
Science Bulletin 68 (2023) 1306–1316
Contents lists available at ScienceDirect

Science Bulletin

journal homepage: www.elsevier .com/locate /sc ib
Article
Mapping global distribution of mangrove forests at 10-m resolution
https://doi.org/10.1016/j.scib.2023.05.004
2095-9273/� 2023 Science China Press. Published by Elsevier B.V. and Science China Press.

⇑ Corresponding authors.
E-mail addresses: zongmingwang@iga.ac.cn (Z. Wang), yqwang@uri.edu

(Y. Wang).
Mingming Jia a,b, Zongming Wang b,⇑, Dehua Mao b, Chunying Ren b, Kaishan Song b, Chuanpeng Zhao b,
Chao Wang d, Xiangming Xiao e, Yeqiao Wang c,⇑
a International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
bKey Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
cDepartment of Natural Resources Science, University of Rhode Island, Kingston RI 02881, USA
d State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
eDepartment of Microbiology and Plant Biology, Center for Earth Observation and Modeling, University of Oklahoma, Norman OK 02881, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 21 November 2022
Received in revised form 1 April 2023
Accepted 6 April 2023
Available online 10 May 2023

Keywords:
Remote sensing
Sentinel-2
Object-based image analysis
World heritage sites
Ramsar convention sites
Mangrove forests deliver incredible ecosystem goods and services and are enormously relevant to sus-
tainable living. An accurate assessment of the global status of mangrove forests warrants the necessity
of datasets with sufficient information on spatial distributions and patch patterns. However, existing
datasets were mostly derived from �30 m resolution satellite imagery and used pixel-based image
classification methods, which lacked spatial details and reasonable geo-information. Here, based on
Sentinel-2 imagery, we created a global mangrove forest dataset at 10-m resolution, namely, High-
resolution Global Mangrove Forests (HGMF_2020), using object-based image analysis and random forest
classification. We then analyzed the status of global mangrove forests from the perspectives of conserva-
tion, threats, and resistance to ocean disasters. We concluded the following: (1) globally, there were
145,068 km2 mangrove forests in 2020, among which Asia contained the largest coverage (39.2%); at
the country level, Indonesia had the largest amount of mangrove forests, followed by Brazil and
Australia. (2) Mangrove forests in South Asia were estimated to be in the better status due to the higher
proportion of conservation and larger individual patch size; in contrast, mangrove forests in East and
Southeast Asia were facing intensive threats. (3) Nearly, 99% of mangrove forest areas had a patch width
greater than 100 m, suggesting that nearly all mangrove forests were efficient in reducing coastal wave
energy and impacts. This study reports an innovative and up-to-date dataset and comprehensive infor-
mation on mangrove forests status to contribute to related research and policy implementation, espe-
cially for supporting sustainable development.

� 2023 Science China Press. Published by Elsevier B.V. and Science China Press.
1. Introduction

Mangrove forests are one of the most biologically diverse and
productive ecosystems on Earth [1,2]. Globally, approximately
75% of low-lying tropical coastlines receiving freshwater drainage
support mangrove systems [3]. They provide coastal area protec-
tion by attenuating wave energy and storm surges and stabilizing
shorelines from flooding and erosion [4–6]. Mangrove forests are
also important for climate mitigation due to their capacity for effi-
cient carbon sequestration and storage [7–9]. Globally, hundreds of
millions of people directly rely on mangrove forests to provide a
variety of resources to local communities [10–12]. Therefore, man-
grove forests play an essential role in a sustainable future for
human beings [13]. The unique and important ecosystem functions
warrant the necessity of detailed spatial information on global
mangrove forests to provide essential information for related sci-
entific research and coastal management, as well as to facilitate
the implementation of sustainable development [14,15].

