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a b s t r a c t

The overarching goal of this research was to develop methods and protocols for mapping irrigated areas
using aModerate Resolution Imaging Spectroradiometer (MODIS) 500m time series, to generate irrigated
area statistics, and to compare these with ground- and census-based statistics. The primary mega-file
data-cube (MFDC), comparable to a hyper-spectral data cube, used in this study consisted of 952 bands
of data in a single file that were derived from MODIS 500 m, 7-band reflectance data acquired every 8-
days during 2001–2003. The methods consisted of (a) segmenting the 952-band MFDC based not only on
elevation-precipitation-temperature zones but on major and minor irrigated command area boundaries
obtained from India’s Central Board of Irrigation and Power (CBIP), (b) developing a large ideal spectral
data bank (ISDB) of irrigated areas for India, (c) adopting quantitative spectral matching techniques
(SMTs) such as the spectral correlation similarity (SCS) R2-value, (d) establishing a comprehensive set
of protocols for class identification and labeling, and (e) comparing the results with the National Census
data of India and field-plot data gathered during this project for determining accuracies, uncertainties and
errors. The study produced irrigated area maps and statistics of India at the national and the subnational
(e.g., state, district) levels based on MODIS data from 2001–2003. The Total Area Available for Irrigation
(TAAI) and Annualized Irrigated Areas (AIAs) were 113 and 147 million hectares (MHa), respectively.
The TAAI does not consider the intensity of irrigation, and its nearest equivalent is the net irrigated
areas in the Indian National Statistics. The AIA considers intensity of irrigation and is the equivalent of
‘‘irrigated potential utilized (IPU)’’ reported by India’sMinistry ofWater Resources (MoWR). The field-plot
data collected during this project showed that the accuracy of TAAI classes was 88% with a 12% error of
omission and 32% of error of commission. Comparisons between the AIA and IPU produced an R2-value of
0.84. However, AIA was consistently higher than IPU. The causes for differences were both in traditional
approaches and remote sensing. The causes of uncertainties unique to traditional approaches were (a)
inadequate accounting of minor irrigation (groundwater, small reservoirs and tanks), (b) unwillingness
to share irrigated area statistics by the individual Indian states because of their stakes, (c) absence
of comprehensive statistical analyses of reported data, and (d) subjectivity involved in observation-
based data collection process. The causes of uncertainties unique to remote sensing approaches were (a)
irrigated area fraction estimate and related sub-pixel area computations and (b) resolution of the imagery.
The causes of uncertainties common in both traditional and remote sensing approaches were definitions
and methodological issues.
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Acronyms and abbreviations

2d-FS 2-Dimensional Feature Space
AIA Annualized Irrigated Area
AOC Area of Continuous Cropping in a Year
AVHRR Advanced Very High Resolution Radiometer
CBIP Central Board of Irrigation and Power
CC Continuous Crop
CCA Cultivable Command Area
CRU Climatic Research Unit
DCP Degree Confluence Project
ERDAS Earth Resources Digital Analysis System
FAO Food and Agriculture Organization of the United

Nations
FPA Full Pixel Area
GIS Geographic Information System
GIAM Global Irrigated Area Map
GE VHRI Google Earth Very High Resolution Imagery
GSFC Goddard Space Flight Center
IAF Irrigated Area Fraction
IPU Irrigation Potential Utilized
ISDB Ideal Spectral Data Bank
IWMI International Water Management Institute
IWMI-DSP International Water Management Institute Data

Storehouse Pathway
IWMI-GIAM InternationalWaterManagement InstituteGlobal

Irrigated Area Mapping
LULC Land Use/Land Cover
MHa Million Hectares
MODIS Moderate Resolution Imaging Spectroradiometer
MoWR Ministry of Water Resources
MVC Maximum Value Composite
NASA National Aeronautics and Space Administration
NDVI Normalized Difference Vegetation Index
PWD Public Works Department
SCS Spectral Correlation Similarity
SOCLASS Statistical Clustering Algorithm in ERDAS
SRTM Shuttle Radar Topography Mission
SSV Spectral Similarity Value
TAAI Total Area Available for Irrigation.
UF University of Frankfruit

