO2 fluxes) over tropical America (−1.41 versus 
−1.60 PgC for OCO-2), Africa (−0.40 versus −0.70 PgC for OCO-2)  
and Asia (−0.13 versus −1.00 PgC for OCO-2). This difference 
could be partly attributed to the fact that our estimations of AGC 
do not account for ecosystem respiration rate16 and peat fires41, 
which, especially in tropical Asia, are associated with large carbon 
losses from soils42,43.

Furthermore, we were able to quantify AGC losses from areas 
of deforestation, which were fully compensated by carbon uptakes 
by undisturbed forests over the entire tropics. The L-VOD based 
estimation of emissions from deforestation (0.78 PgC yr−1) matches 
closely with previous estimations (for example, 0.81 PgC yr−1 
obtained by Harris et  al.6 between 2000 and 2005), suggesting  
that the flux from gross tropical deforestation have remained 
within 0.6–0.8 PgC yr−1 since the early 2000s44,45. Moreover, we 
estimated AGC losses from processes other than deforestation to 
be 2.08 PgC yr−1, caused by natural disturbances, climate-induced 
mortality and forest degradation, including selective removals 
from within forested stands (not currently included in deforesta-
tion estimates based on optical satellite data44). This suggests that 
processes other than deforestation are responsible for about twice 
the amount of carbon release from deforestation; however, there are 
large regional variations17,46. In addition, some of the losses in car-
bon may be caused by the reduction of AGC following the extreme 
La Niña (return to normal conditions)47 and subsequent El Niño.

We further showed that non-deforested regions act as a carbon 
sink, which is supported by measurements from forest inventory 
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plots48–50. The increasing AGC trend over intact, non-disturbed for-
ests may be attributed to a CO2 fertilization effect on tree growth, 
consistent with no strong signal from widespread disturbance recov-
ery51 in forest plots and with model-based attribution of the recent 
greening trend over the tropics52. The carbon sink of the Sahel and 
South Africa are primarily driven by increasing precipitation52,53, 
whereas human land-use management may be a dominant driver 
of carbon sink in India and northern tropical Asia32. Here, L-VOD 
data resolve the spatial distribution of this uptake over the whole 
tropics, showing that the net sink density in non-deforested regions 
was rather low between 2010 and 2017 (+0.05 MgC ha−1 yr−1). This 
low carbon accumulation rate could be partly explained by a long-
term increase in mortality rates10 and the recent El Niño events54. 
This result is in contrast to the high carbon accumulation ([+1.33, 
+3.05] MgC ha−1 yr−1) that was estimated from individual field 
plots across Amazonian secondary and managed forests48,55. The 
disagreement could also stem from the fact that the coarse spatial 
resolution of L-VOD (25 × 25 km) merges all aboveground biomes 
including disturbed forests and non-forest ecosystems, which have 
lower rates of gain than secondary and managed forests17. While 
carbon changes in both deforested and non-deforested areas are 
expected, our estimates are admittedly conservative as a result of the 
coarse spatial resolution of the L-VOD data, which averages gross 
carbon sources and sinks at scales smaller than 25 km. Gross gain 
and loss could thus be larger at higher spatial resolution.

AGC fluxes estimated from L-VOD, which are independent from 
process-based models, are consistent with the phase and amplitude 
of global CO2 growth-rate anomalies. This suggests that litter and 
soil carbon fluxes have a smaller variability than AGC fluxes, and 
highlights that changes in the tropical AGC balance dominate 
changes in the global carbon balance. The observed spatial pat-
terns of the contribution of terrestrial ecosystems to the total tropi-
cal interannual variability in AGC fluxes (Supplementary Fig. 4)  
agreed with model results39. This supports the model-based find-
ings that semiarid biomes can have profound impacts on the inter-
annual variability of the global carbon cycle30. From observational 
data we revealed spatial patterns over recent years showing: (1) the 
main positive contributions are found in the eastern and northern 
regions of the Amazon basin, southeastern regions of Africa, and 
Asia; (2) the main regions with negative contributions are found 
in forested regions in tropical America (for instance, in the arc of 
deforestation in the Amazon basin), and non-forested regions (for 
example, semiarid biomes and croplands and grasslands) in tropical 
Africa. These negative contributions could be mainly attributed to 
both human activities (for example, deforestation and high popula-
tion growth)56 and the different sensitivities of biomes to climate 
variations among regions39.

