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Abstract: Quantifying the variability and changes in phenology and gross primary production (GPP)
of alpine wetlands in the Qinghai–Tibetan Plateau under climate change is essential for assessing
carbon (C) balance dynamics at regional and global scales. In this study, in situ eddy covariance (EC)
flux tower observations and remote sensing data were integrated with a modified, satellite-based
vegetation photosynthesis model (VPM) to investigate the variability in climate change, phenology,
and GPP of an alpine wetland ecosystem, located in Zoige, southwestern China. Two-year EC data
and remote sensing vegetation indices showed that warmer temperatures corresponded to an earlier
start date of the growing season, increased GPP, and ecosystem respiration, and hence increased
the C sink strength of the alpine wetlands. Twelve-year long-term simulations (2000–2011) showed
that: (1) there were significantly increasing trends for the mean annual enhanced vegetation index
(EVI), land surface water index (LSWI), and growing season GPP (R2 ě 0.59, p < 0.01) at rates of 0.002,
0.11 year´1 and 16.32 g¨C¨m´2¨year´1, respectively, which was in line with the observed warming
trend (R2 = 0.54, p = 0.006); (2) the start and end of the vegetation growing season (SOS and EOS)
experienced a continuous advancing trend at a rate of 1.61 days¨ year´1 and a delaying trend at a rate
of 1.57 days¨year´1 from 2000 to 2011 (p ď 0.04), respectively; and (3) with increasing temperature,
the advanced SOS and delayed EOS prolonged the wetland’s phenological and photosynthetically
active period and, thereby, increased wetland productivity by about 3.7–4.2 g¨C¨m´2¨year´1 per
day. Furthermore, our results indicated that warming and the extension of the growing season had
positive effects on carbon uptake in this alpine wetland ecosystem.

Keywords: climate change; phenology; VPM; gross primary production; Qinghai-Tibetan Plateau;
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1. Introduction

Wetlands only cover 3%–8% of the Earth’s land surface, but store 15%–30% of the world’s terrestrial
soil carbon [1,2], indicating that they play an important role in the global carbon (C) cycle and potentially
have a significant impact on global climate change [3–5]. Vegetation phenology is a fundamental
determinant affecting the processes of carbon, water, and energy exchange in wetland ecosystems [6,7].
Phenology determines the timing and duration of the photosynthetically active canopy and drives annual
carbon uptake in wetland ecosystems [8–10]. However, changes in the global and regional climate, such
as rising global mean temperatures and changing precipitation regimes [11–13], have significantly
affected wetland vegetation dynamics and carbon dynamics. Warming may stimulate plant phenological
development, increase nutrient mineralization rates, and lengthen the growing season, which in turn
may increase plant primary production and carbon sequestration [14,15]. Furthermore, warming can
accelerate biospheric metabolism, resulting in a greater release of greenhouse gases to the atmosphere,
which in turn reinforces anthropogenic warming [3,16]. Therefore, quantifying the relationships among
climate change, phenological variability, and vegetation production is crucial for investigating accurate
C budgets in alpine wetland ecosystems, especially in the context of global warming.

The largest highland wetland in the world, the Zoige alpine wetland, is situated at the eastern
edge of the Qinghai–Tibetan Plateau. Because of the high altitude, this wetland is highly sensitive to
climatic changes [14,17,18]. Continuously rising temperatures and declining precipitation characterize
climate change in this region [4,5]. These changes may have decreased soil moisture and accelerated
thawing of permafrost, causing wetland degradation and potentially increasing CO2 efflux to the
atmosphere. Climatic changes may also influence plant phenology, i.e., the timing of flowering
and other developmental stages. Shifts in plant phenology can affect the carbon cycle, water cycle,
and energy fluxes through photosynthesis and evapotranspiration, and potentially increase CO2

influx to the wetland ecosystem. Moreover, the changes in local climate may produce a positive
feedback, mediated by the greenhouse effect from increased CO2 emissions [5]. Therefore, to improve
our understanding of C balance dynamics in the Zoige alpine wetland, the effects of warming and
phenological variability should be studied simultaneously.