1. Introduction, background and rationale

Irrigation consumes nearly 80% of all water used by humans
(Döll and Siebert, 2002). However, there is great uncertainty in the
actual area irrigated and the spatial location of irrigated areas. This
in turn leads to uncertainties in estimates of actual water use by
irrigation. In most parts of the world, irrigated areas are reported
based on census data. In India, for example, traditional local-level
revenue department officials report irrigation statistics at the vil-
lage level which is then aggregated to higher levels, such as tehsil
(a lower administrative unit like a county), district, state, and na-
tional levels (Reddy et al., 2006). Added to the fact that the quality
of the compiled data is often called into question (Biggs et al., 2006;
Droogers, 2002), such a process is tedious, time-consuming, in-
consistent, and resource-intensive. Remote sensing offers a poten-
tial solution, and some early remote-sensing applications involved
mapping irrigated croplands (Huston and Titus, 1975; Draeger,
1976; Wall, 1979; Thiruvengadachari, 1981) to create inventories
of areas irrigated from different irrigation sources such as sur-
face water, groundwater and irrigation tanks (Thiruvengadachari,
1983; Thiruvengadachari and Sakthivadivel, 1997). Such mapping
enables the assessment of crop stress, discrimination of crop types,
and monitoring temporal changes in irrigated areas (Azzali and
Menenti, 1989; Rao and Mohankumar, 1994; Thiruvengadachari
and Sakthivadivel, 1997). The advanced remote-sensing applica-
tions involve different techniques and methods using the hyper-
spectral and time-series multispectral data to map Land Use/Land
Cover (LULC), crop phenology and cropping systems (Thenkabail
et al., 2009a,b; Galford et al., 2008;Wardlow et al., 2007;Wardlow
and Egbert, 2008; Sakamoto et al., 2005, 2006; Thenkabail et al.,
2005).
Irrigated areas have rarely been mapped over large areas

such as a subcontinent, a continent, and the globe. Exceptions
are the recent work by the International Water Management
Institute (IWMI) as described by Thenkabail et al. (2009a,b, 2006)
and Biradar et al. (2009), and the product of the Food and the
Agricultural Organization of the United Nations and the University
of Frankfurt (FAO/UF) as described by Siebert et al. (2002, 2005,
2006), which is a compilation of the national statistics into a spatial
map and having a minimum resolution of 10 km. The IWMI study
is based on multiple satellite-sensors-based time series of remote
sensing and secondary data and is reported at a minimum 1 km
resolution. Sakamoto et al. (2005, 2006) used MODIS time series
to detect spatiotemporal crop phenology and cropping systems at
the river basin and regional scale. In other LULC maps (Wardlow
et al., 2007; Wardlow and Egbert, 2008; Bartholome and Belward,
2005; Lobell and Asner, 2004; Agarwal et al., 2003) irrigated areas
are just one of the many classes, not the focus of the study, and are
often a mix-up of rain-fed and irrigated areas.
Historically, fine spatial resolution irrigated areamapping using

remote sensing has been limited to small areas such as river basins
(Biggs et al., 2006; Thenkabail et al., 2005; Thiruvengadachari and
Sakthivadivel, 1997) or the regional level (Wardlow and Egbert,
2008; Xiao et al., 2006). The improvements in spatial, spectral and
temporal resolution and advances in calibration and normalization
of modern satellite sensor data allow irrigated area mapping over
larger areal extents. In the case of MODIS (Justice et al., 2003),
500 m data are available frequently (every 8-days) and they have
global coverage, undergo ongoing validation, are free of charge
to the user, and are easily accessed via the Internet. Further, this
frequent availability enables monthly composites of the data that
remove an overwhelming proportion of cloud cover, enables the
derivation of crop calendars and helps in the study of irrigated
and nonirrigated area dynamics (Biggs et al., 2006). The MODIS
time series are powerful for agricultural intensification of crops
from season to season to mark the changes of cropping calendars
(Galford et al., 2008).
Taking advantage of the advances in remotely sensed data, the

overarching goal of this research was to develop methods and
protocols for mapping irrigated areas of India using a MODIS time
series (500 m resolution, from 2001 to 2003). India was selected
as the study area for several reasons. First, the country is the
first (Siebert et al., 2006) or the second (Thenkabail et al., 2009a)
most irrigated country in the world along with China. Second, the
field-plot data and national statistical data on irrigated areas were
available for the country for comparison with satellite-sensor-
derived data. Third, the population of 1.1 billion with a rapidly
growing economy makes India an interesting country for a study
on irrigated areas, their water use, food production, and food
security issues.
The specific objectives of the study were to (a) map irrigated

areas of India using MODIS every 8-day, 7-band, time series
for 2001–2003, (b) provide irrigated area statistics at the state
and the district level, (c) compare MODIS-based irrigated area
statistics with the national census reported and field-plot gathered
data, (d) discuss the Sub-Pixel Area (SPA) calculation methods
and highlight their importance in area calculations, (e) determine
accuracies, uncertainties and errors in reporting irrigated areas
using MODIS, and (f) provide a comprehensive discussion on
causes of uncertainties and errors in computing and reporting
irrigated areas.
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Fig. 1. The study area shows Indian administrative state and district boundaries
overlain on Shuttle Radar Topography Mission (SRTM) 90 m data.

