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Mapping paddy rice planting area 
in wheat-rice double-cropped areas 
through integration of Landsat-8 
OLI, MODIS, and PALSAR images
Jie Wang1, Xiangming Xiao1, 2, Yuanwei Qin1, Jinwei Dong1, Geli Zhang1, Weili Kou1, 3, 
Cui Jin1, Yuting Zhou1 & Yao Zhang1

As farmland systems vary over space and time (season and year), accurate and updated maps 
of paddy rice are needed for studies of food security and environmental problems. We selected 
a wheat-rice double-cropped area from fragmented landscapes along the rural–urban complex 
(Jiangsu Province, China) and explored the potential utility of integrating time series optical images 
(Landsat-8, MODIS) and radar images (PALSAR) in mapping paddy rice planting areas. We first 
identified several main types of non-cropland land cover and then identified paddy rice fields by 
selecting pixels that were inundated only during paddy rice flooding periods. These key temporal 
windows were determined based on MODIS Land Surface Temperature and vegetation indices. The 
resultant paddy rice map was evaluated using regions of interest (ROIs) drawn from multiple high-
resolution images, Google Earth, and in-situ cropland photos. The estimated overall accuracy and 
Kappa coefficient were 89.8% and 0.79, respectively. In comparison with the National Land Cover 
Data (China) from 2010, the resultant map better detected changes in the paddy rice fields and 
revealed more details about their distribution. These results demonstrate the efficacy of using images 
from multiple sources to generate paddy rice maps for two-crop rotation systems.

Studies on paddy rice fields aim to provide direct or indirect information for researches on food secu-
rity, water resource management, and environmental sustainability. Paddy rice fields provide one of the 
main staple foods for more than half of the world’s population with 11% of cultivated land1. In Asia, the 
majority of rice agriculture relies on irrigation, accounting for 70% of global fresh water withdrawals2. 
Determining the area of paddy rice fields is an important component of obtaining more accurate infor-
mation about agricultural water use to effectively manage fresh water resources3. In addition, as a kind of 
cultivated wetland, seasonally flooded paddy fields contribute 10–13% of the atmosphere’s anthropogenic 
methane4. Meanwhile, paddy rice fields are changing at a breakneck pace due to dramatic encroachment 
by expanding cities5 and the potentially reduced availability of water resources caused by climate change6. 
Therefore, it is urgently necessary to update and refine information about paddy rice planting areas in 
order to efficiently and accurately estimate crop production7, manage water resources8,9 and monitor 
greenhouse gas emissions10.

At the global and regional scales, several early studies of ecosystems and land cover have involved 
mapping paddy rice fields based on agricultural census data. In the late 1980s and early 1990s, several 
paddy rice datasets with coarse spatial resolution were produced to analyze global climate and green-
house gas emission11,12. In the years following, two global cropland datasets representing crop patterns in 
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the early 1990s and in the year 2000 were created at a spatial resolution of 5 arc minutes (~10 km)13,14. At 
the regional scale, a rice dataset for Asia was developed at the beginning of the 1980s15. In recent years, 
several studies on paddy rice planting areas were conducted by combining agricultural census data at the 
national scale16,17. Although most of the crop datasets were produced with input from multiple sources, 
these datasets were developed mainly by relying on statistics with coarse spatial resolution that were 
supplied by administrative units. Given the limitations of this spatial and temporal information, it is a 
challenge to apply these datasets to finer spatial research and to update them year to year.

Remote sensing is an efficient technique to acquire temporal and spatial cropland information repeat-
edly and consistently18. Historically, two main kinds of satellites have been used to map paddy rice 
fields: microwave and optical. Microwave satellites can penetrate through clouds and are thus superior 
for mapping paddy rice in regions dominated by long-term cloudy and rainy weather19–22, but availa-
ble synthetic aperture radar (SAR) imagery is limited19 or expensive23. Commonly used optical sensors 
are the Multispectral Scanner System/Thematic Mapper/Enhanced Thematic Mapper Plus (MSS/TM/
ETM+), the Moderate Resolution Imaging Spectroradiometer (MODIS)24–29, NOAA’s Advanced Very 
High Resolution Radiometer (AVHRR)30,31, and SPOT High Resolution Geometrical/High Resolution 
Visible Infrared/VEGETATION (HRG/HRVIR/VGT)32–34. Owing to continuous archiving and free to 
acquire, MODIS and Landsat have been the prevalent data sources of mapping paddy rice fields over 
the last several years.