Mangrove forests growing along coastlines always appear in
narrow strips and small patches [16]. Thus, current existing global
mangrove forest datasets may be insufficient to support the
increasing requirements of in-depth scientific research and preci-
sion management. Existing datasets can be generally divided into
two categories, i.e., statistical reports from various sources and
maps derived from satellite images. The statistical reports were
collective efforts by various management and research institutions
and international organizations published from 1981 to 2020
[14,17–21]. These reports offered a glance at areas of mangrove
forests in various administrative units but lacked spatial
distribution details.
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Satellite remote sensing, which is considered accurate, rapid,
and cost effective, provides a solution to produce globally consis-
tent mangrove forests maps [15,22,23]. One of the earliest global
mangrove forests mapping datasets was the World Mangrove
Atlas, which was published in 1997 [24,25]. The atlas was surveyed
and mapped from a range of different data sources, such as the-
matic maps, literature, and remote sensing images. The first global
consistent mangrove forest dataset with more spatial and thematic
details was published in 2011 [26]. Then, Hamilton and Casey [27]
interpreted the extents of world’s mangrove forests during 2000–
2012. Furthermore, Thomas et al. [28] and Bunting et al. [29]
mapped mangrove deforestation and conversions during 1996–
2016 using L-band SAR and Landsat imagery, respectively. These
datasets were named Global Mangrove Watch (GMW). The above
maps and datasets were all derived from �30 m resolution remote
sensing images in which small mangrove patches could be omitted
[30]. Recently, Bunting et al. updated the GMW dataset to GMW
v2.5 by revising 204 regions using Sentinel-2 imagery [30] and
then solely used L-band SAR to detect changes from v2.5 and built
GMW v3.0 [31]. However, due to the limitations of data sources
and classification methods, these datasets still contained regions
with considerable errors. The errors can largely affect the evalua-
tions of global mangrove forests status. Inconsistencies in data
quality, cartographic standards, modeling methods, and spatiotem-
poral coverage of data sources often produce different results,
resulting in difficulties in conducting accurate, reliable, and com-
prehensive socioeconomic assessments [32].

In addition to spatial distributions, previous global-scale man-
grove studies have focused on rates and drivers of deforestation
[28,33], biomass and carbon estimation [27,34,35], fragmentation
[36], and climate change [37–40]. Most recently, the Global Man-
grove Alliance (GMA) published a report of the State of the World’s
Mangroves (https://www.mangrovealliance.org/mangrove-forests/),
which mentioned little about mangrove conservation and threats.
However, spatial details were not presented. Furthermore, models
indicated that abelt of mangrove forests with a 100 m width could
significantly reduce wave energy [41,42]. Previous studies also
indicated that mangrove patches with a width greater than
1500 m would reduce 1-m high waves to 0.05 m [43,44]. Thus,
the patch widths are strongly related to the capacity of mangrove
forests in ocean disaster resilience and coastal property protection.
However, a specific analysis of global mangrove forests as coastal
protectors does not exist. The essential barrier is the lack of finer
resolution global mangrove forests datasets with patches of rea-
sonable geo-information.

To solve the abovementioned issues, in this study, we first pro-
duced an up-to-date high spatial resolution (10 m) global man-
grove forest dataset, namely, High-resolution Global Mangrove
Forests (HGMF_2020), based on object-based image analysis
(OBIA) and a massive collection of Sentinel-2 images acquired dur-
ing 2020. Second, we analyzed the geographical characteristics and
patch patterns of global mangrove forests. Finally, we discussed
the status of global mangrove forests conservation and threats.
The HGMF_2020 dataset and our state-of-the-art global mangrove
forests analyses provide baseline data for scientific research to pro-
vide decision-makers with an accessible reference for designing
sustainable mangrove management policies.
2. Materials and methods

2.1. Sentinel-2 satellite imagery and auxiliary data

The Sentinel-2 MultiSpectral Instrument (MSI) sensor contains
13 spectral bands. In this study, four spectral bands (Bands 2, 3,
4, and 8) at 10 m and six bands (Bands 5, 6, 7, 8A, 11, and 12) at
1307
20 m spatial resolutions were chosen to identify mangrove forests
and other land covers. This study used 124,000 scenes of Sentinel-2
Level-2A products, which covered the entire study area within
2020.

For other auxiliary data, global protected areas of mangrove for-
ests were downloaded from the official websites of the Ramsar
Convention on Wetlands (https://www.ramsar.org/), World Her-
itage Convention (https://whc.unesco.org/), and Protected Planet
(https://www.protectedplanet.net/en), which contain the World
Database on Protected Areas, Global Database on Protected Area
Management Effectiveness, World Database on other effective
area-based conservation measures, and a wealth of national and
local reserves.

To obtain globally evenly distributed validation samples, three
steps were conducted by an independent team. First, samples were
downloaded from two global crowdsourced datasets, i.e., Collect
Earth (https://openforis.org/tools/collect-earth) and Global Biodi-
versity Information Facility (https://www.gbif.org/). Then, to
ensure the credibility of crowdsourced samples, we visually exam-
ined all these samples in Google Earth. Finally, for regions with
sparse ground samples, we visually interpreted ground samples
from submeter resolution imagery in Google Earth. We generated
the number of ground samples for mangroves and non-
mangroves in a 1:3 ratio. In total, 21,704 and 60,243 points were
collected as ground truth samples for the categories of mangrove
forest and others, respectively. The distributions of these samples
are illustrated in Fig. S1 (online).