2. Study area

The total available arable land of India (Fig. 1) was reported
as 56% (of the total geographic area of 330 MHa) in 2004 while
permanent crops covered 1%, permanent pastures accounted for
4%, forest and woodlands covered 23% and other LULC 16%
(Lal, 2004). Irrigation projects in India which have a cultivable
command area (CCA) more than 10,000 ha are termed as major
projects, thosewith a CCA between 2000 and 10,000 ha are termed
as medium projects, and those with a CCA less than 2000 ha are
known as minor projects.

3. Methodology

The methodology begins with definitions used in mapping
irrigated areas, followed by descriptions of the datasets (MODIS
and field-plot), data processing and the creation of an ideal spectral
data bank, class spectra generation, and a class identification and
labeling process that starts with spectral matching techniques.

3.1. Definition used in mapping irrigated areas

The MODIS-derived irrigated areas were calculated using SPA
calculation methods, which are described in detail by Thenkabail
et al. (2007b). The full pixel areas (FPAs) of the classes were
multiplied by the irrigated area fractions (IAFs; Thenkabail et al.,
2007b) to obtain SPAs. The irrigated areaswere calculatedwith and
without intensity as described in the subsequent sections.

3.1.1. Total Area Available for Irrigation (TAAI): Areas without
considering the intensity of irrigation
The TAAI is the area irrigated at any given point of time, plus

the area left fallow (but equipped for irrigation) at the same point
of time. The TAAI does not consider intensity (areas from different
seasons). This would mean that if we map irrigated areas using
data of, say, cropping season 1 (e.g., June to October), then the
areas irrigated during cropping season 1 will be (a) area actually
irrigated during season 1, plus (b) area left fallow in season 1. The
sum of (a) and (b) is TAAI. Typically, some areas have only one
crop a year, others two, and some areas have continuous year-
round (e.g., sugarcane) crops. However, the overall TAAI remains
constant across the seasons. What changes from season to season
within the TAAI will be the ratio of area irrigated to area left fallow.
Typically, in the main cropping season (kharif, or June to October)
in India, the actual area irrigated is the maximum with the area
left fallow being the minimum. This trend changes in the rabi
season (November to February) when fallow areas increase and
cropped areas decrease. However, irrespective of the season TAAI
remains constantwith variation in the proportion of irrigated areas
to fallow areas. The nearest equivalent of TAAI in the Food and
Agricultural Organization of the United Nations and the University
of Frankfurt (FAO/UF; Siebert et al., 2006) are ‘‘areas equipped for
irrigation’’ (but not necessarily irrigated) (Siebert et al., 2006). The
equivalent of TAAI in the national statistics is Net Irrigated Areas.

3.1.2. Annualized Irrigated Areas (AIA): Areas considering the inten-
sity of irrigation
The annualized irrigated areas (AIAs) are defined as the sum of

the irrigated areas during a different crop-growing seasons (e.g.,
season 1, 2, and continuous year-round). Thus, AIA considers the
intensity of irrigation. For each class, a cropping calendar is derived
from time-series NDVI of the class to determine seasonality (or
whether the area has single, double, or triple cropping). There is no
nearest equivalent of AIA in FAO/UF-derived statistics. In the Indian
national statistics, the nearest equivalent of annually averaged
irrigated areas is Irrigation Potential Utilized (IPU) as defined in
India’s Ministry of Water Resources (MoWR, 2005) and also, at
times, referred to as Gross Irrigated Areas (GIAs).

3.2. Data sets used in the study

3.2.1. MODIS data
The MODIS/Terra Surface Reflectance 8-day composite 500 m

product (MOD09A1) utilizes the best observations during an 8-day
period, as determined by overall pixel quality and observational
coverage (Vermote et al., 2002; Xiao et al., 2006). The data were
downloaded from the National Aeronautics and Space Administra-
tion Goddard Space Flight Center (NASA GSFC) for the years from
2001 to 2003. The study areawas covered by 11MODIS reflectance
tiles. The mosaiced images were arranged in a continuous time
series and compiled into a single MFDC consisting of 952 bands
(a total of 136 images, each of 7 bands, over the same area dur-
ing 2001–2003). The 952-band MFDC was used to (a) determine
classes based on time-series characteristics rather than on a single
date and/or a fewdates; (b) obtain time-series characteristics of ev-
ery pixel at the click of a mouse; and (c) facilitate the simplicity of
handling a single file in data analysis. The MFDC was corrected for
cloud cover and haze cover using approaches described in Thenk-
abail et al. (2005). The key steps involved were:

• Blue band minimum reflectivity threshold for cloud cover/haze
removal or reduction.
• Visible bandminimum reflectivity threshold for cloud cover/haze
removal or reduction.
• Normalization of temporal variability.