Over the past few decades, development of the eddy covariance (EC) method and satellite-based
models have greatly increased opportunities for exploring the potential effects of climate change and
vegetation phenology on C exchange between terrestrial ecosystems and the atmosphere. The EC
method can provide continuous measurements of ecosystem-level exchanges of carbon, water, and
energy fluxes [19,20], but such measurements have only been made at several research sites and
often over short time periods [21]. Remote sensing (RS) technology is an important tool in the
characterization of vegetation phenology [22,23] and estimation of gross primary production (GPP) [24].
It has become an effective tool to estimate either GPP or net primary production (NPP) at regional scales,
which can be compatible with the EC flux tower footprint [25,26]. Recently, a satellite-based, vegetation
photosynthesis model (VPM) developed by Xiao et al. simulated GPP based on the conceptual
partitioning of chlorophyll and non-photosynthetically active vegetation within the canopy. The VPM
model has been further developed and has the potential to scale up in situ observations of GPP from EC
flux tower sites across ecosystems [25,27–29]. However, performance of the VPM model in simulating
the long-term GPP of alpine wetland ecosystems and application to investigation of the relationships
among wetland phenology, vegetation production, and climate change is still unknown.

Therefore, the primary objectives of this study were to: (1) investigate the changes in GPP and
land surface phenology, as delineated by observed CO2 fluxes and vegetation indices during 2008–2009;
(2) examine the variability and changes in climate, vegetation phenology, and gross primary production
of an alpine wetland ecosystem; and (3) investigate the links between phenological events and wetland
carbon uptake. There are very few flux tower sites in alpine wetlands, and this evaluation does
highlight the limitations of in situ flux data and the need to evaluate production efficiency models,
including the VPM model. As such, this study will also improve our understanding of the mechanisms
underlying the current trends of vegetation phenology and carbon budgets observed in alpine wetlands
and further explore the potential of remote sensing for monitoring and investigating regional or global
C budgets.
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2. Materials and Methods

2.1. Site Description

Our study was carried out in an alpine wetland ecosystem of the National Wetland Natural
Reserve of Zoige, located at the northeast edge of the Qinghai–Tibetan Plateau (33˝55142”N,
102˝5214”E). The alpine wetlands of this region cover an area of 6180 km2, which is 31.5% of the whole
plateau of Zoige. The site has an average altitude of 3430 m above sea level (Figure 1). This region
belongs to the cold Qinghai–Tibetan climatic zone. The climate of this region is characterized by a
long period of frost (October to April) and a relatively short growing season (May to September).
The mean annual air temperature in 2008 was 1.5 ˝C lower than the long-term (1990–2009) mean
(1.6 ˝C); whereas the respective value in 2009 was 2.6 ˝C. The annual precipitation (rainfall and
snowfall) in 2008 and 2009 was 465 and 596 mm, respectively, which is lower than the long-term mean
(623 mm). There are two peaks of rainfall, in May and August. The air pressure is low, about 668.8 hPa,
due to its high altitude.

The height of plants is about 50–80 cm. The dominant vegetation at the dry hummocks is
composed of Kobresia tibetica, Cremanthodium pleurocaule, and Potentilla, accounting for approximately
45% of the site area. Carex muliensis (CM) and Eleocharis valleculosa (EV) are the two predominant plant
species; they are scattered in hollow areas and cover 90% of the remaining aquatic surface. The size
of CM and EV hollows is about 5 m2 on average, with 3 to 7 cm standing water. The size of dry
hummocks (DH) is about 0.8 m2 and their height is from 20 to 50 cm. At regional scale, hollows
account for a small part of the total area even in the growing season. In the non-growing season, both
CM and EV sites were covered with ice. The total aboveground and belowground biomass is 166–184
and 2104–2246 g¨m´2, respectively. The low temperature and large diurnal temperature variation
inhibit the decomposition of plant litter and soil organic matter and stimulate the deposition of peat [5].
The depth of peat in the Zoige alpine wetland ranges from 0.3 to 8.8 m. In all sites, the greatest root
density was found in the 0 to 20 cm soil depth. Below that layer there is a peat layer ranging from
50 to 80 cm in thickness. In the past several decades, artificial drainage for cultivation and peat mining
greatly modified the water table, the ratio of hollows to hummocks, and the vegetation composition,
leading to a potential change of GPP.
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Figure 1. Location of the study site in the Zoige alpine wetland, China.