The L-VOD data provide direct and spatially explicit remote-
sensing information that scales up to annual tropical AGC anoma-
lies. This product overcomes several of the limitations of current 
tools used to estimate the tropical land sink. The coarse resolution 
(25 × 25 km) of L-VOD limits its applicability for detailed regional 
analysis, but is not a limitation for addressing the critical role of 
the terrestrial land sink on changing atmospheric characteristics. 
On the basis of L-VOD, a direct observational estimate of the pan-
tropical carbon sink could be clearly related, in terms of correlation 
and magnitude, to the observed CGR in recent years. The results 
show the applicability of L-VOD for monitoring, in near-real time, 
spatiotemporal changes in AGC to reveal hotspot areas of changes 
due to human activity (deforestation) and climate variability (such 
as El Niño/Southern Oscillation) at large scale. The data and results 
shown here hold promise for data-informed process-based Earth-
system models to better predict the future of land carbon sinks, and 
to further reconcile divergent estimates of carbon sources and sinks 
derived from modelling approaches (bottom-up5–7 as well as top-
down54) and observational systems17.

Methods
The L-VOD index used in this study is sensitive to the total vegetation water 
content (VWC, Mg ha−1)28. The relationship between L-VOD and VWC is 
nearly linear25,57. L-VOD for woody vegetation is mainly sensitive to the water 
content of stems and branches, so the effects of leaves can be neglected in the 
first order28. Moreover, a specificity of SMOS is its multiangular capability, 
which enables a robust decoupling of the effects of soil moisture and vegetation 
opacity (parameterized by L-VOD)28. This capability arises from the design of the 
synthetic-aperture imaging antenna of the SMOS L-band microwave radiometer 
and is exploited in the SMOS-IC algorithm, which is based on the original SMOS 
algorithm58 as defined for the European Space Agency Earth Explorer mission call. 
The principle of the algorithm is to retrieve simultaneously both soil moisture and 
L-VOD for ‘rich’ SMOS observational configurations (for example, when a large 
range of multiangular observations is available) and to benefit from the slow time 
variations of L-VOD for ‘poor’ SMOS observational configurations (for example, 
when a narrow range of multiangular observations is available). The high accuracy 
of both the SMOS-IC soil moisture and L-VOD products have been evaluated in 
several recent studies15,16,27,28,59.

We assumed that the yearly average of the per cent moisture content of 
stems and branches for woody vegetation at the spatial scale of the SMOS grid 
(25 × 25 km) was relatively constant between years, so that the yearly average of 
vegetation water content and dry biomass would be strongly correlated over time. 
This assumption is supported by several studies reporting the strong relationship 
between L-VOD and biomass for woody vegetation being almost linear and 
independent of the year of calculation15,27. The yearly average of L-VOD, on the 
basis of its strong link to vegetation water content, can thus be considered as a 
robust proxy of biomass. Other remotely sensed estimates or proxies of biomass 
have been used to estimate the annual changes in AGC at continental scales, 
such as LiDAR estimates of canopy height3,5, high-frequency VOD23 or radar 
backscattering3. Radar backscattering was strongly sensitive to forest structure, 
but its relationship to biomass is highly nonlinear at L-band19. The computation of 
L-VOD in the SMOS-IC version is independent of the use of these indexes, making 
it a new and complementary tool for monitoring AGC.