2.2. Methodology of mangrove forest classification

To obtain robust spatial information on mangrove forests, we
developed a classification methodology that contained three steps:
(1) identifying specific study areas based on four available global-
scale mangrove datasets; (2) building global Sentinel-2 composite
images in the Google Earth Engine (GEE) platform; and (3) apply-
ing OBIA and random forest (RF) classification to map mangrove
forests. To undertake the processing, study areas were divided into
144 project tasks that were grouped into 1� � 1� tiles, GEE was
used to composite and download images for each task, and eCogni-
tion software was used to segment images, run RF classification,
and conduct postprocessing. Finally, ArcGIS was used to merge
all the classification results. Fig. 1a shows the workflow for map-
ping mangrove forests. We also provided a typical application in
Dongzhaigang, China (Fig. 1b–d).

(i) Identifying specific study areas. First, we merged four large-
scale mangrove datasets to generate a baseline map as the
reference. We then created 1-km buffers for all patches of
the baseline map. Finally, we generated the study areas by
combining the patches in the baseline map and their buffers.
The areal extent of the study area was 637,844 km2. Man-
grove datasets used as references in this step included Glo-
bal Mangrove Forests Distribution (GMFD) [26], Global
Mangrove Watch (v2.0, v2.5 and v3.0) [29–31], Continuous
Global Mangrove Forest Cover for the 21st Century (2000–
2012) (CGMFC-21) [27], and CAS_Mangroves [45,46].

(ii) Building Sentinel-2 composite images. To rapidly and
robustly acquire images suitable for mangrove forest map-
ping, we conducted a maximum spectral index composite
(MSIC) process to produce working images. For each location
of an individual pixel, the MSIC selected a pixel with the
maximum spectral index in a time-series image collection
and then composited a new image. In this study, the normal-
ized difference vegetation index (NDVI) [47] was selected to
conduct the MSIC, which ensured that pixels in a composite
image represented the highest NDVI values. We named the
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Fig. 1. Workflow of mapping mangrove forests and a typical application in Dongzhaigang, China. (a) Workflow of the mapping approach; (b) NDVI-MSIC image of
Dongzhaigang; (c) object segmentation result; (d) object-based image analysis and random forest (OBRF) classification result. R: the red channel, G: the green channel, B: the
blue channel.
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composite images NDVI-MSIC images (Fig. 1b). All bands in
the NDVI-MSIC images were then resampled to a 10-m res-
olution. The procedure was performed in the GEE platform,
and the code can be found in the Resource Availability
section.

(iii) Classification of mangrove forest and other land covers. The
OBIA was successfully applied to map mangrove forests and
other wetlands [48]. Image segmentation is the first and
most important step of OBIA, and it can reduce ‘‘within-
class” variation by segmenting images into objects. The RF
classifier is an ensemble machine learning method that con-
structs a number of decision trees to conduct classification.
The RF classifier has been proven efficient in mapping man-
grove forests [49]. In this study, the combination of OBIA and
RF contained two procedures: first, segmenting the NDVI-
MSIC image into image objects based on an optimal image
segmentation algorithm (Fig. 1c, shape, compactness, and
scale were 0.17, 0.75, and 20, respectively [50]); and second,
operating the RF classifier on these objects and deriving clas-
sification results of mangrove forest and others (Fig. 1d). The
combination of OBIA and RF can contribute more features for
classifying land covers. In addition to spectral features and
indices, spatial features such as shape and texture could be
1308
used to distinguish mangrove forests and non-mangrove for-
ests. These procedures were performed in eCognition
software.

2.3. Post-processing of initial classification results

The main purpose of post-processing is to generate highly reli-
able classification results. First, to obtain the best interpretation,
for each project task, misclassified objects were manually modified
by remote sensing experts. To facilitate manual interpretation, a
false color composite of MSI bands 11 (red), 8 (green), and 4 (blue)
was generated [51]. As shown in Fig. 1b, in the false color compos-
ite image, mangrove forests are dark green with a smooth texture,
which is significantly different from terrestrial vegetation. Then, to
reduce noise, patch filtering was applied to remove small patches.
Considering the patch characteristics of mangrove forests, the
potential usage of the HGMF_2020 dataset, and the detectability
of Sentinel-2 imagery, the threshold parameter (minimal number
of pixels in a patch) was set to 6. We used 8-connectedness to iden-
tify and eliminate the isolated small patches. Thus, patches that
were smaller than six 10-m resolution pixels (600 m2) were
merged with the largest patch within the 8-connected pixels.