2.2. Datasets

Site-specific CO2 flux and climate data measurements were conducted by the EC flux tower,
which was installed at a flat site in the alpine wetland in October 2007 to continuously measure
the net ecosystem CO2 exchange (NEE) between the vegetation and atmosphere. The footprint of
this flux tower is approximately 200–250 m. A three-axis sonic anemometer with a fast response
open path infrared CO2/H2O gas analyzer (IRGA, LI 7500, LI-COR Inc., Lincoln, NE, USA) was
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installed at a height of 2.2 m above ground level to measure the fluctuations in three wind components
(w, u, v) and CO2 fluxes. Data quality control was also implemented to reduce measurement-induced
uncertainties. Daily GPP and NEE data during 2008–2009 were then used to analyze the dynamics of
wetland phenology. The averaged eight-day GPP and climate data observed in 2008 and 2009 were
utilized to support model simulations and validate the results of the VPM model. The daily weather
dataset for the study site location was obtained from the climate database of the Zoige meteorological
station (2000–2007, 2010–2011). The meteorological station is located about 15 km from the EC tower.
More details on the instruments and the data quality control process are described in Hao et al. and
Kang et al. [3,29].

Site-specific vegetation indices were derived from MODIS datasets. We downloaded the eight-day
composite MOD09A1 datasets for the 2000–2011 period from the Oak Ridge National Laboratory’s
Distributed Active Archive Center (DAAC) website [30]. Then, reflectance values of four spectral
bands (blue (459–479 nm), red (620–670 nm), near infrared (NIR 841–876), and shortwave infrared
(SWIR1628–1652) over 2000–2011 were used to calculate three vegetation indices: normalized difference
vegetation index (NDVI), enhanced vegetation index (EVI), and land surface water index (LSWI) [27].

NDVI “
ρnir ´ ρred
ρnir ` ρred

(1)

EVI “ Gˆ
ρnir ´ ρred

ρnir ` pC1 ˆ ρred ´ C2 ˆ ρblueq ` L
(2)

LSWI “
ρnir ´ ρswir
ρnir ` ρswir

(3)

where G = 2.5, C1 = 6, C2 =7.5, L = 1, and ρnir, ρred, ρblue, and ρswir are the reflectance of NIR, red, blue,
and SWIR bands, respectively [23,27,29,31,32].

The three vegetation indices calculated from surface reflectance were affected by noise from
clouds and cloud shadows [23]. Therefore, we used a simple gap filling method to gap-fill vegetation
index values for which cloudy pixels existed in the time series [31]. Based on the two-step gap-filling
procedure reported in earlier studies [31], we first selected a three-point time-series filter (X(t ´ 1), X(t),
and X(t + 1)) and used values of non-cloudy pixels in this window to replace cloudy pixels. If both
the X(t ´ 1) and X(t + 1) pixels were reliable and X(t) was unreliable, the average value of X(t ´ 1)
and X(t + 1) was used to replace X(t). If only one pixel (either X(t ´ 1) or X(t + 1)) was cloud-free and
reliable and X(t) was unreliable, we used that pixel value to replace X(t). If the algorithm did not result
in a three-point time series filter, we then extended it to a five-point time series filter, X(t ´ 2), X(t ´ 1),
X(t), X(t + 1), X(t + 2), using the same procedure as the above three-point time series filter [31].

Earlier studies have indicated that time series of greenness-related GPP, vegetation indices (e.g.,
NDVI, EVI), and water-related vegetation indices (LSWI) can be used to identify the green-up
phase (from the beginning of leaf budding to the completion of full leaf expansion) and the
senescence/leaf-drop phase at the canopy level [31,33]. In this study, GPP, NDVI, EVI, and LSWI
threshold values (GPP ě 1 g¨C¨m´2¨day´1, NDVI ě 0.3, EVI ě 0.2, LSWI ě ´0.1) were used to
delineate vegetation phenology [25,26,34].

The above three vegetation indices calculated from the reflectance of spectral bands have been
proven to effectively monitor vegetation phenology. Furthermore, the time series of NDVI, EVI, and
LSWI provided valuable insight into the processes (e.g., growing season length and water condition)
that regulate ecosystem carbon exchange. Therefore, it is important to select these vegetation indices
and to evaluate their biophysical and phenological performance in wetland ecosystems for more
accurate GPP prediction.