Vegetation indices were also used to study and resolve classes.
Indices reduce data volume andwere considered the best approach
to (a) remove clouds, (b) reduce data volume, and (c) enrich data
to provide normalized information.
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Fig. 2. The location of the field-plot data points collected during the project. Of
the total 1041 field-plot data points, 951 were gathered during this project and the
remaining 90 derived from degree confluence project (DCP).

3.2.2. Field-plot data
The project team gathered extensive data from field-plots as

well as from other sources (Fig. 2). The data were gathered from
irrigated areas, rain-fed cropland areas, and other LULC locations.
Altogether 1089 field-plot points were gathered in different
campaigns, by the same group of individuals following a consistent
design. Sample site locations were chosen based on a stratified
random sampling, stratified by the road network and randomized
by stopping at different land cover types along the road. Depending
on the road conditions and land cover types, data were collected
from different locations at an interval of 5–10 km under good road
conditions and at a distance of 3–5 km under poor road conditions.
At each location, data collected consisted of (a) coordinates us-

ing Global Positioning System, (b) watering method (i.e., irrigated,
rain-fed, supplemental), (c) irrigation type (i.e., major andmedium
irrigation from surface water, minor irrigation from groundwater,
small reservoirs, and tanks); (d) crop types, (e) cropping pattern
(or crop combinations), (f) cropping calendar, (g) scale of irriga-
tion (i.e., large and small scale), (h) land cover categories (i.e., trees,
shrubs, grasses, farmlands) and (i) land use types (i.e., irrigated,
rain-fed or LULC). Each location had 2–4 digital photos. Indian agri-
culture can be categorized into two distinct seasons, kharif (June to
October) and rabi (November to February). Irrigated agriculture ex-
ists in both seasons as well as for certain areas of year-round crops.
Field-plot data were collected to cover both seasons.
The second form of field-plot data was derived from the degree

confluence project (DCP). The DCP data were contributed by a
network of volunteers who gathered data from precise geographic
locations for every one-degree latitude and longitude and recorded
land use (through description) and made available several digital
photos per location (Thenkabail et al., 2009b). We converted these
data into GIS formats (Fig. 2).
Additional field-plot data such as canals, reservoirs, agricultural

farms and field canals were derived from the Google Earth Very
High Resolution Imagery (GE VHRI). All the above data along with
the image interpretation techniques and ancillary data were used
in the identification and labeling of classes.
3.3. Data processing to generate and identify irrigated and nonirri-
gated classes

Data processing consisted of (a) the creation of anMFDC, (b) im-
age segmentation of MFDC, based on elevation, precipitation, tem-
perature and irrigation maps from national sources, (c) producing
an ISDB, (d) generating class spectra through a classification pro-
cess, (e) quantitatively matching class spectra with ISDB through
SMTs, (f) determining methods for resolving mixed classes, and
(g) developing standardized class identification and labeling pro-
tocols. In Fig. 3 an overview of the methodology is provided along
with initial steps for data synthesis. We used MODIS 500 m, 7
bands, every 8-day surface reflectance product (MOD09A1) in this
study. This product is not corrected for view geometry and sur-
face anisotropy, but this does not have any significant adverse
effect on the mapping of irrigated areas (see Xiao et al., 2006;
Thenkabail et al., 2005). Others (e.g., Ozdogan and Gutman, 2008)
have used Nadir Bidirectional Reflectance Distribution Function
(BRDF)-Adjusted Reflectance (NBAR) data (MOD34B4) to map ir-
rigated areas of the USA. NBAR data are corrected for view- and
illumination-angle effects. In contrast, Brown et al. (2009) pro-
duced irrigated areas of theUSAusing surface reflectance datawith
equally good results as those of Ozdogan andGutman (2008). Stud-
ies by Xiao et al. (2006); Thenkabail et al. (2005) and Brown et al.
(2009) clearly demonstrate the use of surface reflectance products
in irrigated area mapping.

3.3.1. Segmentation based on precipitation, temperature and eleva-
tion
The study area was divided into various climate and elevation

zones using: (a) SRTM elevation, (b) AVHRR ‘‘skin’’ temperature
for 1981–2000, and (c) CRU precipitation for 1961–2000. This led
to six unique zones (Fig. 4(a)). We segmented the MFDC based
on these zones, resulting in each of these six zones having 952
bands of data. An additional 7th zone was based on the irrigated
command area boundaries (Fig. 4(b)) that shows the major and
medium irrigated areas from surface water reservoirs according to
themap produced by CBIP (1994). This is followed by classification
and class identification for every zone separately using methods
and procedures described in Section 3.3.2 through 3.5.2.

