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Abstract Information of paddy rice distribution is
essential for food production and methane emission
calculation. Phenology-based algorithms have been uti-
lized in the mapping of paddy rice fields by identifying the
unique flooding and seedling transplanting phases using
multi-temporal moderate resolution (500 m to 1 km)
images. In this study, we developed simple algorithms to
identify paddy rice at a fine resolution at the regional scale
using multi-temporal Landsat imagery. Sixteen Landsat
images from 2010–2012 were used to generate the 30 m
paddy rice map in the Sanjiang Plain, northeast
China—one of the major paddy rice cultivation regions in
China. Three vegetation indices, Normalized Difference
Vegetation Index (NDVI), Enhanced Vegetation Index
(EVI), and Land Surface Water Index (LSWI), were used
to identify rice fields during the flooding/transplanting and
ripening phases. The user and producer accuracies of
paddy rice on the resultant Landsat-based paddy rice map
were 90% and 94%, respectively. The Landsat-based
paddy rice map was an improvement over the paddy rice
layer on the National Land Cover Dataset, which was
generated through visual interpretation and digitalization
on the fine-resolution images. The agricultural census data
substantially underreported paddy rice area, raising serious
concern about its use for studies on food security.

Keywords phenology, flooding, transplanting, ripening,
land use

1 Introduction

Rice is the world’s second-largest crop and is a major food

staple, feeding more than half of the world’s population
(Van Nguyen and Ferrero, 2006). It plays an important role
in ensuring global food security. Global rice consumption
has been predicted to exceed rice production (Kuenzer and
Knauer, 2013). Approximately 95% of global rice is
cultivated on flooded soil (Belder et al., 2004). Irrigation
for rice cultivation requires large amounts of water and has
an important impact on water quality. In addition, rice
fields are one of the main sources of greenhouse gas
emissions (Li et al., 2004). Therefore, accurate high-
resolution maps of paddy rice distribution are critical for
food production, water management, agriculture migra-
tion, and agriculture adaption under global climate change
(Döll, 2002).
Remote sensing is an efficient tool for generating paddy

rice maps. The potentials of fine-resolution satellite
imagery, such as 20 m SPOT and 30/79 m Landsat, for
classifying paddy rice fields have been explored (McCloy
et al., 1987; Panigrahy and Parihar, 1992; Okamoto and
Fukuhara, 1996; Laba et al., 1997; Okamoto et al., 1998;
Turner and Congalton, 1998). Single images were typically
used in earlier studies due to the limited availability of
satellite imagery. Rice fields were visually interpreted from
color composite images, and their boundaries were then
artificially digitalized onscreen (Rao and Rao, 1987; Qiu et
al., 2003; Liu et al., 2005). Other studies used the
supervised or unsupervised classification algorithms to
identify the spectral cluster of paddy rice (Panigrahy and
Parihar, 1992; Laba et al., 1997; Okamoto et al., 1998;
Turner and Congalton, 1998). However, the application of
these two approaches at regional or national scales is often
labor-intensive and time-consuming. Changes in research
personnel and methods over time make it particularly
difficult to obtain consistent classification results in the
projects that analyze multiple-year images.
The Moderate Resolution Imaging Spectroradiometer

(MODIS) provides global coverage of imagery every 1–2
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days at 250 m, 500 m, and 1 km, and is free to the public.
The phenology-based algorithm developed on the multi-
temporal MODIS data has shown a great potential for
tracking the dynamics of the vegetation-to-water ratio
during the rice growth, and can consistently map the
annual paddy rice distribution at regional scales (Xiao et
al., 2005; Sakamoto et al., 2006; Xiao et al., 2006;
Sakamoto et al., 2009a, b; Biradar and Xiao, 2011).
However, the accuracy of the MODIS phenology-based
paddy rice maps was still questionable due to the mixed
pixels caused by the coarse spatial resolution; a problem
especially relevant in Asia, with over 200 million small-
holding farms, typically under 1 hectare (Xiao et al., 2006;
Sun et al., 2009). One solution is the use of multi-temporal
high-resolution imagery (Xiao et al., 2006).
The United States Geological Survey (USGS) Earth