2.3. The Satellite-Based Vegetation Photosynthesis Model

Based on the conceptual partitioning of chlorophyll and non-photosynthetically active vegetation
(NPV) within a canopy, Xiao et al. developed the vegetation photosynthesis model (VPM) for estimation
of GPP using the following function [27]:
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GPP “ εg ˆ FPARchl ˆ PAR (4)

where FPARchl is the fraction of PAR absorbed by chlorophyll in the canopy, εg is the light use efficiency
(µmol CO2/µmol photosynthetic photon flux density, PPFD), and PAR is the photosynthetically active
radiation (µmol PPFD). FPARchl and εg are estimated as follows [25,26,29]:

FPARchl “ αˆ EVI (5)

εg “ ε0 ˆ Tscalar ˆWscalar ˆ Pscalar (6)

Tscalar “
pT´ TminqpT´ Tmaxq

rpT´ TminqpT´ Tmaxqs ´ pT´ Toptq
2 (7)

Wscalar “
1` LSWI

1` LSWImax
(8)

Pscalar “
1` LSWI

2
(9)

where ε0 is the maximum light use efficiency (LUE) (µmol CO2/µmol PPFD), and Tscalar, Wscalar, and
Pscalar are the downregulation scalars for the effects of temperature, water, and leaf phenology on
LUE, respectively. Tmin, Tmax, and Topt are the minimum, maximum, and optimal temperature for
photosynthetic activities, respectively. LSWImax is the maximum LSWI (land surface water index) over
the study period.

In the VPM model, ε0 is estimated for each type of ecosystem individually. In order to obtain
the ε0 values for the alpine wetland, we estimated the nonlinear model between observed NEE and
PAR by using the Michaelis–Menten function (Equation (10)), based on data collected during the peak
period of vegetation growth in 2008 and 2009. Here, we used 0.53 µmol CO2/µmol PPFD as ε0 for
2008 and 2009:

NEE “
ε0 ˆ PARˆ GPPmax

ε0 ˆ PAR` GPPmax
´ Reco (10)

where the GPPmax (mg CO2 m´2¨ s´1) is the ecosystem maximum photosynthetic capacity and Reco

is ecosystem respiration. The estimated ε0 value is used as an estimate of the maximum light use
efficiency parameter in the VPM model.

In the calculation of Tscalar [27], Tmin, Topt, and Tmax values vary among vegetation types. For the
alpine wetland ecosystem in our study, when air temperature falls below Tmin, Tscalar is set to zero.
We used Tmin of 0 ˝C, Topt of 16 ˝C, and Tmax of 32 ˝C, based on the relationship between temperature
and photosynthesis over 2008–2009.

Estimation of site-specific LSWImax is dependent on the time series of remote sensing data. As a
parameter describing water status, LSWImax varies across years. The maximum LSWI value within
the plant-growing season was selected as an estimate of LSWImax [25,27,31]. Based on the analysis of
LSWI seasonal dynamics derived from MODIS image data from 2008 to 2009, the LSWImax value was
0.26 and 0.36 for 2008 and 2009, respectively.

More details on parameters and functions of the validated VPM model are described in
Kang et al. [29]. By running the VPM model at an eight-day time scale with the validated parameters,
vegetation indices derived from the eight-day MODIS surface reflectance product, and site-specific
data of air temperature and PAR during 2000–2011, we obtained the GPP data for each year.

2.4. Model Validation

The VPM model was run for the same two years to produce the corresponding GPP data.
The observed and modeled GPP results for both 2008 and 2009 were compared to check VPM’s
applicability for the Zoige alpine wetland. To analyze the correspondence between the simulated
and observed results, we adopted three statistical criteria for the validation tests: the coefficient of
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determination (R2), the root of mean square error (RMSE), and the relative mean deviation (RMD).
Each criterion investigates a specific aspect of the correlation.

Seasonal patterns of GPP from this ecosystem for the observed and VPM modeled outputs
were validated by Kang et al. [29]. Comparisons between the simulated and observed eight-day
GPP fluxes indicated that the VPM model captured the seasonal variations of observed GPP for the
simulated two years reasonably well. The model creditably captured the U pattern of the plant growth
driven by the temperature variation. In addition, the linear regression analysis of the modeled and
observed GPP showed a general clustering of the data along an approximate 1:1 line with a strong
correlation (R2 = 0.77, p < 0.0001). The RMSE and RMD values were 9.74% and ´10.67%, respectively.
In general, by comparing the modeling results with the observations, we gained confidence in the
applicability of the VPM model for this alpine wetland ecosystem. We then upscaled the VPM model
to examine the long-term variability and changes in climate, vegetation phenology, and gross primary
production for the Zoige alpine wetland over the 2000–2011 period. By running the VPM model for
this 12-year baseline climate scenario, we obtained seasonal and annual EVI, LSWI, GPP, and land
surface phenology dynamics for each year.