3.3.2. Creation of an ISDB for the irrigated areas of India
The precise field-plot knowledge enabled the development of

an ideal (or target) spectral data bank for various irrigated areas
of India (e.g., Fig. 5). The approach adopted involved selecting
classes of similar irrigation patterns spread across the study
area and characterizing their ideal spectral signatures such as
‘‘irrigated, surface water, rice, single crop (Fig. 5)’’. The points were
then grouped based on similarity. This leads to, for example, the
development of an ISDB such as ‘‘irrigated, surface water, rice,
single crop’’ from13 samples in zone 3 (Fig. 6(a)). The ISDBs of Fig. 6
were illustrated taking zone3 and zone5 (see Fig. 4(a) for zones) (a)
irrigated rice (Fig. 6(a), (b)) irrigated cotton vs. sugarcane (Fig. 6(b),
(c)) irrigated rice vs. rain-fed rice (Fig. 6(c) and (d)) irrigated vs.
rain-fed vs. other LULC (Fig. 6(d)). The ISDBs may or may not be
similar in different zones. For example, ISDBswere nearly similar in
zone 3 versus zone 5 for: (a) ‘‘irrigated, surface water, rice, double
crop’’ (Fig. 6(a) and (b)) ‘‘irrigated, corn’’ (Fig. 6(d)). However, they
were distinctly different inmagnitude in ‘‘irrigated, rice’’ (Fig. 6(c)).
The irrigated areas were also differentiated by source of irrigation
(surface water vs. groundwater; Fig. 6(a), (b)). Often, the field-
plot data have shown that the conditions in the field depict crop
dominance (one crop or two dominating the area with a number
of other crops occupying smaller fractions of the area) rather than
the dominance of any one mono or single crop. In such situations,
ideal spectral signatures for crop dominance (rice dominance,
cotton dominance) in irrigated and nonirrigated settings were also
developed.
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Fig. 3. The methodology for mapping irrigated areas using MODIS 500 m 7-band time-series surface reflectance product.
3.4. Class spectra generation for irrigated areas of India

The class spectra were generated using unsupervised ISOCLASS
k-means classification (Tou and Gonzalez, 1975; Lieca, 2007) on
the MODIS 500 m MFDC consisting of 952 bands for each of the
seven zones (six zones in Fig. 4(a) and a single zone in Fig. 4(b)).
Different classification methods (Lu and Weng, 2007) have their
own merits. The ISOCLASS clustering has many advantages: (a)
highly successful in finding spectral clusters in data, (b) interactive,
(c) algorithm readily available and widely tested, (d) not biased to
the top or the bottom of data, and (e) fastest-known method. The
MFDCs of each of the segmentswere classified into 250 classes, and
their time-series NDVI class spectra generated.
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(a) Matrix of elevation and precipitation zone map. (b) Central board of irrigation and power.

Fig. 4. The elevation-precipitation-temperature zones (left) and major irrigated area boundaries as per India’s Central Board of Irrigation and Power (CBIP) (right) used to
segment mega-file data cube (MFDC).
Fig. 5. Building ideal spectral data bank as illustrated for ‘‘irrigated-surface water-rice-single crop’’ using MODIS 500 mmonthly NDVI MVC for the years 2001–2003 (note:
the illustrations are shown for a few locations only).
3.5. Class identification and labeling process: Irrigated and nonirri-
gated classes

3.5.1. SMTs: Matching class spectra with ideal spectra
The class spectra were matched with ideal spectra using SMTs,

which are traditionally developed for hyper-spectral data analysis
ofminerals (Homayouni and Roux, 2004) and adopted for irrigated
area mapping using remotely sensed time series (Thenkabail et al.,
2007b). In Fig. 7, classes 26, 28, 30 and 43 have very similar NDVI
signatures that were subsequently grouped using the spectral
correlation similarity R2 values (SCS R2) and the spectral similarity
values according to Thenkabail et al. (2007a). The group of classes
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Fig. 8. Class identification and labeling using Google Earth very high resolution imagery.
with similar spectra will have high SCS R2 values. After grouping,
classes 26, 28, 30 and 43 (e.g., Fig. 7) were matched with ISDB and
given preliminary labeling as ‘‘irrigated-surfacewater-wheat-rice-
double crop’’.