Optical image classification techniques often use either individual image(s) or individual pixel(s) of 
time series data as input, here namely image-based methods and pixel-based methods. Image-based meth-
ods quantify the relationships (such as similarities or differences in spectra or texture) among all the 
pixels in an image for classification or object detection. These image-based methods have been applied to 
paddy rice mapping using single or multi-temporal optical images (e.g., MODIS and Landsat) at regional 
scales23,35–37. For image-based methods, collection of training samples (pixels) from ground reference 
data in each corresponding year remains a challenge38. Pixel-based methods rely primarily on the time 
series data for a pixel. These methods track the seasonal dynamics of a type of land cover and provide 
phenology information about the land surface. Several pixel-based algorithms have been developed to 
classify cropland using various optical images (e.g., MODIS, Landsat, SPOT, and FORMOSAT-2)32,38–40. 
To take into account the phenology of paddy rice, a pixel- and phenology-based algorithm using time 
series data of vegetation indices has been proposed. This was successfully applied to VGT and MODIS 
data for southern China and South and Southeast Asia28,29. Due to the high temporal resolution and 
continuous observation, MODIS data have frequently been combined with pixel- and phenology-based 
algorithms to track paddy rice phenology in order to map paddy rice areas or detect the intensity of 
paddy rice fields24,26,27,41–43. However, MODIS-based phenology information cannot capture the sub-pixel 
dynamics of small paddy rice fields in heterogeneous and fragmented agricultural landscapes26,44. This 
could be improved by using Landsat images with 30-m spatial resolution. Nevertheless, more research 
is needed to document the combination of Landsat images with pixel- and phenology-based algorithms 
for paddy rice mapping, especially in the case of Landsat 8 OLI images.

Reduced Landsat data availability caused by cloud cover or other problems may result in the failure 
of Landsat time series with 16-day intervals to distinguish the crops and trees. This problem is obvious 
in regions with double or multiple rotation agricultural systems, where cropland tends to be covered 
by plants year round, resulting in unavoidable confusion with natural evergreen forest. Fortunately, this 
problem can be solved by the Phased Array Type L-band Synthetic Aperture Radar (PALSAR) onboard 
the Advanced Land Observing Satellite (ALOS), given its capacity for forest detection45,46. The current 
study, which involves mapping paddy rice planting areas at a 30-m spatial resolution, has two aims: (1) 
to develop a pixel- and phenology-based algorithm by integrating time series optical images (Landsat-8, 
MODIS) and radar images (PALSAR) to map paddy rice planting areas in wheat-rice agricultural sys-
tems; and (2) to evaluate the potential utility of Landsat-8 OLI data in identifying fragmented paddy 
rice fields in complex agricultural landscapes. The case study area is located at the Yangzi-Huaihe Plain, 
China, which is characterized by a two-crop rotation (wheat and rice) agricultural system and intermix-
ture of rural and urban landscapes (Figure S1).

Results
Spectral signatures of flooded pixels and other land cover types. Different characteristics of 
vegetation indices are the basis for distinguishing flooded paddies from other land cover types. Figure S2 
shows one example of the maps of Enhanced Vegetation Index (EVI), Normalized Difference Vegetation 
Index (NDVI), Land Surface Water Index (LSWI), LSWI-EVI, and LSWI-NDVI on Julian day 191 (July 
10, 2013). At this time, paddy rice fields are in the midst of the flooding periods (including flooding/
transplanting period and reviving period of paddy rice calendar), covered by a mixture of water and 
plants. Some uplands (e.g. corn fields) are going through the seeding or three leaves periods, covered 
by soil or by a mixture of soil and plants. The scatterplot graphs (Fig. 1(a,b)) show that EVI and NDVI 
mainly cluster between 0 and 0.3 for both the paddies and the uplands. The tremendous discrepancy 
between the two is that paddies cluster with LSWI-EVI ≥ 0 or LSWI-NDVI ≥ 0 and uplands cluster with 
LSWI-EVI < 0 or LSWI-NDVI < 0. Water bodies have LSWI-EVI ≥ 0 or LSWI-NDVI ≥ 0, but their EVI 
and NDVI are close to or less than zero. Other vegetation like forests or shrubs have higher EVI or 
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NDVI (larger than 0.4) and lower LSWI-EVI or LSWI-NDVI (less than 0). Figure 1(c) shows that more 
paddy fields are detected by using LSWI-EVI ≥ 0 than LSWI-NDVI ≥ 0. In this image, about 10% of the 
pixels are flooded.