3. Results

3.1. Land Surface Phenology as Delineated by Observed CO2 Fluxes and Vegetation Indices

Table 1 summarizes the land surface phenology, i.e., the start and end dates of the growing
season (SOS and EOS), as delineated by the estimated GPP (GPPEC) data from the EC flux tower and
MODIS-based vegetation indices (NDVI, EVI, and LSWI). The leaf-on and leaf-off phases of the Zoige
wetlands delineated by seasonal GPP started in about April and October, respectively. Compared
with GPPEC, EVI and LSWI have the potential to more accurately identify the SOS and EOS in the
Zoige wetland. LSWI also appeared to offer a more accurate alternative approach to delineate the SOS
and EOS than EVI (Table 1). Furthermore, the land surface phenology defined by GPPEC and LSWI
indicated that the SOS in 2009 was eight days earlier than in 2008, which could be attributed to the
warmer and wetter climate conditions in 2009.

Table 1. Land surface phenology (the start and end dates of the growing season, SOS, and EOS) during
2008–2009 in the Zoige alpine wetland, as delineated by the estimated daily GPP (GPPEC) data from
the EC flux tower and MODIS-based eight-day vegetation indices (NDVI, EVI, and LSWI).

Year
Temperature

(˝C)

GPPEC ě 1
g¨C/m2/d NDVI ě 0.3 EVI ě 0.2 LSWI ě ´0.1

SOS EOS SOS EOS SOS EOS SOS EOS

2008 1.58 05/01 10/10 04/14 11/08 04/30 10/15 04/30 10/07
2009 2.55 04/22 10/15 04/15 11/09 04/23 10/16 04/23 10/16

3.2. Trends in Vegetation Indices and GPP

We detected significantly increasing trends, with rates of 0.002 and 0.11 year´1, for annual mean
EVI and LSWI, respectively, over the 2000–2011 period (Figure 2). The inter-annual variations in
averaged EVI, LSWI, and GPP within the plant growing season also showed similar significantly
increasing trends during the same period (R2 ě 0.42, p < 0.02), at rates of 0.004, 0.005 year´1, and
16.32 g¨C¨m´2¨year´1, respectively (Figure 3a). Correspondingly, we found that the mean annual
air temperature at the study site increased by 0.06, 0.07, and 0.12 ˝C¨year´1 during the overall
30-year, first 18-year, and last 12-year periods, respectively (Figure 3b). There were strong and
positive linear relationships between annual mean air temperature and vegetation indices (R = 0.72,
p = 0.005) and GPP (R = 0.83, p < 0.0001). Warming explained 52% of the variation in vegetation
indices and 69% of the variation in GPP. Regression analysis showed that the warming trend of mean
annual air temperature triggered an increasing trend of 0.01 ˝C´1 for EVI, 0.41 ˝C´1 for LSWI, and
128.45 g¨C¨m´2¨year´1¨ ˝C´1 for GPP, respectively (Figures 2 and 3).



Remote Sens. 2016, 8, 391 7 of 14
Remote Sens. 2016, 8, 391 7 of 14 

 

 
Figure 2. Long-term dynamics of (a) eight-day EVI, annual mean EVI; and (b) eight-day LSWI, 
annual mean LSWI derived from MODIS imagery during 2000–2011 in the Zoige alpine wetland. 
Dashed lines are the linear trends of annual mean EVI and LSWI, respectively. 

 

 
Figure 3. Long-term dynamics of (a) growing season GPP, mean EVI, and LSWI during 2000–2011; 
and (b) linear trends of mean annual temperature (Ta) for the overall 30-year (1982–2011), first  
18-year (1982–1999), and last 12-year (2000–2011) periods. Dashed lines are the linear trends of 
growing season GPP, mean EVI, LSWI, and annual mean Ta, respectively. 