3.5.2. Class identification and labeling protocol
The classes were identified and labeled according to the

following protocol: SMTs as described extensively by Thenkabail
et al. (2007a), bispectral plots (Thenkabail et al., 2005) of classes,
use of extensive field-plot data (Section 3.3), Google Earth Very
High Resolution Imagery (GE VHRI; e.g., Fig. 8), use of secondary
data and rule-based decision trees.
The process of SMTs is illustrated in Fig. 7 anddescribed in detail

by Thenkabail et al. (2007a). Bispectral plots depict class character-
istics by representing the classes in brightness-greenness-wetness
in a 2-D feature space (2-d FS) (Kauth and Thomas, 1976; Crist and
Cicone, 1984) and are particularly useful in identifying agricultural
crops. The application of 2-D FS bispectral plots for identifying irri-
gated, rain-fed and other LULC classes is illustrated and explained
by Thenkabail et al. (2005, 2006). If more than one type of field-
plot data points (e.g. irrigated and rain-fed) fall on one class, then
that class is considered ‘‘mixed’’ and is selected for further analy-
sis to resolve the class type. Techniques used for further analyses
are spatialmodeling, decision tree algorithms, andmasking and re-
classifying (see Fig. 3). Spatial modeling involved taking a mixed
class and performing GIS spatial modeling using secondary data
such as slope, elevation, evapotranspiration and rainfall, and tech-
niques such as overlay, matrix, recode, sieve and proximity analy-
ses (Lieca, 2007) based on the theory of map algebra and Boolean
logic (Tomlinson, 2003). The secondary data are resampled and
harmonized to have the same spatial resolution asMODIS data.We
explain here the process of resolving a mixed class labeled ‘‘crop-
lands mixed with natural vegetation’’ (taken as an example). Our
goal was to separate ‘‘croplands’’ from ‘‘natural vegetation’’. For
this we used elevation data and ‘‘overlaid’’ (in a GIS spatial model-
ing framework such as in ERDAS spatial modeler) the mixed class
of ‘‘croplands mixed with natural vegetation’’ with elevation. This
separated all natural vegetation thatwas at a higher elevation from
croplands that were at a lower elevation. We further ‘‘split’’ irri-
gated croplands from rain-fed croplands using evapotranspiration
(ET) data. Irrigation existed in areas where ET was significantly
less than precipitation. The process can go on until we are able
to split a mixed class into two or more distinct classes accurately.
Note that one could use multiple secondary layers at once to re-
solve mixed classes. For example, croplands may exist at a higher
elevation, but at a lower slope. In such a case, we use elevation
layer along with the slope layer to resolve the mixed class. A rule-
based decision tree algorithmwas also used to help split themixed
classes (DeFries et al., 1998). The basic process of decision trees
involved repeated division of a class through hierarchically struc-
tured rules produced from a knowledge base created from train-
ing data such as an ISDB or on field knowledge. These rules can be
applied to an entire image to produce accurate land cover maps
and inventories. One example application is in using NDVI varia-
tions in specific months in different parts of the same class to sep-
arate the classes. Detailed decision tree rule-based classification
approaches are illustrated in our recent work (Biradar et al., 2009;
Thenkabail et al., 2009a,b). Themixed classesweremasked out and
theMFDC covering the mixed class area was used to reclassify (us-
ing unsupervised classification) the image into a number of classes
that are successfully identified and labeled. This was followed by
a repetition of the entire class identification and labeling process.
Difficulties were encountered when separating classes with subtle
variations in class signatures such as minor irrigation and supple-
mental irrigation from rain-fed irrigation. In addition to the afore-
mentioned class identification protocols, various approaches were
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Fig. 9. Standardized class naming convention that follows a hierarchical approach.
used to achieve separation of informal irrigation from rain-fed ir-
rigation and included (a) the use of cropping calendars (irrigated
and rain-fed follow unique crop calendars throughout India) de-
tected using NDVI time series; (b) identification of cropping pat-
terns (rain-fed crops are mixed with similar crops in a given area
whereas irrigated crops tend to have significantly larger patches);
and (c) extensive field-plot data knowledge (Fig. 2). A standard-
ized hierarchical class-naming convention (Fig. 9; Klijn and Udo de
Haes, 2004) was adopted. These classes enable obtaining classes at
different levels and can be ‘‘crosswalked’’ (Torbick et al., 2006). The
‘‘cross walk’’ procedure shows how the classes are aggregated or
disaggregated. This way an aggregated class can be tracked to de-
termine which disaggregated classes were combined to form it or
vice versa. Whenever over 90% of field-plot data points fall within
a given class then that particular class is assigned a class name,
and is later further reaffirmed using Google Earth very high res-
olution imagery (Fig. 8). All classes were named using a standard
class naming protocol (Fig. 9). When multiple analysts provide
class names, the standardized class naming protocol is very useful.