Spatio-temporal dynamics of paddy rice fields. Two Landsat-8 images (June 24 & July 10, 2013) 
were acquired during the flooding periods. Figure 2(a,b) show the original images with bands combina-
tion: R: SWIR1, G: NIR, B: Green. Figure 2(c,d,e,f) represent relevant paddy rice maps identified by the 
criteria LSWI-NDVI ≥ 0 and by LSWI-EVI ≥ 0, respectively. Figure  2(g,h) are the combined paddy rice 
maps identified by the criteria LSWI-NDVI ≥ 0 or LSWI-EVI ≥ 0. They also show cloud/cloud shadow, 
water body, built-up/barren land, and forest masks. Because of less cloud/cloud shadow cover, the image 
quality on July 10 is better than the one on June 24 and more paddy rice fields are detected from it.

Spatial distribution of paddy rice fields. Figure 3 shows the spatial distribution of paddy rice fields 
in 2013 at 30 m spatial resolution, which integrates the paddy rice maps from June 24 and July 10. Few 
paddy rice fields are detected within the Shandong Province. However, in the Jiangsu Province, paddy 
rice fields are distributed widely and extensively. The paddy rice planting area is estimated to be approx-
imately 2406.0 km2, accounting for 37.6% of the study area. Additionally, this map reveals that the rice 
agriculture here is mainly conducted in small or medium size croplands. We used the Fragstats software 
4.2 (http://www.umass.edu/landeco/research/fragstats/downloads/fragstats_downloads.html#diagnostic) 
to evaluate the fragmentation of the paddy rice fields. In this map, the total number of paddy field 
patches is 180,135, and the mean patch size of paddy fields is 0.0238 km2 (~154 m × 154 m).

Evaluation of Landsat-derived rice map. In this work, 3,610 paddy rice pixels (199 ROIs) and 
3,113 non-paddy rice pixels (85 ROIs), located in good observation regions, were employed to calculate 
the confusion matrix (Table 1).

Figure 1. (a,b) show the gathering of four main objects (paddy rice fields, uplands, other vegetation, and 
water) in two-dimensional scatter plots: EVI and LSWI-EVI, and NDVI and LSWI-NDVI on Julian day 
191(July 10, 2013). (c) Frequency histograms of LSWI-EVI and LSWI-NDVI. It shows that LSWI-EVI ≥ 0 
detects more paddy rice fields than LSWI-NDVI ≥ 0. (a,b) created in ENVI 5.0, (c) created in Sigmaplot 12.0.

http://www.umass.edu/landeco/research/fragstats/downloads/fragstats_downloads.html#diagnostic
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The validation showed the paddy rice/non-paddy rice map has a reasonably high accuracy. The paddy 
rice planting area in this map yielded 83.1% producer accuracy and 97.5% user accuracy. The non-paddy 
rice area in this map has 97.6% producer accuracy and 83.3% user accuracy. The overall accuracy and 
Kappa coefficient of this map are 89.8% and 0.79, respectively.

Figure 2. (a,b) Landsat-8 images after atmospheric correction on June 24, 2013, and July 10, 2013 
(R,G,B = SWIR, NIR, Green); (c,d) Flooding pixels identified by the criteria LSWI-NDVI ≥ 0; (e,f) Flooding 
pixels identified by the criteria LSWI – EVI ≥ 0; (g,h) Paddy rice mappings identified by the criteria LSWI-
NDVI ≥ 0 or LSWI - EVI ≥ 0. Clouds/cloud shadows, water, built-up/barren land, forest are all shown. Map 
created in ArcMap 10.1. (a,b) were downloaded from Earth Resources Observation and Science (EROS) 
Center, USGS (http://earthexplorer.usgs.gov/).