  

2000/1/1 2002/1/1 2004/1/1 2006/1/1 2008/1/1 2010/1/1 2012/1/1

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

 Annual mean LSWI

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

Date (8-day interval)

 8-day LSWI
(R2 = 0.59, P = 0.003, n=12) 

M
ea

n 
LS

W
I

O
bs

er
ve

d 
8-

da
y 

LS
W

I f
ro

m
 M

O
D

IS
 b

 

0.2

0.4

0.6

0.8

0.26

0.28

0.30

0.32

0.34

0.36

 

(R2 = 0.63, P = 0.001, n=12) 

M
ea

n 
EV

I

O
bs

er
ve

d 
8-

da
y 

EV
I f

ro
m

 M
O

D
IS

 a  Annual mean EVI
 8-day EVI

 

2000 2002 2004 2006 2008 2010
300

400

500

600

700

800

a
Ve

ge
ta

tio
n 

in
di

ce
s

 Growing season GPP
 Growing season EVI
 Growing season LSWI

G
ro

w
in

g 
se

as
on

 G
PP

 (g
 C

 m
-2
)

0.0

0.1

0.3

0.4

0.5

(R2 = 0.62, P = 0.002, n=12) 

(R2 = 0.55, P = 0.006, n=12) 

 (R2 = 0.42, P = 0.02, n=12) 

 

1985 1990 1995 2000 2005 2010
0.0

0.5

1.0

1.5

2.0

2.5

3.0

  Last 12 years linear trend

  Ta

b First 18 years: R2 = 0.35, P = 0.005, n=18
Last 12 years: R2 = 0.54, P = 0.006, n=12
Overall 30 years: R2 = 0.63, P < 0.0001, n=30
 

 

An
nu

al
 m

ea
n 

Ta
 (  

C
)

Year

First 18 years linear trend

Overall 30 years linear trend

Figure 2. Long-term dynamics of (a) eight-day EVI, annual mean EVI; and (b) eight-day LSWI, annual
mean LSWI derived from MODIS imagery during 2000–2011 in the Zoige alpine wetland. Dashed lines
are the linear trends of annual mean EVI and LSWI, respectively.
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Figure 3. Long-term dynamics of (a) growing season GPP, mean EVI, and LSWI during 2000–2011;
and (b) linear trends of mean annual temperature (Ta) for the overall 30-year (1982–2011), first 18-year
(1982–1999), and last 12-year (2000–2011) periods. Dashed lines are the linear trends of growing season
GPP, mean EVI, LSWI, and annual mean Ta, respectively.
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3.3. Trends in Vegetation Phenology (SOS and EOS)

We further examined the SOS and EOS trends of the Zoige wetland vegetation from 2000 to
2011 (Figure 4). The SOS results delineated by the EVI, LSWI, and GPP showed that there was a
significant advancement of SOS at an average rate of 1.61 days¨year´1 (R2 ě 0.37, p ď 0.035, n = 12).
The earlier start of the growing season corresponded with similar increasing trends in the spring
(R2 = 0.46, p = 0.015) and winter temperatures (R2 = 0.35, p = 0.044) during 2000–2011 (Figure 4a).
We also ran a statistical analysis for the spring temperature, winter temperature, and SOS results
delineated by the GPP, EVI, and LSWI. The results showed that there were negative relationships
between the spring temperature and SOS, although these relationships were not significant (p > 0.05).
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Figure 4. Interannual variation in (a) the start date of the growing season (SOS) and spring and winter
temperatures; and (b) the end date of the growing season (EOS) and autumn temperature during
2000–2011 for the Zoige alpine wetland. The SOS and EOS were delineated by MODIS-based eight-day
vegetation indices (EVI and LSWI) and simulated GPP by the VPM model. Dashed lines are the 12-year
linear trend of SOS, EOS, and temperature. Spring: March to May; autumn: September to November;
winter: December to February; growing season: May to September.