3.6. Sub-Pixel Area (SPA) calculations

The class areas obtained from the MODIS data provide only the
FPAs. The actual areas can be obtained only by computing SPAs
(Thenkabail et al., 2007b, 2009a; Biradar et al., 2009), which are
defined as:

SPAn = FPAn × IAFn (1)

where SPAn is the sub-pixel area of class n, FPAn is the full-pixel
area of class n and IAFn is the irrigated area fraction of class n.
The SPA of each class is computed bymultiplying the FPA of that

class with IAF of the class. Later, the SPAs of all classes are summed
to obtain actual area of irrigation from all the classes. The IAF is
determined using field-plot data and high-resolution imagery.
The uncertainties and errors in area estimates were reduced to

a minimum by using three distinct methods of IAF calculations as
described in (Thenkabail et al., 2007b). These IAF calculationmeth-
ods were (a) Google Earth Estimate (IAF-GEE), (b) high-resolution
imagery (IAF-HRI), and (c) sub-pixel decomposition technique
(IAF-SPDT). A comprehensive discussion and assessment of these
methods by Thenkabail et al. (2007b) showed that the differences
in areas calculated by different methods varied by 2%–5%. The ro-
bustness of the area calculation was improved by averaging the
IAFs of the three methods.

4. Results and discussions

4.1. Irrigated area maps

The study resulted in producing irrigated area maps and statis-
tics. The classes from different segments were combined to pro-
duce two irrigated area maps for the study area: a disaggregated
irrigated area map with 28 classes (Fig. 10), and an aggregated ir-
rigated area map with only two classes (Fig. 11). Class names in
the 28-class map (Fig. 10) consist of irrigation source (surface wa-
ter, conjunctive use and groundwater), irrigation intensity (single
crop, double crop and continuous crop), and crop type. In Fig. 11,
all classes were aggregated to either (a) major and medium irriga-
tion by surfacewater, or (b)minor irrigation by groundwater, small
reservoirs, and tanks, showing the widespread use of groundwater
in India, which is a result of a swift increase in tube wells from a
meager 100,000 in the early 1960s to anywhere between 19 to 26
million by year 2000 (Endersbee, 2005).
The major and medium irrigated command area boundaries

(Fig. 4(b)) are provided by the CBIP. According to CBIP, this area
is almost exclusively irrigated by surface water reservoirs. This
boundary was used tomask theMODISMFDC, classify it, and iden-
tify classes within it using the methods and protocols described in
Section 3 and its subsections. The results (Fig. 12) showed that only
about 48% of this area is actually irrigated by surface water, nearly
38% by groundwater/conjunctive use, 3% rain-fed and 12% other
LULC such as water bodies, forests, barren lands and rangelands.

4.2. Irrigated areas considering and without considering intensity

Two types of irrigated areas were reported: (a) without con-
sidering intensity of cropping, referred to as TAAI; and (b) by



52 V. Dheeravath et al. / ISPRS Journal of Photogrammetry and Remote Sensing 65 (2010) 42–59
Ta
bl
e
1

Ir
ri
ga
te
d
ar
ea
cl
as
se
sa
nd
th
ei
ra
re
as
fo
rI
nd
ia
.T
he
di
sa
gg
re
ga
te
d
28
-c
la
ss
su
b-
pi
xe
li
rr
ig
at
ed
ar
ea
s(
SP
IA
s)
ar
e
co
m
pu
te
d
by
m
ul
tip
ly
in
g
fu
ll
pi
xe
la
re
as
(F
PA
s)
w
ith
ir
ri
ga
te
d
ar
ea
fa
ct
io
ns
(IA
Fs
).
Th
e
ar
ea
sa
re
re
po
rt
ed
:(
a)
w
ith
ou
t

co
ns
id
er
in
g
in
te
ns
ity
(t
ot
al
ar
ea
av
ai
la
bl
e
fo
ri
rr
ig
at
io
n
(T
AA
I)
or
ne
ta
re
as
),
an
d
(b
)c
on
si
de
ri
ng
in
te
ns
ity
(a
nn
ua
liz
ed
ir
ri
ga
te
d
ar
ea
s
or
gr
os
s
ar
ea
s)
.

Cl
as
s

Cl
as
s
na
m
e

FP
A

IA
F-
TA
AI

TA
AI

IA
F-
Se
as
on
1

AO
S1

IA
F-
Se
as
on
2

AO
S2

IA
F-
Co
nt
.