Resources Observation and Science (EROS) Center has
offered free historical and new Landsat imagery to the
public since 2008. This provided a great opportunity for
regional-scale land cover classification. One significant
accomplishment was the capability to track forest cover
dynamics by using multi-temporal Landsat imagery
(Hansen et al., 2013). Some studies tracked the continuous
dynamics of spectral features derived from all available
Landsat imagery across multi-years to identify forest and
forest disturbance (Masek et al., 2008; Huang et al., 2010a;
Zhu et al., 2012). Several others extracted the annual
trajectory of image features from yearly Landsat imagery,
such as using one image within the peak of the annual
growing season (Cohen et al., 2010; Kennedy et al., 2010).
Another study evaluated the spectral features of the forest
during different phenological phases, then screened the
specific phases when the forest showed spectral features
that were distinguishable from other land types (Dong
et al., 2013).
The potential of multi-temporal Landsat imagery to

monitor crops has been underestimated due to their
spectral and phenological variability features (Zhong et
al., 2014). Recent studies have highlighted the capability
of intra-annual Landsat to identify corn and soybean
(Zhong et al., 2014; Müller et al., 2015). Therefore, we
hypothesize that paddy rice distribution mapping will
benefit from the phenological features captured by multi-
temporal Landsat imagery. We examined if single dates of
phenological or spectral characteristics from the Landsat
imagery with low-observation frequency could be
extracted for paddy rice. For example, could multi-
temporal Landsat imagery track the dynamics of the
vegetation-to-water ratio for rice fields similarly to the use
of MODIS data?
The objective of this study is to: (i) develop the Landsat

phenology-based scheme to identify paddy rice fields
during two phenological (flooding/transplanting and
ripening) phases at regional scales, and (ii) systematically
evaluate the accuracy and uncertainties of the resultant
Landsat-based paddy rice map.

2 Materials and methods

2.1 Study area

The Sanjiang Plain is located in the northeast region of
Heilongjiang Province, China (129.19°E‒135.08°E,
43.83°N‒48.45°N). It covers 23 counties with a total
area of 10.88 � 104 km2. Approximately 80% of the
Sanjiang Plain is relatively flat with an elevation< 200 m
(Fig. 1(a)). The plain is characterized by a temperate and
sub-humid continental monsoon climate, with a mean
annual precipitation of 500–650 mm, the majority of which
falls between July and September. The mean monthly
temperature varies from ‒18°C in January to 22 °C in July.
The typical land cover types were cropland, woodland, and
natural wetland, accounting for 55.2%, 30.3%, and 7.4%
of the entire area, respectively (Huang et al., 2010b).
The abundant water resources and fertile soils, along

with the flat topography, make the Sanjiang Plain favorable
for paddy rice cultivation. Rice cultivation is relatively
identical across the entire Sanjiang Plain (Zhang et al.,
2011). One rice crop per year is cultivated in this region
with a rice growth cycle duration of approximately 140–
150 days (Fig. 2(a)). From mid-April to early May, rice
fields are prepared by plowing, overturning, flooding, and
leveling. In mid- to late May, rice seedlings are
transplanted to flooded fields. During these two phases,
rice fields are mostly dominated by water (Fig. 2(b)). Rice
canopy starts to rise rapidly during the vegetative growing
phase (tillering and stem elongation) from mid-June to
early July (Fig. 2(c)), resulting in changes of the
vegetation-to-water ratio. The reproductive phase starts
in mid-July (panicle initiation, Fig. 2(d)), the vegetation-
to-water ratio reaches its maximum value in late July, and
then remains stable or slightly decreases during the
ripening phase from late August to September (Fig. 2
(e)). Rice is harvested from late September to early
October.

2.2 Landsat images and preprocessing

The Sanjiang Plain is covered by 13 Landsat footprints
(Fig. 1(b)). 119 L1T Landsat images from 2010–2012 were
collected from http://landsat.usgs.gov/ and were used to
extract the multi-temporal curves of the Landsat vegetation
indices for typical land cover types. Sixteen images were
eventually used to generate the paddy rice map after
examining three criteria (Table 1): 1) image acquisition
date was during the peak of the transplanting/flooding and
ripening phases when paddy rice showed the distinguish-
ably phenological or spectral features from other land
types; 2) cloud coverage was less than 5%; and 3) the gap-
filling strategy (see Section 2.5).
All images were first processed for atmospheric

correction and converted to surface reflectance using the
Landsat Ecosystem Disturbance Adaptive Processing
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Fig. 1 (a) Geographic location of the Sanjiang Plain, northeast China; (b) location of all Landsat footprints, high-resolution images
available on Google Earth, and ground truth pointes collected in 2011.