Figure 3. The paddy rice planting area map at 30 m spatial resolution, identified through the criteria 
LSWI - NDVI ≥ 0 or LSWI - EVI ≥ 0 from Landsat-8 images on June 24, 2013, and July 10, 2013. 
The total number of paddy rice plots is 180,135, and the mean paddy rice field size is 0.0238 km2 
(~154 m*154 m). Map created in ArcMap 10.1.

http://earthexplorer.usgs.gov/
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Comparison to other available datasets. To compare this result with NLCD2010 (1 km grid-
ded 2010 National Land Cover Data, China) Paddy data, the 30 m Landsat-8 paddy rice planting area 
mapping was resampled to have 1 km spatial resolution (PaddyLandsat-8, Fig. 4(a)). In general, the spatial 
aggregation of paddy rice fields in both mappings (Fig. 4(a,c)) was consistent except for two areas marked 
with blue circles (A, B). Furthermore, PaddyLandsat-8 revealed more details about paddy rice field patterns 
than PaddyNLCD2010 data (Fig. 4(c)).

The total area of paddy rice planting in 2013 estimated by PaddyLandsat-8 was 2406.0 km2. It was far less 
than the paddy rice area (4,986.96 km2) in 2010 estimated by PaddyNLCD2010. Just considering the paddy 
rice fields in good observation regions, the paddy rice area from PaddyLandsat-8 was 1,311.14 km2, 12.2% 
lower than that (1,492.85 km2) from PaddyNLCD2010. Figure  4(b) shows the cloud/cloud shadow masks 
of images on June 24 and July 23, 2013. For the difference marked by the blue circle A, one obvious 

Ground Truth

Paddy 
rice Non-paddy rice Total

User 
Acc.

paddy rice 3001 76 3077 97.5%

Non-Paddy rice 609 3037 3646 83.3%

Total 3610 3113 6723

Pro. Acc 83.1% 97.6%

Overall accuracy 89.8% Kappa coefficient 0.79

Table 1.  Accuracy assessment of the 30 m Landsat-8 paddy rice map using ROIs in the Yangzi-Huaihe 
Plain, southeast China.

Figure 4. (a) 1 km Landsat-8 paddy rice map (PaddyLandsat-8), and different colors presenting the occupation 
levels of paddy rice fields in given pixels; (b) The cloud/cloud shadow masks for images on June 24 and 
July 10, 2013; (c) Paddy rice map of 1 km NLCD2010 dataset (PaddyNLCD2010); two significant discrepancies 
between PaddyLandsat-8 and PaddyNLCD2010 are marked with blue circles (A, B); (d) Upland map of 1 km 
NLCD2010 dataset; (e) WorldView-2 image from June 20, 2012, the location of which is marked by the 
black rectangle in (a, b, c, d). It shows abundant flooded signals in the croplands, which should be classified 
as paddy rice fields just as in the results of this study, rather than uplands in NLCD2010. (f) Pixel-level 
comparison between these two datasets. The solid line was drawn from the regression analysis of all the 
points except the grey ones gathering on the X-axis. These grey points reveal that PaddyLandsat-8 detected new 
paddy rice fields that were absent in PaddyNLCD2010. Maps (a, b, c, d, e) created in ArcMap 10.1 and Map (f) 
created in SigmaPlot 12.0. Image (e) was provided by NASA for use in the NASA projects.
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explanation is cloud contamination on June 24, 2013 (Fig. 4(b)). Likewise, visual analysis showed a large 
difference occurred in the blue circle B (Fig. 4(a,c)). PaddyLandsat-8 detected some paddy rice fields in this 
area, while NLCD2010 data classified these croplands as uplands (Fig.  4(d)). One WordView-2 image 
(Fig.  4(e)) on June 20, 2012, its location marked by the black rectangle, was used to judge the perfor-
mance of these two results. It shows there are abundant flooding signals in the croplands that should be 
classified as paddies rather than uplands.

At the pixel level, the regression analysis was carried out to compare these two datasets for the paddy 
rice area estimate. R-square was 0.56 without considering the grey points gathering on X-axis (Fig. 4(f)). 
One possible reason for this difference was that PaddyLandsat-8 detected new paddy rice fields that were 
absent in PaddyNLCD2010, just as the paddy rice fields within the blue circle B. In addition, owing to 
PaddyNLCD2010 referring to the paddy rice planting area in 2010 and PaddyLandsat-8 focusing on that in 
2013, there were uncertainties due to paddy rice changes in actual agricultural practice or rapid Land 
Use/Land cover changes.