L-VOD is more closely related to AGC density (coefficient of determination, 
r2 = 0.81–0.86) compared with high-frequency VOD products at C-, X- and 
K-band23 (C/X/K-VOD; r2 = 0.53–0.63) and enhanced vegetation index (EVI) 
(r2 = 0.42–0.65) over the tropics (Supplementary Fig. 5), which is in line with 
previous findings over Africa15,27. The relationship between AGC and C/X/K-VOD 
(Supplementary Fig. 5b, e, h and k) has a similar shape to that of AGC versus 
L-VOD (Supplementary Fig. 5a, d, g and j) but C/X/K-VOD shows a stronger 
saturation at high AGC values relatively to L-VOD. EVI shows some sensitivity to 
AGC for low AGC values (with a low slope) but clear saturation effects are found 
for medium or high AGC values (Supplementary Fig. 5c,f,i,l).

AGC was first retrieved from the L-VOD product on the basis of an empirical 
calibration of the spatial relationships linking L-VOD to reference AGC gridded 
datasets, as in Brandt et al.15. The reference AGC datasets were obtained from 
static benchmark maps (corresponding to average values over a few years). 
Assuming that a good calibration can be achieved, the SMOS L-VOD product adds 
a temporal dimension to static maps provided that a ‘space for time’ substitution 
holds true15. Annual changes in AGC are quantified as explained below and 
compared with several vegetation and climatic variables to analyse the response of 
AGC to deforestation and recent climatic events.

As an illustration of the ability of L-VOD to capture deforestation, degradation 
and forest regrowth events, comparisons have been made using forest dynamics 
information resolved with higher spatial resolution (Landsat and Moderate 
Resolution Imaging Spectroradiometer (MODIS)-based information). Large 
forest area losses caused by mining can be observed between December 2009 and 
December 2016 in Landsat imagery (Supplementary Fig. 2a,b) as well as from the 
MOD100 forest area dataset (Supplementary Fig. 2c). The estimates of the AGC 
changes retrieved from L-VOD (Supplementary Fig. 2c) are strongly correlated 
with MODIS-derived forest area (r = 0.94, P < 0.01, n = 8). Similarly, the  
high sensitivity of AGC to changes in forest area was also found in a  
region with afforestation and forest regrowth (Supplementary Fig. 2d–f, r = 0.94, 
P < 0.01, n = 8).

Benchmark maps of AGC density. Brandt et al.15 used the maps produced by 
Baccini et al.5 to calibrate the L-VOD–AGC relationship for Africa. Here we used 
four static AGC benchmark maps (Supplementary Fig. 7a–d and Supplementary 
Text 2) to calibrate L-VOD and retrieve AGC to reduce the dependence of 
our results on the accuracy of a single biomass map. These maps include three 
pantropical maps published by Saatchi et al.3, Avitabile et al.18 and Baccini et al.5, 
hereafter referred to as the ‘Saatchi’, ‘Avitabile’ and ‘Baccini’ maps, respectively. The 
Saatchi map used in the present study is an updated version that represents AGC 
circa 20153,60. A fourth map covering only Africa was produced by extending the 
dataset by Bouvet et al.19 to higher AGC values using the dataset by Mermoz et al.61, 
described by Rodriguez-Fernandez et al.27, hereafter referred to as the ‘Bouvet–
Mermoz’ map. The original units of aboveground biomass density (Mg ha−1) were 
converted to AGC density (MgC ha−1) by multiplying the original values by a factor 
of 0.5 (ref. 5). All AGC maps were aggregated to 25 km spatial resolution to match 
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the spatial resolution of the SMOS data by averaging AGC pixels within the  
SMOS-grid cells.

SMOS-IC soil moisture, L-VOD and the retrieved AGC products. Changes 
in AGC were estimated from the L-VOD product using SMOS datasets in the 
SMOS-IC version. The SMOS-IC product26 provides data for global daily L-VOD 
and soil moisture data from the descending and ascending orbits covering the 
period from 12 January 2010 to 31 December 2017 at a spatial resolution of 25 km 
(Supplementary Table 4 and Supplementary Fig. 7f). The SMOS-IC L-VOD and 
soil moisture data were retrieved simultaneously from a two-parameter inversion 
of the L-band microwave emission of the biosphere (L-MEB) model from the 
multiangular and dual-polarized SMOS observations62. In the newly developed 
SMOS-IC algorithm, L-VOD and soil moisture are retrieved without external 
vegetation or hydrologic products as inputs in the L-MEB inversion model. L-VOD 
retrievals thus depend only on temperature fields from the European Centre for 
Medium-Range Weather Forecasts for calculating the effective surface temperature, 
and are independent of any vegetation index, unlike previous VOD products  
from SMOS63.