M. Jia et al. Science Bulletin 68 (2023) 1306–1316
2.4. Independent accuracy assessments

The accuracy of HGMF_2020 was validated by two independent
assessment approaches, i.e., standard remote-sensing error matrix
[52] and bootstrapping [53]. The bootstrapping approach is proven
to be effective in validating classification datasets of coastal
ecosystems. In addition to mean mapping accuracy, it provides
confidence intervals (CIs) [54,55]. During the bootstrapping proce-
dure, we took 1000 iterations to resample the samples and con-
ducted validations. We adopted the mean of the distribution as
an estimate and the 95% quantile (0.025 and 0.975 percentiles)
as the corresponding CI.

In addition, our validation results indicated asymmetry
between omission (1-user’s accuracy) and commission (1-
producer’s accuracy) errors. To allow propagation of this asymme-
try into our resultant areal extents, we used the 95% interval on the
resampled distribution of omission and commission errors to esti-
mate the upper and lower bounds for the areal extents of each land
cover with

Ai95%CIlower ¼ Ai � Ai � CP95ð Þ; ð1Þ

Ai95%CIupper ¼ Ai þ A� OP95ð Þ; ð2Þ
where Ai is the mapped area of the HGMF_2020 class i, and CP95 and
OP95 are the 95% percentile of the commission and omission accu-
racies corresponding to class i, respectively.

2.5. Patch width analyses

Mangrove patches are irregular polygons, and the morphology
of coastlines is uncertain; thus, directly calculating the perpendic-
ular widths of the polygons to the coastlines is not practical. To
solve this issue, we first created the largest circle inside each poly-
gon and then selected polygons containing a circle greater than
100 or 1500 m in diameter. Thus, the selected polygons had widths
exceeding 100 or 1500 m, regardless of the angles of the coastlines.
Finally, we named these patches W100 and W1500, respectively.

3. Results

3.1. Accuracy of HGMF_2020

Standard error matrices and bootstrapping results are shown in
Tables S1–S3 (online). The overall accuracy of HGMF_2020 was
95.2%, and the user’s accuracy and producer’s accuracy of man-
grove forest were 91.8% and 90.3%, respectively (Table S1 online).
According to the regional assessment results, the commission
and omission errors of mangrove forest mapping in southeastern
Asia, western Africa, and South America were higher than those
in other regions (Table S2 online). The errors were mainly caused
by confusing mangrove forests with lowland wetlands. In contrast,
the mapping accuracies of southern Africa, southern Asia, and
western Asia were much higher than those of other regions.
Because the climates of these regions are relatively dry, mangrove
forests are significantly different from surrounding land covers.
Table S3 (online) shows 1000 iterations of bootstrapping results.
The overall accuracy was 93.6% with a 95th CI of 91.4% to 95.7%,
and the user’s accuracy and producer’s accuracy of mangrove forest
are 92.0% (90.2%–93.8%, 95th CI) and 91.0% (89.6%–92.3%, 95th CI),
respectively.

3.2. Area and spatial distribution of global mangrove forests in 2020

The spatial distribution and areal extent of global mangrove for-
ests are shown in Fig. 2 and Table 1. The area of global mangrove
1309
forests was 145,068 km2 (130,850 to 160,153 km2, 95th CI) in
2020. Approximately 96% of mangrove forests were distributed in
tropical regions (Fig. 2c). Asia had the largest amount of mangrove
forests (39.2%), followed by Africa (19.3%), South America (15.4%),
North America (14.3%), and Oceania (11.9%). For the United
Nations (UN) statistics geographic regions [56], mangrove forests
in southeastern Asia, South America, Western Africa, Central Amer-
ica, and Australia and New Zealand ranked the top five largest,
with areal extents all exceeding 10,000 km2 (Table 1). Fig. 2b lists
the top twenty mangrove-rich countries, and these countries com-
prised more than 80% of the global mangrove forests. Indonesia
had the largest amount of mangrove forests, followed by Brazil
and Australia. Specific areas of mangrove forests in different coun-
tries are listed in Table S4 (online).
3.3. Patch size of global mangrove forests