Fig. 2 (a) Rice cropping calendar in the Sanjiang Plain; (b) rice transplanting stage (06/18/2013); (c) stem elongation stage (07/10/
2013); (d) panicle initiation stage (07/21/2013); (e) mature stage (08/24/2011).

Cui JIN et al. Mapping paddy rice distribution 3



System (LEDAPS) (Fig. 3) (Vermote et al., 1997; Masek et
al., 2008). Masks for clouds, cloud shadows, clear water,
and data gaps due to Landsat 7 ETM+ SLC-off (Scan Line
Corrector failed) were created for each Landsat scene using
the object-based cloud and cloud shadow algorithm,
Fmask (Zhu and Woodcock, 2012).
Three vegetation indices were calculated using surface

reflectance (ρ) from the blue (B1), red (B3), NIR (B4), and
SWIR (B5) bands: 1) Normalized Difference Vegetation
Index (NDVI) (Tucker, 1979), 2) Enhanced Vegetation
Index (EVI) (Huete et al., 1997, 2002), and 3) Land
Surface Water Index (LSWI) (Xiao et al., 2004).

NDVI ¼ �B4 – �B3
�B4 þ �B3

, (1)

EVI ¼ �B4 – �B3
�B4 þ 6� �B3 – 7:5� �B2 þ 1

, (2)

LSWI ¼ �B4 – �B5
�B5 þ �B5

: (3)

2.3 Algorithm for mapping paddy rice during the flooding/
transplanting phase

We first chose one ground truth point for each land type,
which was collected during the 2011 field investigation.
Three vegetation indices were then extracted from multi-
temporal Landsat imagery from 2010‒2012 for the pixel
where the ground truth point was located (Fig. 4). Paddy
rice showed a unique inversion between LSWI and EVI
(NDVI) during the flooding/transplanting period: LSWI

was substantially higher than EVI (NDVI) during early
May and late June. Thus, a pixel was paddy rice when the
condition LSWI+ 0.05>EVI (NDVI) was met in the
flooding/transplanting phase. This was consistent with the
MODIS phenology-based algorithm (Xiao et al., 2005,
2006).

2.4 Algorithm for mapping paddy rice during the ripening
phase

Paddy rice also showed unique features during the ripening
phase (Fig. 4). From late August to late September, forest
NDVI remained high (around 0.8). However, paddy rice
NDVI fell below 0.8 (Fig. 4(a) vs. 4(c)). Built-up had
much lower LSWI (around 0) than did paddy rice (> 0.2)
(Fig. 4(c) vs. 4(e)). Paddy rice had smaller differences
between EVI (NDVI) and LSWI. Thus, the rule-based
decision trees were deployed on LSWI, NDVI, and (NDVI
+ EVI)/2-LSWI to map the ripening paddy rice. Here the
image on the 254th day in 2011 for path/row = 116/027
(116/027-254/2011) was used as an example to illustrate
the procedures to build the decision rules and determine the
optimal threshold values.
Step 1 Selection of training regions of interest (ROIs):

homogenous ROIs were visually interpreted and digita-
lized on the Landsat false color composite (FCC) image of
LSWI, NDVI, and (NDVI+ EVI)/2-LSWI for paddy rice
(22 ROIs with 1,077 pixels), dry cropland (22 ROIs with
1,077 pixels), forest (44 ROIs with 974 pixels), and built-
up and bare land (21 ROIs with 989 pixels).
Step 2 Evaluation of ROI separability: the Jeffries-

Matusita (J-M) distances of the ROI pairs between paddy

Table 1 A list of Landsat images collected for mapping the paddy rice distribution in the Sanjiang Plain, northeast China

Path/Row Sensor Date Year Cloud/% Rice growing phase

113/026 TM September-19 2011 0 Ripening

113/027 TM September-19 2011 0 Ripening

114/027 TM June-25 2011 1 Transplanting

TM June-06 2010 0 Transplanting

TM June-25 2011 0 Transplanting

114/028 ETM+ September-21 2011 0 Ripening

ETM+ September-07 2012 0 Ripening

114/029 TM June-25 2011 0 Transplanting

115/027 ETM+ August-27 2011 0 Ripening

ETM+ June-26 2012 0 Transplanting

115/028 ETM+ September-12 2011 0 Ripening

ETM+ September-09 2010 1 Ripening

115/029 ETM+ August-27 2011 3 Ripening

ETM+ June-26 2012 0 Transplanting

116/027 TM September-11 2011 0 Ripening

116/028 TM September-11 2011 0 Ripening
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Fig. 3 Workflow for mapping paddy rice distribution using the multi-temporal Landsat images.