The root mean square (r.m.s.) error between the measured and simulated 
brightness temperature (referred to as r.m.s. error-TB) associated with the 
SMOS-IC product was used to filter out observations affected by radio frequency 
interference (RFI), which perturbs the natural microwave emission from the 
Earth surface measured by passive microwave systems64,65. We excluded daily 
observations, influenced by RFI effects, for which r.m.s. error-TB was larger 
than 8 K (ref. 15). Robust estimates of annual L-VOD and soil moisture were then 
obtained as the medians of all high-quality ascending and descending retrievals 
with more than 30 valid observations per year (Supplementary Text 3). This 
filtering left a large fraction of the original SMOS pixels available for the analysis 
in tropical America (85.2%), Africa (86.6%) and Asia (68.5%). Relative to tropical 
America and Africa, many regions in tropical Asia were more affected by RFI 
effects, especially for ascending orbits.

The yearly L-VOD data were ranked from low to high on the basis of VOD 
values and were pooled into bins of 250 grid cells. The mean of the corresponding 
AGC distribution in the reference map was calculated for each L-VOD bin, 
obtaining an AGC curve as a function of L-VOD15. The curve was fitted using the 
four-parameter function23:

AGC ¼ a ´
arctan b ´ VOD� cð Þð Þ � arctanð�b ´ cÞ
arctan b ´ Inf � cð Þð Þ � arctan �b ´ cð ÞÞ þ d ð1Þ

where a, b, c and d are four best-fit parameters, Inf was set to 1010 and VOD is the 
yearly L-VOD data. The yearly L-VOD data calculated for 2011 (Supplementary 
Fig. 7f) was used in equation (1), as described by Rodriguez-Fernandez et al.27, 
because 2011 was the first complete year after the SMOS commissioning phase.

We converted the yearly L-VOD map into maps of yearly AGC density  
(MgC ha−1) for 2010–2017 using equation (1). Regional AGC stocks were obtained 
by multiplying the AGC density by the area of the corresponding L-VOD pixels.

AGC benchmark maps contain uncertainties and bias, and none can be 
considered reliable, as outlined above. We used all the different maps to fit 
equation (1) for tropical America, tropical Africa and the entire tropical region, 
separately. Benchmark maps in tropical Asia were not used in this calibration 
process due to the limited number of SMOS observations in the region. Ten 
calibrations of equation (1) were thereby obtained (Supplementary Table 1). We 
used all ten calibrations to create ten maps of AGC stocks. We used the median 
of these ten maps to calculate yearly tropical AGC maps during 2010–2017. The 
minima and maxima were also reported, because they provide estimates for the 
uncertainty of retrieved AGC estimates used in this study that relate to systematic 
errors in the reference biomass maps. A description of the computation of the 
uncertainties associated with the AGC estimates is given in the following section  
(a detailed description is provided in Supplementary Text 5).

Uncertainties associated with the AGC product. It is difficult to use independent 
datasets to validate the L-VOD-derived AGC estimates, as most reference biomass 
datasets are based on the same ICESat/GLAS LiDAR (Geoscience Laser Altimeter 
System instrument aboard the NASA Ice, Cloud and land Elevation satellite) 
dataset for areas of relatively high vegetation biomass.