Globally, the number of mangrove patches was 336,972 in 2020
(Fig. 3a). Asia had the largest percentage of total patch number
(36.5%), followed by North America (20.8%), Oceania (18.7%), South
America (12.4%), and Africa (11.6%). In total, 95% of mangrove
patches were smaller than 1 km2. For the width of global mangrove
patches, 59,751 patches had a width greater than 100 m, with a
sum area of 142,998 km2, accounting for 98.5% of the global total.
The number of patches with a width greater than 1500 m was
1782, with a total area of 35,831 km2, accounting for 25% of the
global total. For the United Nations (UN) statistics geographic
regions, the mean patch size of Melanesia was 1.5 km2, which
was the largest, followed by Western Africa and Southern Asia,
with mean patch sizes of 1.0 and 0.7 km2, respectively. For other
geographic regions, the mean patch sizes were all smaller than
0.5 km2. Fig. 3b shows the top ten countries with the largest mean
patch size. The mean patch size of mangrove forests in Bangladesh
ranked the largest, followed by Congo and Cayman Is. In terms of
individual patches, only 88 patches had an area larger than
100 km2, and the largest patch was found in Everglades National
Park, Florida, United States, with an area of 989 km2 (Fig. 3c). Large
patches were also found in the estuary of the Amazon River
(Fig. 3d), the Sundarbans along the Bay of Bengal (Fig. 3e), and
Sembilang National Park in Indonesia’s South Sumatra Province
(Fig. 3f).
4. Discussion

4.1. Status of global mangrove forests under conservation and threats

For years, many nongovernmental organizations, community
groups, research institutions, and governmental agencies have
been working globally on such efforts. For example, in 2018, the
International Union for Conservation of Nature, World Wildlife
Fund, Conservation International, Wetlands International, the Nat-
ure Conservancy, and many other partners formed the Global Man-
grove Alliance, which aims to accelerate a coordinated and
comprehensive approach for global mangrove restoration and con-
servation. A large number of mangrove forests are under conserva-
tion and management with intergovernmental treaties, such as the
World Heritage Convention, the Convention on Biological Diver-
sity, and the Ramsar Convention on Wetlands [15].

With efforts over the last 20 years, mangrove forests have
shifted from being one of the fastest diminishing ecosystems on
Earth to one of the most protected (https://www.mangroveal-
liance.org/mangrove-forests/). As of March 2023, 302 Ramsar sites,
23 World Heritage sites, and tens of federal or national ministry or
agency reserves have been established to protect mangrove forests
worldwide. As shown in Table 2 and Fig. 4a, b, mangrove forests in
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Fig. 2. Areal extent and distribution of global mangrove forests in 2020. (a) Area and proportion of mangrove forests on each continent. (b) Areal extents of mangrove forests
in the top twenty mangrove-rich countries. (c) Distributions of mangrove forests summarized in each decimal degree square.

Table 1
Area of mangrove forests with 95% confidence intervals (95th CI) for each United Nations (UN) statistics geographic region.

Geographic region Area (km2) 95th CI (km2) Proportion (%)

Northern Africa 7.5 6.7–8.2 0.0
Eastern Africa 7132.2 6390.4–7831.1 4.9
Middle Africa 4137.2 3706.9–4542.7 2.9
Southern Africa 22.4 20.0–24.6 0.0
Western Africa 16,657.1 14,924.8–18,289.5 11.5
Caribbean 5518.9 4944.9–6059.7 3.8
Central America 12,715.7 11,393.3–13,961.8 8.8
Northern America 2487.8 2229.1–2731.6 1.7
South America 22,288.0 19,970.0–24,472.2 15.4
Eastern Asia 340.8 304.1–372.6 0.2
Southeastern Asia 47,008.2 42,119.3–51,615.0 32.4
Southern Asia 9333.2 8362.6–10,247.9 6.4
Western Asia 197.8 177.2–217.2 0.1
Australia and New Zealand 10,994.0 9850.7–12,071.4 7.6
Melanesia 6091.4 5457.9–6688.4 4.2
Micronesia 129.5 116.0–142.2 0.1
Polynesia 6.0 5.4–6.6 0.0
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Australia were sparse, whereas natural reserves along these coasts
were relatively large. In contrast, the coasts of southern and south-
eastern Asia had large areas of mangrove forests; however, the
areal extents of mangrove forests that were protected were less.

Although more than 300 mangrove natural reserves have been
established in recent decades, the conservation effectiveness of
these reserves is highly variable. For positive examples, in China,
mangrove forests located in the Ramsar sites and national natural
reserves all recovered after the establishment of the reserves
[46,57]; in Belize, due to high protection attention during 1996–
2017, the annual rate of mangrove loss in the Belize Barrier Reef
Reserve System (World Heritage site) was significantly lower than
that outside the reserve [58]. In contrast, a series of studies indi-
cated that there were large gaps between mangrove conservation
1310
policies and actions, and the root of mangrove degradation had
been attributed to coastal economic development targets [59–
62]. In Ecuador, even in protected areas, the construction of aqua-
culture ponds caused serious deforestation of mangrove forests
[63]. In Brazil, approximately seventy percent of mangrove forests
are inside protected areas; however, the strength of protection is
weakened by a lack of economic interest and conservation policies
[64].