Fig. 4 Seasonal dynamics of Landsat-based vegetation indices (NDVI, EVI, and LSWI) for typical land types.
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rice and other land types were calculated (Richards, 1999).
All J-M distances were above 1.9, which suggested that
paddy rice had great separability from other land types
using the training ROIs collected from the Landsat FCC
image.
Step 3 Statistical distribution of ROIs: paddy rice

showed distinguishable statistical distributions (Fig. 5).
The built-up and bare land LSWI ranged from ‒0.2 to 0.2
and was significantly lower than paddy rice (Fig. 5(a)). The
forest NDVI was above 0.7, much higher than paddy rice
(Fig. 5(b)). The paddy rice (NDVI+ EVI)/2-LSWI ranged
below 0.2 and was lower than dry cropland (Fig. 5(c)).
Step 4 Determination of the optimal thresholds: the

optimal thresholds were calculated using regression trees
from the training ROIs: Tbuilt-up/bare-land= 0.2682 for LSWI,
Tforest= 0.6849 for NDVI, and Tdry-cropland= 0.2219 for
(NDVI+ EVI)/2-LSWI.
Step 5 Implementation of the decision rules: the decision

rules and threshold values were deployed on LSWI, NDVI,
and (NDVI+ EVI)/2-LSWI.
The steps above were implemented on the Landsat

images during the ripening phase. The threshold values
were calculated using regression trees in R Project, Version
3.0.1 with a prediction accuracy above 95% (Table 2).
The algorithm robustness was evaluated by the accuracy

assessment for three Landsat scenes (116/027-254/2011,
114/028-264/2011, and 114/028-251/2012), which cov-
ered the main paddy rice cultivation region. For 116/027-
264/2011, a total number of 1,541 testing ROIs (24,656
pixels) was randomly generated within the subset region
covered by the WorldView-2. As for 114/028-251/2012,
2,915 ROIs were randomly generated. 285 ROIs (167 for
non-paddy rice and 118 for paddy rice) and 2,630 ROIs
(2,068 for non-paddy rice and 567 for paddy rice) were
visually interpreted and digitalized onscreen from the high
resolution images on Google Earth and the Landsat FCC
image of 114/028-155/2012 (R/G/B = SWIR/NIR/Red),
respectively. We used the same-year flooding/transplanting

rice map (114/028-176/2011) as the ground truth reference
to evaluate the accuracy of the ripening rice map on 114/
028-264/2011. The accuracy assessment was summarized
by the error matrixes along with user accuracy, producer
accuracy, overall accuracy, and KAPPA coefficient for the
ripening rice maps (Congalton, 1991).

2.5 Implementation of algorithms

The field surveys were carried out in 2011, thus it was used
as the baseline year. Images in 2010 and 2012 were used to
fill the gaps caused by clouds, cloud shadows, or Landsat 7
ETM+ SLC-off in the 2011 images. For each Landsat
footprint, we assembled the flooding/transplanting and
ripening paddy rice maps into one paddy rice map using
the following rule: the 2011 flooding/transplanting map
was the initial input. If the 2011 flooding/transplanting
map wasn’t available or if it contained data gaps, the gaps
were filled using the first available rice map in the order of:
1) the 2011 ripening rice map, 2) the 2010 flooding/
transplanting map, 3) the 2010 ripening rice map, 4) the
2012 flooding/transplanting map, and 5) the 2012 ripening
rice map. Finally, the paddy rice maps for 13 Landsat
footprints were mosaicked into one preliminary paddy rice
map for the Sanjiang Plain.
The final Landsat rice map was generated by excluding

the natural wetland and unsuitable terrain regions for rice
cultivation. The 30 m Landsat-based natural wetland
dataset, provided by the Northeast Institute of Geography
and Agricultural Ecology, Chinese Academy of Sciences,
includes six natural wetland types: river, lake, flooding
wetland, forested wetland, shrub wetland, and grassland
wetland. The overall accuracy of natural wetland was
above 90% (Xie, 2013). As paddy rice in the Sanjiang
Plain is generally cultivated in the low-elevation region, a
terrain mask was generated to exclude regions with an
elevation> 150 m for the low-latitude region and> 500 m
for the high-latitude region using the 30 m ASTER Global

Fig. 5 Statistic distribution of LSWI, NDVI, and (NDVI+ EVI)/2-LSWI for paddy rice, dry cropland, forest, and built-up area on the
116/027-254/2011 (acc. represents accuracy).
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Digital Elevation Model (DEM) (http://earthexplorer.usgs.
gov/).