We used a bootstrap and cross-validation approach to evaluate the ‘internal’ 
uncertainties (corresponding to sampling and calibration errors) associated 
with the L-VOD-derived AGC estimates. To account for ‘external’ uncertainties 
(uncertainties associated with the reference biomass maps) we used a very 
conservative approach in which the AGC estimates were derived as the median 
values of ten L-VOD derived AGC estimates. The ten estimates were computed 
from four reference biomass datasets (Baccini, Saatchi, Avitabile and Bouvet) 
calibrated against L-VOD over three different areas (the whole tropics, tropical 
Africa and tropical America). We used this subset of the Saatchi, Baccini and 
Avitabile datasets calibrated over three different areas and applied over the whole 
tropics in an attempt to account, in a realistic way, for the uncertainties associated 
with the parameters in equation (1). Then, the range (or spread) in the ten L-VOD 
derived AGC estimates was used as an indicator of the ‘external’ uncertainties 

associated with the AGC estimates. In a final step, we combined both external 
and internal uncertainties to obtain a more realistic estimate of the uncertainties 
associated with our calculation of AGC and AGC changes. A summary of the main 
conclusions of the analysis (Supplementary Text 5) is given below.

Based on a bootstrap cross-validation method, we found that internal errors 
(due to errors associated with sampling strategies and calibration errors) are almost 
negligible compared with external errors (due to uncertainties associated with the 
reference maps, and estimated here using a set of ten calibration functions).  
There is an order of magnitude between uncertainties arising from internal and 
external errors.

Considering combined internal and external errors, the relative uncertainties 
associated with the AGC stocks and changes in the AGC stocks over the tropics 
are on the order of 20–30%. Similar orders of magnitude were found at continental 
scales. We consider that this relative value is realistic, as it is based on a cross-
validation approach considering sampling errors and a large set of ten different 
calibration functions.

As internal errors are almost an order of magnitude lower than external 
errors, and to simplify the computations of uncertainties, only external errors are 
considered in this study to compute uncertainties associated with the AGC stocks 
and AGC changes herein.

Additional uncertainties in the AGC product. The coarse spatial resolution 
of the AGC product failed to separate pixel-scale carbon gains and losses due 
to deforestation, regeneration, livestock pressure, conservation, fires and other 
events15. Moreover, the period of analysis covering two extreme climatic events 
(the 2011 La Niña and the 2010 and 2015–2016 El Niños) corresponding to strong 
carbon sinks and losses, increased the uncertainty in the trend analysis of the 
carbon changes in Fig. 2b. The main results of this study, however, do not rely on 
trend analysis but on spatial and temporal changes in carbon stocks. Open water 
bodies can affect the retrievals of L-VOD and soil moisture data29,66, although 
SMOS-IC pixels in which the sum of the water fractions is greater than 10% have 
been filtered out using quality control flags provided by the SMOS-IC products27.

Vegetation and climatic products. The types of vegetation cover in the present 
study included forest, shrubland, savannah, grassland, cropland and a mosaic of 
cropland and natural vegetation, which were identified using a 25 km International 
Geosphere–Biosphere Programme (IGBP) land-cover classification map67 
(Supplementary Fig. 6). The 25 km IGBP map was produced by aggregating the 
500 m MODIS IGBP product into a 25 km resolution by dominant class within 
each SMOS L-VOD grid-resolution cell (Supplementary Text 1). Tropical semiarid 
biomes include shrubland, woodland and savannah regions based on the 25 km 
IGBP map39.

We used the ‘yearloss’ forest area loss map31 to calculate forest-loss rates. Forest 
loss was defined as a stand-replacement disturbance, or a change from a forest to 
a non-forest state31,68. Each 30 m pixel in the yearloss Landsat data was labelled 
with a loss year representing the loss of forest (defined as tree higher than 5 m) 
cover detected primarily during 2000–2017. Here, forest percentage loss rates 
during the study period 2010–2017 were calculated at the resolution of SMOS as 
the proportion of the summed areas of forest loss (detected by the yearloss map) 
within each SMOS-grid cell (~25 km) during 2010–2017.

The data used to compute trends in the annual average MODIS leaf-area index 
(LAI) (2010–2017) at a spatial resolution of 0.05° are provided by Chen et al.32, who 
used the Mann–Kendall test to calculate the LAI trends on the basis of the MODIS 
LAI product (MOD15A2H and MYD15A2H). Greening and browning are defined 
as statistically significant increases and decreases, respectively, in the annual 
average green leaf area for a given pixel over 2010–201732.