Discussion
In this study, multi-source remote sensing data including Landsat-8, MODIS, and PALSAR were used 
to identify paddy rice fields from the rotation agricultural system of winter wheat and paddy rice. 30 m 
Landsat OLI images provide more details about the distribution of paddy rice fields (Fig. 4(a)), and they 
are also helpful in identifying paddy rice from heterogeneous crops, which are common in this study 
area (Figure S5). MODIS-based LSTnight images have the ability to track the growing season, which is 
consistent with the results of climate observations (Figure S3). The dynamics of MODIS-based veg-
etation indices give it the ability to detect the flooding signals (including flooding/transplanting and 
reviving periods) of paddy rice fields (Fig.  5  (a)) and yield results consistent with the crop calendar 
(Figure S4). Therefore, MODIS-based LSTnight and vegetation indices (VIs) dynamics can help automat-
ically select Landsat-8 images for paddy rice planting area mapping. PALSAR data have advantages in 

Figure 5. The seasonal dynamics of NDVI, EVI, and LSWI, extracted from MOD09A1 product in 2012 and 
Landsat-8 images with good quality observations in 2013, for two-crop rotation agricultural systems.  
(a) Winter wheat and paddy rice rotation (34.286 °N, 119.642 °E), (b) winter wheat and corn rotation 
(34.237 °N, 119.232 °E).



www.nature.com/scientificreports/

7Scientific RepoRts | 5:10088 | DOi: 10.1038/srep10088

mapping forest, which can be used to generate forest masks in paddy rice mapping to solve the mixture 
of croplands and forest, especially in the areas with long growing seasons. Therefore, the combination of 
multi-source remote sensing data makes it possible to map paddy rice fields automatically in complicated 
agricultural systems.

The integration of Landsat-8, MODIS, and PALSAR data also showed some advantages in the iden-
tification of fragmented paddy rice fields. The mean patch size of paddy fields in the study area was 
154 m × 154 m in 2013. In terms of relatively small and even fragmented rice fields, the Landsat-8 images 
with finer spatial resolution (30 m) were better than the MODIS satellite data (500 m) in reducing 
mixed-pixel problems. In last several decades, the croplands in this study area were becoming frag-
mented rapidly, because of high population pressure, rapid economic development, urbanization, and 
limited arable lands. In 1983, the mean farmland area was about 14 km2, reduced to 6 km2 in 200047. 
In neighboring districts, the mean patch size of paddy rice fields also showed rapid diminution, declin-
ing from ~12 km2 in 1990 to ~1.4 km2 by 200648. At the same time, the minimum patch area was also 
reduced from 2 × 10−4 km2 in 1990 to 5 × 10−5 km2 in 2006. Cropland fragmentation is common in Asia40. 
In China, the crop land area per household was 5.3 × 10−3 km2 divided into 6.06 plots on average49. The 
net cultivated area per capita was lower than 6 × 10−4 km2 in Bangladesh50, and the average rice field was 
1.1 × 10−2 km2 in Taiwan32. Therefore, the integration of multi-source remote sensing data has the poten-
tial to provide more valuable information for updating and refining paddy rice maps in Asia.

We recognized that the paddy rice map identified in this study was affected by several potential 
factors. The first source of uncertainty was the limited availability of images from the 16-day revisit 
Landsat-8 satellite that detected the flooded signals of paddy rice fields. In the study area, the flooding 
periods usually lasted around three weeks, from mid to late June or early July. Therefore, the flooded sig-
nals of paddy rice fields could only be observed by one or two images. This shortage of image data could 
be remedied in the future by using multi-year Landsat-8 data and other optical sensors, such as Landsat 
TM/ETM+, and Sentinel-2A/B51,52. Secondly, paddy rice planting area mapping based on Landsat-8 
images did not avoid the impacts of clouds and their shadows, just as the other optical sensors, MODIS, 
TM, AVHRR27,30,53. Figure  2(a,b) show that the original images from June 24 and July 10 are covered 
with about 30% cloud. In this study, Fmask was used to detect clouds and cloud shadows. Fig.  2(g,h) 
show that Fmask worked well, but it overestimated the clouds. Therefore, these factors would result in 
the underestimation of paddy rice fields. Although 30 m Landsat-8 images were used in this study, it was 
still a challenge to remove the influence of the mixed pixels (e.g. vegetation and water). These pixels had 
the same characteristics as paddy rice fields during the flooding periods. Therefore, they might be iden-
tified as paddies if the ratio of vegetation and water satisfied the extraction algorithm: LSWI – EVI ≥ 0 or 
LSWI –NDVI ≥ 0. The confusion of paddy fields with other land cover types caused by mixed pixels is a 
common problem occurring in various sensors, including Landsat TM/ETM, SPOT, MODIS32,33. Various 
agricultural practices would be another source of uncertainty. This research extracted flooded paddy rice 
fields with Landsat-8 images from June 24 and July 10, 2013. If some farmers deviated from the regular 
agricultural practice calendar, their paddy rice fields with earlier or later plants would not be detected 
from these two images, because flooding/transplanting signals would be weak or nonexistent. In addi-
tion, the rapid Land Use/Land Cover changes caused by urbanization and industrialization in this area 
from 2010 to 2013 was one of the reasons for the discrepancy between PaddyLandsat-8 and PaddyNLCD2010.