The EOS results delineated by the EVI, LSWI, and GPP showed that there was a clear delay
for EOS at an average rate of 1.57 days¨year´1 (R2 ě 0.41, p ď 0.03) (Figure 4b). This autumn
phenology trend corresponded with a significant increase in autumn and growing season temperatures
(p < 0.05). The mean temperature in autumn and growing season increased by about 0.11 (p = 0.017)
and 0.12 ˝C¨year´1 (p = 0.022) during 2000–2011, respectively. Overall, the advancement in SOS and
delay in EOS extended the length of the growing season (LOS) by an average of 3.1 days¨year´1

(p < 0.05).
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3.4. Correlation between Climate Change, Growing Season Length, and GPP

In order to further evaluate the relationship between temporal changes in annual mean air
temperature (Ta), LOS, and GPP, we ran a series of correlation analyses. Clearly, there was a significantly
positive relationship (R ě 0.71, p ď 0.01) between Ta and LOS (Figure 5a). Regression analysis between
LOS and the annual C fluxes of GPP showed that LOS was closely and positively correlated with
annual GPP (R ě 0.76, p ď 0.01), indicating that the growing season extension will cause an increase
in GPP of 4.2 and 3.7 g¨C¨m´2¨year´1 per day according to the LOS delineated by LSWI and GPP,
respectively (Figure 5b). Furthermore, multiple regression analyses combining GPP, air temperature,
and the growing season length were applied to evaluate their relative importance to GPP. Comparison
of the standardized regression coefficients showed that the effects of warming on GPP were slightly
stronger than those induced by the changed phenology (Table 2).
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Figure 5. The relationships between the length of growing season (LOS) delineated by EVI, LSWI, and
simulated GPP by VPM and (a) observed annual mean Ta and (b) annual GPP, respectively.

Table 2. The standardized regression coefficients for air temperature (Ta), the length of the growing
season delineated by MODIS-based EVI (LOSEVI), LSWI (LOSLSWI), simulated GPP (LOSGPP), and the
multiple linear regression equations. GPP unit: g¨C¨m´2¨year´1.

Variables
Standardized Regression Coefficients Equations R2 p

Ta LOS

EVI 0.49 0.45 GPP = ´17.2 + 75.8Ta + 2.7LOSEVI 0.72 0.001
LSWI 0.45 0.44 GPP = 68.7 + 68.3Ta + 2.3LOSLSWI 0.68 0.002
GPP 0.58 0.35 GPP = 139.8 + 90.6Ta + 1.7LOSGPP 0.69 0.002

4. Discussion

Different vegetation indices vary in their phenological performance and can provide different
insights into the processes (e.g., growing season length and water conditions) that regulate ecosystem
carbon exchange [35]. Time-series NDVI data from remote sensing have been widely used for studying
vegetation phenology at regional, landscape, and global scales, and a number of studies used a
NDVI threshold value [30,36–38]. However, so far, few studies have evaluated the radiometric and
biophysical performance of other vegetation indices, such as the EVI and LSWI from MODIS data.
In this study, we used both an ecosystem-physiology approach and a remote sensing method to
delineate the vegetation phenology of an alpine wetland ecosystem, and evaluated the phenology
delineation performance of vegetation indices (NDVI, EVI, and LSWI) in relation to GPP. Our results
clearly demonstrated that both EVI and LSWI more accurately identified the start and ending dates
of plant growing season in the Zoige wetland, and hence had more biological and phenological
significance in GPP predictions than the NDVI. Both EVI and LSWI provide new and complementary
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data to delineate land surface phenology, and these indices are more consistent with the CO2 flux
data than the NDVI [39]. Moreover, LSWI was more stable than NDVI and EVI for delineating
the vegetation phenology of alpine wetlands (Table 1), which is consistent with recent findings from
savanna ecosystems [23]. LSWI is calculated as the normalized ratio between NIR and SWIR bands [33].
The combination of NIR and SWIR bands has the potential to retrieve leaf and canopy water content
(equivalent water thickness, EWT, g¨ cm´2) and to more accurately delineate vegetation phenology [39].
The LSWI threshold value (ě´0.1) has been used to determine the emergence (leaf-on) and harvest
(leaf-off) of croplands [24,34] and savanna woodlands [23].