2.6 Validation of the Landsat-based paddy rice map of the
Sanjiang Plain

Extensive field surveys were carried out to collect the
ground truth points (points of interest, referred as POIs)
across the Sanjiang Plain in 2011. The geo-locations of
POIs were recorded using a GPS device with a position
precision of 3–5 m. There were 240 POIs for paddy rice
and 993 POIs for the other land cover types collected (487
POIs for dry cropland, 32 POIs for grassland, 90 POIs for
natural wetland, 264 POIs for forest, 89 POIs for built-up,
29 POIs for water, and 2 POIs for other land cover types)
(Fig. 1(b)).
In this study, the resultant 30 m Landsat-based paddy

rice map (RICELandsat) was evaluated using three
approaches. The first approach used a point (POI) to one
pixel comparison. We overlaid the 1,233 POIs on the
RICELandsat and counted the number of pixels that were
classified as paddy rice and other land cover types,

respectively. Note that some POIs were collected along the
edges of the fields or on the roads; these pixels were
typically mixed with multiple land types. Thus, there could
be classification errors for the POIs on the RICELandsat. To
overcome the issue, the second approach was to generate
four buffering windows (15 m� 15 m, 30 m� 30 m, 45 m
� 45 m, and 60 m � 60 m) with the POI as the centers.
60 m was defined as the maximum buffering distance
considering the farthest observation range during the field
survey and the maximum distance among the rice field
plots. We overlaid the buffering windows on the
RICELandsat, and counted the numbers of POIs of both
paddy and non-paddy rice that had been correctly
identified from the RICELandsat under the two standards.
In the first, a paddy rice POI was correctly identified as
long as a RICELandsat paddy rice pixel occurred within the
buffering window. In the second, a non-paddy rice POI
was correctly identified once all the RICELandsat pixels
within the buffering window were identified as non-paddy
rice. The third approach was to digitalize ROIs with the
POIs as references. For each POI, we generated a ROI with
an average area of 120 m� 120 m from the high-resolution

Table 2 The threshold values as the inputs of rule-bases decision trees for the Landsat images during the rice ripening phase

Landsat Image Path/Row Date Image Features Threshold

113/027-262/2010
113/026-262/2010

113/027
113/026

09/19/2010 LSWI 0.1158

NDVI 0.7057

(NDVI+ EVI)/2-LSWI 0.2541

114/028-264/2011 114/028 09/21/2011 LSWI 0.2035

NDVI 0.6692

(NDVI+ EVI)/2-LSWI 0.2081

114/028-251/2012 114/028 09/07/2012 LSWI 0.2702

NDVI 0.7639

(NDVI+ EVI)/2-LSWI 0.2918

115/027-239/2011 115/027 08/27/ 2011 LSWI 0.3422

NDVI 0.8137

(NDVI+ EVI)/2-LSWI 0.2327

115/028-255/2011 115/028 09/12/2011 LSWI 0.1984

NDVI 0.7518

(NDVI+ EVI)/2-LSWI 0.2368

115/028-252/2010 115/028 09/09/2010 LSWI 0. 2010

NDVI 0.7090

(NDVI+ EVI)/2-LSWI 0.2566

115/029-239/2011 115/029 08/27/2011 LSWI 0.3371

NDVI 0.8339

(NDVI+ EVI)/2-LSWI 0.2721

116/027-254/2011
116/028-254/2011

116/027
116/028

09/11/2011 LSWI 0.2682

NDVI 0.6849

(NDVI+ EVI)/2-LSWI 0.2219
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imagery of Google Earth (Fig. 1(b)) or Landsat FCC
images (R/G/B = SWIR/NIR/Red) in late June as ground
truth reference maps, on which paddy rice had either
distinguishable spatial patterns or spectral features from
other land types. 65 ROIs (1,052 pixels) of paddy rice and
227 ROIs (3,684 pixels) of other land cover types were
collected from Google Earth from 2010‒2012. 175 ROIs
(2,730 pixels) of paddy rice and 766 ROIs (12,216 pixels)
of other land cover types were interpreted from Landsat
FCC images. The error matrix was calculated by over-
laying ROIs on the RICELandsat.