Moreover, a focus only on mangrove extent could mask the
degradation associated with reductions in habitat quality [15].
For example, the area of mangrove forests in the Xuan Thuy Natu-
ral Wetland, Vietnam, was relatively constant since 1989, when it
was included in the List of Ramsar Wetlands of International
Importance. However, in the reserve, the expansion of aquaculture



Fig. 3. Number and size of global mangrove patches and regional subsets of four large patches. (a) Number and proportion of mangrove patches on each continent. (b) Top ten
countries with the largest mean mangrove patch size. Subset of the HGMF_2020 dataset overlaid on Google Earth image in Everglades National Park, Florida, the United States
(c), the estuary of the Amazon River, Brazil (d), Sundarbans along the Bay of Bengal (e), and Sembilang National Park in Indonesia’s South Sumatra Province (f).

Table 2
Areas and proportions of protected mangrove forests for each UN statistical
geographic region.

Geographic region Area (km2) Proportion (%)

Northern Africa 2.2 29.7
Eastern Africa 4028.7 56.5
Middle Africa 2554.1 61.7
Southern Africa 15.0 67.0
Western Africa 11,581.2 69.5
Caribbean 3454.4 62.6
Central America 8631.9 67.9
Northern America 1928.7 77.5
South America 13,012.8 58.4
Eastern Asia 124.1 36.5
Southeastern Asia 8958.1 19.1
Southern Asia 7150.8 76.6
Western Asia 13.7 6.9
Australia and New Zealand 2071.7 18.8
Melanesia 445.1 7.3
Micronesia 10.2 7.9
Polynesia 0.0 0.0
Global total 63,982.6 44.1
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was not slowed, and the patches of mangrove forest have become
fragmented [65]. Indeed, successful management, restoration, and
conservation relied on the efforts of national, state, and local gov-
ernments along with local communities [62]. However, due to a
lack of funding and enforcement [15], local people benefited little
in participating in co-management activities [66]. A previous study
also indicated that financial support for mangrove protection ben-
efits harvesters, especially by engaging local women in small busi-
ness activities [66]. In addition to the World Heritage Convention,
the Convention on Biological Diversity, and the Ramsar Convention
on Wetlands, information provided by the HGMF_2020 dataset can
be used to support a series of worldwide conservation policies,
such as the UN Sustainable Development Goals (SDGs), including
SDG 1 (No Poverty), SDG 2 (Zero Hunger), SDG 6 (Clean Water
1311
and Sanitation), SDG 13 (Climate Action), SDG 14 (Life under
Water), and SDG 15 (Life on Land), UN Framework Convention on
Climate Change, Convention on Biological Diversity, Sendai Frame-
work on Disaster Risk Reduction, Bonn Challenge, and IUCN Gen-
eral Assembly and World Conservation Congress [67].

4.2. Status of mangrove forests in resisting natural disasters

Coastal zones have a large exposed population and integrated
high-value assets [68]. Mangrove forests have been considered a
sustainable coastal green belt to protect lives and property [42].
For example, in Kendrapada District, Orissa state, India (Fig. 5a),
during the Indian super cyclone in 1999, compared to villages with
narrower or no mangrove forests, villages with wider mangrove
forests had significantly fewer reported deaths [69]. As we calcu-
lated from the HGMF_2020 dataset, nearly 99% of mangrove forests
had a width greater than 100 m, suggesting that mangrove forests
play a critical role in providing protection services globally. Fig. 5a
illustrates that the W100 and W1500 mangrove patches along the
coastlines of Central and South America, western Africa, and east-
ern and southeastern Asia protected large coastal zones. Fig. 5b
shows Lagos, Nigeria, with a population over 15 million, as a typi-
cal city protected by W1500 patches. Fig. 5c shows large areas of
aquaculture ponds near Hai Phong, Vietnam, which were protected
by W1500 patches.