The results of this study have demonstrated the potential of multi-source remote sensing data 
(Landsat-8, MODIS and PALSAR) to map paddy rice planting areas in the wheat-rice double cropping 
system, using a pixel- and phenology-based algorithm. MODIS-based LSTnight and VIs dynamics make it 
possible to automatically select Landsat-8 images within key time windows. PALSAR data can solve the 
mixture of croplands and forest. Landsat-8 images provide more details about the distribution of paddy 
rice fields, which is useful for the extraction of fragmented ones. As Landsat-8, MODIS and PALSAR 
Forest/Non-forest product are available to the public, there is a potential to develop 30 m paddy rice 
planting area maps across the two-crop zone using this approach.

Methods
Maps of non-cropland land cover types. It is necessary to map some major non-cropland land 
covers, including water bodies, built-up and barren lands, forests, permanently flooded regions during 
the growing season (Fig. 6). In practice, these land cover types potentially affect the seasonal dynamics 
of vegetation indices and the accuracy of the paddy rice detection algorithm.

Water bodies have lower NDVI and EVI and higher LSWI values. Similar to the water body extraction 
algorithm based on MODIS29, pixels in each image meeting the condition NDVI < 0.1 and NDVI < LSWI 
were extracted as water. Persistent water bodies were then composed of the pixels that were identified as 
water in all the good quality observations throughout the plant growing season.

Built-up and barren lands have high reflectance at visible and near infrared bands and low moisture 
content. Based on these physical features, a simple algorithm was put forward for built-up/barren lands, 
that is, LSWI < 0. Then, we calculated the frequency of a pixel identified as barren/built-up lands in the 
Landsat-8 time series (the total number of good quality observations). Permanent built-up/barren land 
mask was made up by pixels with a frequency of ≥90%.

Forest cover can be mapped from optical images or microwave images. Because of frequent cloud 
cover and 16-day revisit cycle, there is no sufficient number of Landsat images available in 2013 to 
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distinguish croplands and forests. Previous studies showed that the cloud-free L-band SAR is the most 
advantageous for forest detection46. In this research project, the PALSAR-50 m Forest/Non-forest (FNF) 
classification map from 2010, provided by Japan Aerospace Exploration Agency (JAXA), were resampled 
to generate a 30 m forest mask. These PALSAR 50 m products are free to the public at the official ALOS 
Kyoto and Carbon Initiative website (http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm)54. 
Compared to the ground truth data, these forest/non-forest products yielded 84% total accuracy on 
average55. This forest mask includes evergreen and deciduous forests.

Unlike seasonally flooded paddy rice fields, some lands remain flooded during the whole growing 
season. Therefore, it is necessary to distinguish between these two kinds of flooded lands. First, this work 
identified the flooded pixels for each Landsat-8 image following the rule LSWI – EVI ≥ 0 or LSWI – NDVI ≥ 0. 
Then, a map of the permanently flooded lands was produced from the pixels flooded in all the good-quality obser-
vations throughout the growing season.

According to the seasonal dynamics of MODIS-based vegetation indices (Fig.  5  (a)) and Landsat-8 
datasets (Table S1), seasonally flooded pixels were further divided into three phases: flooded from 
mid-April to early June, from mid-June to early July, and from late July to early November. From 
mid-April to early June, flooded signals mainly appeared in natural wetlands, some aquaculture areas, 
and irrigation channels. From mid-June to early July, paddy rice fields begin flooding and transplanting 
with significant flooded signals. From late July to early November, flooded signals disappear from paddy 
rice fields and they may appear in the irrigation channels of croplands.