2.7 Comparison with other paddy rice datasets

The National Land Cover Dataset (NLCD) is a 30 m vector
database using a hierarchical classification scheme of 25
land-cover types. The NLCD was developed by visual
interpretation and artificial digitalization from Landsat
imagery (the primary base maps) at a scale of 1:100,000.
Since the NLCD is only available to the public as areal
fraction at 1 km resolution for each land type, we
aggregated our RICELandsat to a 1 km grid and compared
it with the 2010 NLCD paddy rice (RICENLCD).
In addition, we collected the agriculture census records

of rice cultivation area for 17 counties from the agricultural
statistical yearbooks of Shuangyashan City, Qitaihe City,
Jixi City, and Jiamusi City in 2011 (RICECensus). We
compared the county-level rice area between the
RICELandsat and the RICECensus.

3 Results

3.1 Maps of the flooding/transplanting phase of paddy rice

Paddy rice showed as dark green across the Landsat FCC
images (R/G/B = SWIR/NIR/Red) after two weeks of
seedling transplanting in late June of 2011 and 2012, and
was easily identified from other land types (Figs. 6(a)‒6
(c)). The LSWI-EVI maps highlighted the spatial distribu-
tion of the rice fields under the flooding/transplanting
phase (Figs. 6(d)‒6(f)). The pixels with LSWI-EVI>
‒0.05 primarily represented the spatial pattern of paddy
rice. However, the LSWI-NDVI was not as sensitive as
LSWI-EVI; LSWI-NDVI of paddy rice was close to that of
non-paddy rice (Figs. 6(g)‒6(i)). The spatial distribution of
paddy rice on the resultant maps (Figs. 6(j)‒6(l))
corresponded well with the spatial pattern of paddy rice
on the Landsat FCC images (Figs. 6(a)‒6(c)).

3.2 Maps of the ripening phase of paddy rice

The paddy rice distribution on the resultant maps
(Figs. 7(d)‒7(f)) were spatially consistent with the pattern
of paddy rice on the Landsat FCC images (Figs. 7(a)‒7(c))
on which paddy rice showed as orange tone, and was

distinguishable from other land types. The ripening rice
maps for 116/028-254/2011 and 114/028-251/2012 had
high classification accuracies. The overall accuracies and
KAPPA coefficients were 95% and 92% for 116/028-254/
2011, and 96% and 91% for 114/028-251/2012. The user
and producer accuracies were mostly above 90% for paddy
rice and 95% for non-paddy rice on both maps.
The ripening rice map of 114/028-264/2011 had high

spatial consistency with the flooding/transplanting rice
map of 114/028-176/2011 with a correlation coefficient of
0.8. The differences between the two rice maps were subtle
and mainly distributed along the boundaries of rice fields.
The overall accuracy and KAPPA coefficient of the
ripening rice map of 114/028-264/2011 was 94% and
84% with a user and producer accuracy of 89% and 87%
for paddy rice, and 95% and 96% for non-paddy rice.

3.3 Paddy rice map of the Sanjiang Plain and accuracy
assessment

The paddy rice area was 20,294 km2 in 2011, accounting
for 19% of the total area of the Sanjiang Plain. Rice fields
were mainly distributed at the alluvial plain of Heilong-
jiang, Songhua, and Ussuri Rivers in the northern region,
the plains of Muleng River and Khank Lake in the
southeast region, and the Woken River plain in the
southwest region (Fig. 8(a)).
The accuracy of the RICELandsat paddy rice increased

from 61% for the POIs to 95% for the 60 m buffering
distance (Fig. 9). The paddy rice accuracy increased by
11% as the buffering distance increased from 15–30 m and
from 30–45 m. The accuracy for the RICELandsat non-
paddy rice decreased from 97% for the POIs to 89% for the
60 m buffering distance.
The RICELandsat had a reasonably high overall accuracy

of 97% and a KAPPA coefficient of 90% according to the
error matrix calculated with the ROIs (Table 3). The user
and producer accuracies were 90% and 94% for paddy rice
and 98% and 97% for non-paddy rice.