Global climate change, especially warming, has already affected the timing of plant phenological
events [40]. In this study, both the 12-year MODIS-based vegetation indices and model simulation
results indicated that when the climate became warmer, the SOS advanced and the EOS delayed, which
lengthened the growing season of the Zoige alpine wetland. Hence, plants interact with the seasonality
of their environments, and changes in plant phenology can be regarded as sensitive indicators of
climatic change [41]. A number of studies have shown that the growing season has significantly
lengthened during the past decades under warmer conditions [36–38], but the connections and
interactions between phenological variability and wetland C cycling are far from clear. An important
finding in our study was that the recent lengthening of the growing season, as driven by warmer
temperatures, can strongly enhance plant growth and increase wetland productivity at rates of
4.2 and 3.7 g¨C¨m´2¨ year´1 per day according to the LOS delineated by LSWI and GPP, respectively.
Our results, however, are lower than the ORCHIDEE model average estimates of 5.8 g¨C¨m´2¨ year´1

across the Northern Hemisphere (>25˝N) during 1980–2002 [37].
There is little doubt that a large number of environmental factors affect plant productivity; the

real question is how much each of the main factors contributes to the observed signals [37]. Several
studies have suggested that global warming is a key driving force for the observed increase in
vegetation productivity at middle- and high-latitude ecosystems [42–45]. Indeed, we showed that the
annual dynamics of vegetation indices and GPP were mainly driven by inter-annual variation in air
temperature in the Zoige wetland. Generally, the warming signal can influence productivity through
two pathways [46]. First, rising temperatures have a direct impact on plant photosynthesis and growth.
Second, the lengthening of the growing season [47], changing plant phenology [48], stimulation of
plant growth [46], increasing nutrient mineralization rates [49], reductions in soil water content [50],
and alterations in plant species composition and community structure [44,51] have indirect impacts
on productivity. In order to further evaluate the relative importance of changes in air temperature
versus phenology in controlling GPP, we ran multiple regressions combining air temperature and the
growing season length, delineated by EVI, LSWI, and GPP. Results from these regressions indicated
that the effect of phenological shifts on GPP were slightly weaker than those induced by warming
(Table 2). Further studies on the links between wetland carbon uptake and emissions and the many
environmental drivers are needed in the future.

The net ecosystem C exchange is the balance between gross primary productivity and ecosystem
respiration. In addition to GPP, ecosystem respiration is also sensitive to warming and changes in
phenology [37,52]. Warmer air and soil temperatures will have direct effects on plant autotrophic
and soil heterotrophic respiration. Previous studies have shown that warmer soil temperatures
generally stimulate soil microbial activity, resulting in increased ecosystem respiration [53]. Generally,
the balance of GPP (C influx) and ecosystem respiration (C efflux) determines whether terrestrial
ecosystems will act as a net C sink or source under global climate changes [15,38]. In this study,
however, we only focused on the effects of warming and the growing season extension on wetland
C influx. As such, future studies on the C balance of the Zoige wetland should integrate continuous
EC measurements and data from remote sensing over longer time periods with ecological modeling
to evaluate whether warming will increase C emissions and if increased emissions will exceed the
increases in C uptake.
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Although we showed that remote sensing satellite observation has the capability to retrieve
vegetation with relatively high precision and the VPM model can accurately capture the U pattern of the
plant growth driven by variation in temperature and PAR in the alpine wetland, there still exist model
uncertainty and some differences between simulated and observed GPP. The discrepancies may be
attributed to three influencing factors on the modeling results. One is the sensitivity of the VPM model
to PAR and temperature. The second factor is the remaining effect of angular geometry on surface
reflectance and vegetation indices. The third factor is the error (overestimation or underestimation) of
the observed GPP. More details of model uncertainty are described by Kang et al. [29].

5. Conclusions

In summary, our study showed that the land surface phenology of the Zoige alpine wetland, as
described by the satellite vegetation indices, in particular the water-related vegetation indices (e.g.,
LSWI), corresponds well with the phenological patterns based on ecosystem physiology, as measured
by the eddy covariance method. Further, long-term simulations (2000–2011) indicated increasing
trends for annual mean EVI, LSWI, and annual GPP, respectively, which is in line with the observed
warming trend. In addition, there were significant positive correlations between annual GPP and
temperature and phenological period. Our results also show that when the climate became warmer,
the SOS advanced and the EOS delayed, which resulted in prolongation of the wetland phenological
period and, consequently, increases in vegetation productivity. The advanced SOS and delayed EOS
phenology trends correspond with the increasing trends in seasonal and growing season temperatures.
Furthermore, our results suggest that warming and extension of the growing season had positive
effects on C uptake in this alpine wetland. The findings of our study have important implications for
remote sensing analyses of wetland phenology and C cycling and for future simulation scenarios of
vegetation growth and C budgets. Finally, further evaluation of VPM simulations for other wetlands is
necessary before we can apply the model for regional, continental, and global simulations.
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