4.3. Comparisons to previous global-scale mangrove forest datasets

The HGMF_2020 is the first 10-m spatial resolution global man-
grove forest dataset derived by consistent Sentinel-2 imagery and
OBIA. In this section, we compared this dataset with seven remote
sensing-based global-scale mangrove forest datasets (Table 3), i.e.,
GMFD [26], GMW v2.0, v2.5 and v3.0 [29–31], CGMFC-21 [27],
LREIS_GLOBALMANGROVE, and GMF30_2000-2020. GMW v3.0
was built mainly by L-band synthetic aperture radar (SAR). The



Fig. 4. Spatial information on global mangrove forest conservation. (a) Area of mangrove forests in each natural reserve. (b) Areal extent of each natural reserve, including
Ramsar site, World Heritage site, and federal or national ministry or agency reserve.
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other six datasets were built mainly from optical remote sensing
data. For the optical-based datasets, except for CGMFC-21 and
LREIS_GLOBALMANGROVE, which reported obviously larger man-
grove forest extents than the others, the area of mangrove forests
in HGMF_2020 was higher than the other four. The differences
could be ascribed to imagery, i.e., Sentinel-2 vs. Landsat-5/7. A pre-
vious study indicated that Sentinel-2 imagery with 10-m resolu-
tion is helpful in discriminating smaller mangrove patches [30].
GMW v3.0 adopted GMW v2.5 as a baseline and detected man-
grove changes using L-band SAR. However, using L-band SAR to
separate mangrove forests from other woody wetlands is challeng-
ing [29–31]. Specifically, low-land wet forests adjacent to man-
grove swamps could be misclassified as mangrove forests.
LREIS_GLOBALMANGROVE was built by deep learning methods
and Sentinel-2 between 2018 and 2020. LREIS_GLOBALMANGROVE
is online shared data (https://www.scidb.cn), and as we calculated
from the vector, the total area of mangrove forests was much
higher than that of HGMF_2020. GMF30_2000-2020 is also an
online published dataset (https://data.casearth.cn), and the total
area of 2020’s mangrove forests in GMF30_2000-2020 was much
lower than that in HGMF_2020.
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To further discuss the differences between the 10-m resolution
datasets of HGMF_2020, GMW v3.0, and LREIS_GLOBALMAN-
GROVE, three typical subsets are illustrated in Fig. 6, i.e., Bahía
de Panamá, Panama (Ramsar site no. 1319, Fig. 6a–c), Apoi Creek
Forests, Nigeria (Ramsar site no. 1751, Fig. 6d–f), and Lorentz
National Park, Indonesia (World Heritage Site, Fig. 6g–i). As shown
in Fig. 6, the superiority of the HGMF_2020 dataset can be sup-
ported based on three aspects. First, the integrity of patches in
HGMF_2020 is much higher than that in the other datasets. Thus,
the HGMF_2020 dataset provides geo-information that can be
immediately used by scientists and managers. As shown in Fig. 6,
the integrity of patches in HGMF_2020 performed better than the
other two datasets. The difference can be attributed to different
classification methods. GMW v3.0 was built using a pixel-based
algorithm, LREIS_GLOBALMANGROVE was built based on mixed
methods, and HGMF_2020 was consistently built based on OBIA.
Second, HGMF_2020 delineated considerable small patches of
mangrove forests, especially those along coastal edges. Therefore,
HGMF_2020 can support precision management of mangrove
ecosystems not only at the global scale but also at the regional
and local scales. For example, HGMF_2020 contained more linear

https://www.scidb.cn
https://data.casearth.cn


Fig. 5. 100-km buffer zone of W100 and W1500 mangrove patches. W100 and W1500 represent patches wider than 100 and 1500 m, respectively. (a) Kendrapada District,
Orissa state, India. (b) Lagos, Nigeria, protected by W1500 patches. (c) Aquaculture ponds protected by W1500 patches in Hai Phong, Vietnam.

Table 3
Areas of mangrove forests in HGMF_2020 and other remote sensing-based global-scale datasets.

Dataset Reference year Data source Resolution (m) Areas (km2)

HGMF_2020 2020 Sentinel-2 MSI 10 145,068
GMFD 2000 Landsat-TM/ETM+ 30 137,760
GMW v2.0 2010 ALOS PALSAR

Landsat-TM/ETM+
30 137,600

GMF30_2000-2020 2020 Landsat-TM/OLI 30 113,779
GMW v2.5 2010 Landsat TM/ETM+

ALOS PALSAR
Sentinel-2 MSI

10–30 140,260

GMW v3.0 2020 ERS-1 SAR
ALOS PALSAR
ALOS-2 PALSAR-2

25 147,359

CGMFC-21 2012 Landsat-TM/ETM+ 30 167,387
LREIS_GLOBALMANGROVE 2020 Sentinel-2 MSI 10 168,659

M. Jia et al. Science Bulletin 68 (2023) 1306–1316
patches outside aquaculture ponds. Third, HGMF_2020 contained
reasonable geographical spatial details. As shown in the subset of
Lorentz National Park (Fig. 6g–i), mangrove patches in HGMF_2020
were split only by tidal creeks (Fig. 6g), whereas unreasonable
noise widely existed in the patches of the other two.