3.4 A comparison of the Landsat paddy rice map with the
other paddy rice area estimate datasets

In general, the spatial pattern on the RICELandsat was
similar to that on the RICENLCD (Figs. 8(a) and 8(b)).
However, there were still some significant differences
between the RICELandsat and the RICENLCD. The total rice
area from the RICELandsat was 31% higher than that
derived from the RICENLCD (15,465 km2). The northern
region showed a significant discrepancy between the
RICELandsat and the RICENLCD (Fig. 8(c)).
The RICELandsat had higher area estimates than the

RICENLCD for Fujin (39%), Tongjiang (74%), Luobei
(69%), Suibin (104%), and Fuyuan (258%) in the north
region (Fig. 10(a)). For the other counties, the RICELandsat

rice area matched well with the RICENLCD estimates (the
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solid regression line in Fig. 10(a)). The RICELandsat rice
area correlated well with the estimates from the RICECensus

with R2= 0.85 (the solid regression line in Fig. 10(b)).
However, the RICELandsat rice area was about 128% higher
than the RICECensus. The RICENLCD also estimated the rice
area around 66% higher than the RICECensus with R

2= 0.63
(the dot regression line in Fig. 10(b)). This result was
consistent with the previous conclusions of underreporting
cropland area by the agricultural census report (Qiu et al.,
2003; Liu et al., 2005).

4 Discussion

The integration of the Landsat flooding/transplanting-
based and ripening-based algorithms introduced in this
paper contributes to the efforts to improve the resolution
and accuracy of paddy rice maps at the regional scale. The
Landsat flooding/transplanting-based algorithm follows
the MODIS phenology-based algorithm by identifying the
temporary inversion between LSWI and EVI (NDVI)
during the field flooding and seedling transplanting stages.

Fig. 6 (a)‒(c), Landsat FCC images (R/G/B = SWIR /NIR/Red); (d)‒(f), LSWI-EVI maps; (g)‒(i), LSWI-NDVI maps; (j)‒(l), flooding/
transplanting rice maps for 114/027-176/2011, 114/028-176/2011, and 115/027-178/2012.
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Using the simple decision rules and training samples on
LSWI, NDVI, and (NDVI+ EVI)/2-LSWI, the Landsat
ripening-based algorithm has shown the spatial and
temporal robustness to extract the high-accuracy ripening
rice maps.
The minimum classification unit plays an important role

in determining the precision of the RICELandsat and
RICENLCD. The RICELandsat was generated by pixel-

based classification, with a classification unit of 30 m �
30 m. The RICENLCD was generated by onscreen
digitalization primarily from the 30 m Landsat at a scale
of 1:100,000, with the minimum classification unit
equivalent to 3�3 Landsat pixels. Thus, rice fields smaller
than 3�3 Landsat pixels cannot be identified by the NLCD
(Liu et al., 2005). In other words, the RICELandsat can show
the spatial pattern of paddy rice in far more detail than the

Fig. 7 (a)‒(c), Landsat FCC images (R/G/B = LSWI / NDVI / (NDVI+ EVI)/2-LSWI); (d)‒(f), ripening rice maps for 116/027-254/
2011, 114/028-264/2011, and 114/028-251/2012.

Fig. 8 (a) 30 m Landsat-based paddy rice map (RICELandsat); (b) 1 km area fraction of paddy rice on the 2010 NLCD (RICENLCD);
(c) 1 km area fraction difference map between the RICELandsat and the RICENLCD.
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NLCD.
Two sites were selected to evaluate the discrepancies

between the RICELandsat and RICENLCD. Site 1 represents
the case of RICELandsat = paddy rice and RICENLCD = non-
paddy rice. The high resolution image on 09/05/2010
shows that Site 1 was paddy rice in 2010 (Fig. 11(a)). The
temporal profiles of MODIS vegetation indices during
2000‒2012 show the presence of the flooding/transplant-
ing phases (LSWIMODIS+ 0.05>EVIMODIS (NDVIMO-