Algorithms for identifying inundation and paddy rice fields. Paddy rice is usually planted in 
flooded fields. Three periods can be differentiated during paddy rice growth. In the flooding periods, 
the land surface of paddy rice fields is covered by water with a depth of 2-15 cm and green paddy rice 
plants. About 50 to 60 days later, most of the cropland surface is covered by the canopies of paddy rice 
plants. At the end of the growth period prior to harvesting, there is a decrease in the number of leaves 
and a decrease of leaf and stem moisture content.

The phenological features of main crops in the study area were investigated through MOD09A1 
8-day composite vegetation indices time series (Fig.  5), obtained from the MODIS data portal at the 
Earth Observation and Modeling Facility (EOMF), University of Oklahoma (http://www.eomf.ou.edu/
visualization/gmap/). To get reliable vegetation index time series data, the bad-quality observations were 
gap-filled through a three-step gap-filling procedure56. Figure  5(a,b) show that the largest difference 
between paddy rice and other crops is the flooded signal during the growing season.

The phenological features of main crops were also investigated via the dynamics of three vegetation 
indices based on Landsat-8 time series images. Figure 5(a) shows that LSWI is larger than EVI in early 
July. Figure  5(a,b) indicate that despite a 16-day revisit, it is possible to detect the difference between 
paddy rice and corn from the Landsat-8 images. According to the seasonal dynamics of NDVI, EVI, and 

Figure 6. The workflow for mapping paddy rice planting area in a doubling agricultural system (Yangzi-
Huaihe Plain) using Landsat-8 images from 2013. PALSAR 50 m FNF product was used as forest mask. 
Vegetation indices algorithms were used to detect non-croplands and flooded croplands. Figure created in 
Microsoft Visio 2010.

http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
http://www.eomf.ou.edu/visualization/gmap/
http://www.eomf.ou.edu/visualization/gmap/
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LSWI and the finer spatial resolution of Landsat-8 images, an algorithm was proposed to extract paddy 
rice fields from 30 m Landsat-8 images: LSWI – NDVI ≥ 0 or LSWI – EVI ≥ 0. According to the dynamics 
of MODIS vegetation indices, Landsat-8 images acquired within the flooding periods were used to map 
paddy rice fields. In this study, the flooding periods of paddy rice fields was from mid-June to early July, 
composed by the flooding/transplanting period and the reviving period of paddy rice calendar.

Accuracy assessment of resultant maps. We used ground truth data (field photos (Figure S5)), 
Google Earth (GE), and high-resolution images to locate and digitize ROIs. Google Earth displays 
high-resolution images, which have been used to validate land cover classification in several stud-
ies57–59. However, GE images were not enough to visually interpret ROIs as it lacked images within key 
time windows. We also ordered multiple high-resolution images from 2012 and 2013 from the NASA 
Goddard Space Flight Center, including WorldView-2 (WV2), OrbView5 (OV5), and QuickBird2 (QB2). 
According to the reference information, we generated a series of random sampling points and interpreted 
them into ROIs. In total, 15,751 Landsat-8 pixels were acquired, including 7,388 paddy rice pixels (173 
ROIs) and 8,363 non-paddy rice pixels (427 ROIs) (Figure S6).

The accuracy of the paddy rice map produced in this study was assessed by using the “Ground Truth 
ROIs” method in ENVI software. We obtained a confusion matrix between the paddy rice map and 
the ROI data, and producer’s accuracy, user’s accuracy, overall accuracy, and the Kappa coefficient. We 
estimated the accuracy of a paddy rice map using only good quality observations during the flooding/
transplanting period. Finally, according to the cloud/cloud shadow masks from June 24 and July 10, we 
selected 3,610 paddy rice pixels (199 ROIs) and 3,113 non-paddy rice pixels (85 ROIs) located in good 
observation regions that were then used to validate the final paddy rice map.

Comparison with other available datasets of paddy rice fields. We compared our results with 
NLCD2010 to analyze their differences and the dynamics of paddy rice fields. The paddy rice map was 
compared with NLCD2010 at two scales. At the regional level, we analyzed the variations of paddy rice 
fields in spatial distribution and planting areas. At the pixel level, correlation analysis was used to com-
pare these two datasets in regard to the estimation of paddy rice planting areas.
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