4.4. Reliability, updateability and uncertainties of the HGMF_2020
dataset

The reliability of the HGMF_2020 database could be attributed
to three factors, i.e., the higher spatial resolution of Sentinel-2 ima-
gery, the robust images obtained by MSIC, and the better perfor-
mance of OBIA. First, compared to Landsat imagery, the finer
spatial resolution of Sentinel-2 imagery offers great opportunities
to obtain mangrove patches with more spatial details. Second,
the MSIC overcomes the uncertainties derived from tidal variations
within a scene. Third, the OBIA has advantages over pixel-based
classification because it uses spectral, textural, and neighborhood
1313
information during classification and generally produces higher
accuracy [70,71] and reduces salt-and-pepper effects [72]. There-
fore, the classification result can be directly used for further
analysis.

Compared to previous global mangrove forest databases, the
advantages of the HGMF_2020 database not only lie in the higher
spatial resolution but also the addition of information on patch
patterns. Owing to this advantage, the HGMF_2020 database has
more potential to support a range of policy mechanisms, such as
informing global policy frameworks about trends in mangrove
health and distribution, identifying drivers of loss and recovery,
mapping mangrove values, and setting and monitoring targets
for conservation and rehabilitation.

In addition, HGMF_2020 is an updatable dataset. The current
availability of advanced satellite imagery allows for the acquisition
of rapid and robust updatable products, especially Sentinel-2 ima-
gery, which has a short revisit cycle of 2–5 days. The GEE platform
enabled swift processes of a large number of satellite images across



Fig. 6. Typical subsets of HGMF_2020, GMW v3.0, and LREIS_GLOBALMANGROVE in Bahía de Panamá, Panama (Ramsar site no. 1319. (a) HGMF_2020; (b) GMW v3.0; (c)
LREIS_GLOBALMANGROVE), Apoi Creek Forests, Nigeria (Ramsar site no. 1751. (d) HGMF_2020; (e) GMW v3.0; (f) LREIS_GLOBALMANGROVE), and Lorentz National Park,
Indonesia (World Heritage site. (g) HGMF_2020; (h) GMW v3.0; (i) LREIS_GLOBALMANGROVE).

M. Jia et al. Science Bulletin 68 (2023) 1306–1316
large scales [73]. The HGMF_2020 dataset can be updated annually
by applying image classifications only to locations with changes.

Uncertainties in HGMF_2020 were mainly caused by three fac-
tors. First, commission errors were caused by misclassification
with lowland wet forests. For example, in Lorentz National Park,
lowland wet forests with spectral and texture features similar to
those of mangrove forests are directly connected to mangrove
forests, and thus, they are difficult to differentiate from mangrove
forests. Second, data gaps emerged from cloud coverage. Although
NDVI-MSIC has great potential to remove cloud pixels, clouds may
still exist in small regions. Third, due to the spatial resolution of
Sentinel-2 imagery and the capacity of the OBIA, the minimum
mapping unit of HGMF_2020 was set to 600 m2 (six 10-m resolu-
tion pixels); thus, smaller patches could not be identified or
mapped.
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5. Conclusion

Up-to-date information and assessment of mangrove forests
distributions and patch structures are essential in supporting the
implementation of relevant sustainable management. This study
produced the first 10-m resolution dataset of global mangrove
forests, i.e., HGMF_2020, which contains the abovementioned
information. Based on the HGMF_2020 dataset, we conducted
further analysis of the status of global mangrove forests from
different perspectives. From the perspective of ecosystem conser-
vation and threats, mangrove forests located on the coasts of west-
ern Africa had a better status due to the higher proportion of
conservation and larger area of natural reserves; in contrast, man-
grove forests in eastern and southeastern Asia were in a disadvan-
tageous situation due to the lower proportion of conservation and
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vast extent of anthropogenic land cover. From the perspective of
resisting natural disasters, mangrove forests in southern, eastern
and southeastern Asia, Northern America, and western Africa
greatly contributed to protecting properties due to the larger patch
size. This study presents a quantitative analysis of global mangrove
forests status in association with conservation, threats, and coastal
protection. HGMF_2020, with consistent spatial and temporal fine
resolution, offers the critical baseline for evaluating the role of
mangrove forests toward sustainability and the assessment of
SDGs.
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