DIS)) in May and June from 2009‒2012 (highlighted in
gray, Fig. 11(b)). This proves that Site 1 was paddy rice
starting in 2009, which matches with the RICELandsat. Site
2 represents the case of RICELandsat = non-paddy rice and
RICENLCD = paddy rice. The high resolution image on 08/
22/2012 verifies that Site 2 was non-paddy rice in 2012
(Fig. 11(c)). The temporal profiles of MODIS vegetation
indices don’t show the presence of the flooding/transplant-
ing phases in May and June of 2000‒2012 (Fig. 11(d)).
This verifies that Site 2 was non-paddy rice from 2009‒
2012, which also matches with the RICELandsat. In
summary, the RICELandsat for Sites 1 and 2 agrees with
the interpretation analysis from the high-resolution image
and temporal MODIS vegetation indices. It can be
concluded that the significant differences between the
RICENLCD and the RICELandsat are most likely caused by
the visual interpretation uncertainties on the RICENLCD.
Two main factors contribute to the uncertainties of the
RICENLCD. First, image selection determines the inter-
pretation accuracy of paddy rice. The NLCD is produced
based on a single FCC image (R/G/B = NIR/Red/Green)
(Liu et al., 2005), on which paddy rice might show a
similar image tone (red color) with other vegetation types.
Adding the SWIR can increase visual interpretation

Fig. 9 Classification accuracy based on POIs.

Table 3 Accuracy assessment of the 30 m Landsat paddy rice map in the Sanjiang Plain, northeast China

Paddy rice Non-paddy rice Total Producer accuracy/%

Ground
Truth Points

Paddy rice 3535 247 3782 94

Non-paddy rice 399 15501 15900 97

Total 3934 15748

User accuracy/% 90 98

Fig. 10 (a) County-level comparison of paddy rice area estimates between the RICELandsat and the RICENLCD; (b) county-level
comparison of paddy rice area estimates between the RICELandsat and the RICECensus.
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accuracy of paddy rice (Li et al., 2012). Our results suggest
that incorporating phenological information using the
multi-temporal Landsat FCC images (R/G/B = SWIR/
NIR/Red) during the flooding/transplanting and ripening
phases should be considered for the rice interpretation of
the NLCD. Secondly, the interpreter’s expertise, including
a good knowledge of the study area and image features
(tone, texture, spatial pattern, etc.) of paddy rice, also plays
an important role. However, the interpreter’s expertise is
not objective and repeatable (Shalaby and Tateishi, 2007),
and the interpretation error cannot be predictable even
across a large region.
Several factors contribute to uncertainties in the flood/

transplanting and ripening-based algorithms using multi-
temporal Landsat images to identify paddy rice on a large
spatial scale, such as Southeast Asia— the global main rice
cultivation region. Southeast Asia has variable landscapes,
topography, and climate along with complex rice-growing
ecosystems and multiple cropping intensities (Xiao et al.,
2006; Kuenzer and Knauer, 2013). The first factor is the
similarity of the flooding/transplanting characteristics from
other land types, including mangrove forests and the
seasonally inundated natural wetlands, which can be
misclassified as paddy rice. The second factor is the
intensive collection of training ROIs to implement the
ripening-based algorithm. The third factor is the arbitrary
thresholds for generating the terrain mask as rice
cultivation terrain, which is variable across regions.
Finally, Southeast Asia generally has a tropical monsoon
climate with only a short dry season from November to
March. Frequent rainfall during the long wet season
significantly limits the availability of good-quality Landsat

data. The inclusion of other fine-resolution satellite data
will increase observation frequency and may help map rice
distribution in monsoon Asia in the future.

5 Conclusions

Information on the spatial extent of paddy rice planting
area is important for studies of rice growth and yield
prediction, water resource management, and methane
emission assessment. However, spatial datasets of paddy
rice at a fine resolution with reliable accuracy are still not
available at the regional scale. This study demonstrated the
potentials of multi-temporal Landsat imagery in regional-
scale rice classification by integrating the phenological and
spectral features of paddy rice in the flooding/transplanting
and ripening phases. The multi-temporal Landsat vegeta-
tion indices were sensitive to tracking the seasonal
dynamics of the vegetation-to-water ratio of the rice fields
during the flooding and seedling transplanting phases. The
unique spectral features of the ripening paddy rice were
spatially and temporally robust and can be used to identify
paddy rice from other land cover types. However, future
studies should investigate several factors such as non-
cropland inundated land types, terrain conditions, and
image availability when applying the methodology in this
study to rice field identification in other regions,
particularly in Southeast Asia with its complex rice
cultivation ecosystems.
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