The MOD100 annual forest area product used in this study (spatial resolution 
of 500 m) was produced from information on canopy phenology from the analyses 
of EVI and a land surface-water index derived from the MOD09A1 product69. 
The MOD100 product is a recent product using all the observations in a year 
(dense time series) from MOD09A1, and has shown excellent performance when 
compared against the official Brazilian deforestation dataset (PRODES) and Global 
Forest Watch70.

We used the annual mean global CO2 growth-rate data for 2010–2017, based 
on globally averaged marine surface data, compiled and published by the National 
Oceanic and Atmospheric Administration Earth System Research Laboratory  
in Colorado.

Several vegetation and climate variables (Supplementary Table 4) were used to 
further investigate the response of AGC to climate events. These variables include: 
(1) the multivariate El Niño/Southern Oscillation index (MEI)71; (2) EVI from the 
MODIS vegetation index product (MOD13C2 Climate Modeling Grid)72, (3) land 
surface temperature from skin temperature data produced by European Centre  
for Medium-Range Weather Forecasts atmospheric reanalysis ERA-Interim73,  
(4) precipitation from datasets of the Tropical Rainfall Measuring Mission (TRMM 
3B43 v.7)74 and (5) terrestrial water storage (TWS) measured by the twin satellites 
of the gravity recovery and climate experiment (GRACE) providing the total 
relative water storage including groundwater, soil moisture, surface water, snow 
and water stored in the biosphere75,76. Monthly TWS was calculated as a simple 
arithmetic mean of three datasets, the monthly 1° GRACE TWS products released 
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by the Jet Propulsion Laboratory; the Centre for Space Research, University of 
Texas; and the German Research Centre for Geosciences; and was then aggregated 
to yearly TWS77.

EVI, precipitation and land surface temperature were aggregated to an annual 
composite at 25 km spatial resolution by averaging or bilinear interpolation from 
their original resolution to match the L-VOD grid.

Statistical metrics. We calculated two goodness-of-fit metrics between pairs 
of reference benchmark map and AGC map: r2 and the r.m.s. error (MgC ha−1). 
Trend estimates were calculated using linear regression slope. Linear correlation 
coefficients (Pearson’s r) were calculated to quantify the concurrent association 
between time series. The levels of statistical significance (P values) were estimated 
throughout this analysis, and the correlation coefficients r were considered to be 
statistically significant if the P values were less than 0.05.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The IGBP land-cover classification map, EVI, forest area loss map, GRACE data 
for terrestrial groundwater storage, precipitation data, skin temperature product, 
global CO2 growth-rate data, MEI and the Baccini and Avitabile biomass maps 
are publicly available. The SMOS-IC soil moisture dataset is available via Centre 
Aval de Traitement des Données SMOS at http://www.catds.fr/Products/Available-
products-from-CEC-SM/SMOS-IC. SMOS-IC L-VOD and AGC products, the 
Saatchi, Bouvet and Mermoz biomass maps are available from J.-P.W., S.S.S. 
(sasan.s.saatchi@jpl.nasa.gov), A. Bouvet (alexandre.bouvet@cesbio.cnes.fr) and  
S. Mermoz (stephane.mermoz@cesbio.cnes.fr) both at CESBIO, Toulouse, France), 
respectively, on request.
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Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 

issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), 
where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new 
dates are provided.
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Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.
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were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if 
released, say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or 
guidance was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic 
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study design 
questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and how 
these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
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Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of 
reads and whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone 
name, and lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and 
index files used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold 
enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a 
community repository, provide accession details.
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Plots
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All plots are contour plots with outliers or pseudocolor plots.
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Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples 
and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
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Imaging type(s) Specify: functional, structural, diffusion, perfusion.
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Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
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Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types 
used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.
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Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first 
and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).
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Statistic type for inference
(See Eklund et al. 2016)
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Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial 
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Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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