AO
C

AI
A

#
H
ec
ta
re
s

un
itl
es
s

H
ec
ta
re
s

un
itl
es
s

H
ec
ta
re
s

un
itl
es
s

H
ec
ta
re
s

un
itl
es
s

H
ec
ta
re
s

H
ec
ta
re
s

A.
M
aj
or
Ir
ri
ga
tio
n

1
Ir
ri
ga
te
d,
sw
,r
ic
e,
sc

75
7,
23
0

0.
74

56
0,
35
0

0
0.
74

56
1,
31
1

56
1,
31
1

2
Ir
ri
ga
te
d,
sw
,r
ic
e,
dc

5,
44
2,
30
6

0.
86

4,
68
0,
38
3

0.
86

4,
68
9,
90
7

0.
64

3,
48
0,
36
3

8,
17
0,
27
0

3
Ir
ri
ga
te
d,
sw
,r
ic
e-
ot
he
rc
ro
ps
,s
c

7,
05
8,
02
0

0.
71

5,
01
1,
19
4

0.
71

4,
99
2,
07
9

4,
99
2,
07
9

4
Ir
ri
ga
te
d,
sw
,r
ic
e-
ot
he
rc
ro
ps
,d
c

20
,0
53
,2
20

0.
76

15
,2
40
,4
47

0.
76

15
,3
08
,5
87

0.
60

12
,0
98
,4
24

27
,4
07
,0
11

5
Ir
ri
ga
te
d,
sw
,r
ic
e-
ot
he
rc
ro
ps
,c
c

2,
11
6,
72
8

0.
78

1,
65
1,
04
8

0.
52

1,
10
7,
61
2

1,
10
7,
61
2

6
Ir
ri
ga
te
d,
sw
,w
he
at
-o
th
er
cr
op
s,
sc

92
,1
53

0.
61

56
,2
13

0.
61

55
,7
62

55
,7
62

7
Ir
ri
ga
te
d,
sw
,w
he
at
-o
th
er
cr
op
s,
dc

5,
03
0,
82
7

0.
59

2,
96
8,
18
8

0.
59

2,
95
4,
35
3

0.
41

2,
05
5,
35
0

5,
00
9,
70
3

8
Ir
ri
ga
te
d,
sw
,w
he
at
-o
th
er
cr
op
s,
cc

1,
00
0,
52
4

0.
74

74
0,
38
8

0.
87

86
9,
70
6

86
9,
70
6

9
Ir
ri
ga
te
d,
sw
,s
ug
ar
ca
ne
-o
th
er
cr
op
s,
sc

8,
78
7,
16
0

0.
74

6,
50
2,
49
8

0.
65

5,
69
0,
92
7

5,
69
0,
92
7

10
Ir
ri
ga
te
d,
sw
,m
ix
ed
cr
op
,s
c

2,
15
8,
88
7

0.
68

1,
46
8,
04
3

0.
68

1,
47
3,
44
0

1,
47
3,
44
0

11
Ir
ri
ga
te
d,
sw
,m
ix
ed
cr
op
s,
dc

5,
33
4,
50
4

0.
72

3,
84
0,
84
3

0.
48

2,
55
9,
89
0

0.
57

3,
02
7,
05
1

5,
58
6,
94
1

B.
M
in
or
Ir
ri
ga
tio
n
(G
W
,S
R,
Ta
nk
s)

12
Ir
ri
ga
te
d,
gw
,r
ic
e-
ot
he
rc
ro
ps
,s
c

7,
67
3,
66
1

0.
63

4,
83
4,
40
7

0.
63

4,
83
1,
20
9

4,
83
1,
20
9

13
Ir
ri
ga
te
d,
gw
,c
ot
to
n-
ot
he
rc
ro
ps
,s
c

96
5,
81
4

0.
59

56
9,
83
0

0.
55

52
6,
85
1

52
6,
85
1

14
Ir
ri
ga
te
d,
gw
,c
ot
to
n,
w
he
at
-o
th
er
cr
op
s,
dc

2,
86
0,
24
1

0.
64

1,
83
0,
55
4

0.
59

1,
68
3,
60
6

0.
51

1,
45
2,
48
0

3,
13
6,
08
7

15
Ir
ri
ga
te
d,
gw
,c
ot
to
n,
so
ya
be
an
-o
th
er
cr
op
s,
cc

11
,8
06

0.
83

9,
79
9

0.
65

7,
64
3

7,
64
3

16
Ir
ri
ga
te
d,
gw
,s
ug
ar
ca
ne
-o
th
er
cr
op
s,
sc

65
1,
55
3

0.
73

47
5,
63
4

0.
70

45
4,
15
7

45
4,
15
7

17
Ir
ri
ga
te
d,
gw
,m
ix
ed
cr
op
s,
sc

21
,0
34
,1
24

0.
60

12
,6
20
,4
75

0.
60

12
,6
29
,2
39

12
,6
29
,2
39

18
Ir
ri
ga
te
d,
gw
,p
la
nt
at
io
ns
-o
th
er
cr
op
s,c
c

22
1,
22
7

0.
69

15
2,
64
7

0.
69

15
2,
29
2

15
2,
29
2

19
Ir
ri
ga
te
d,
cu
,r
ic
e-
ot
he
rc
ro
ps
,s
c

20
,3
06
,5
39

0.
70

14
,2
14
,5
77

0.
68

13
,8
42
,2
91

13
,8
42
,2
91

20
Ir
ri
ga
te
d,
cu
,r
ic
e,
w
he
at
-o
th
er
cr
op
s,
dc

19
,6
68
,8
95

0.
76

14
,9
48
,3
60

0.
67

13
,2
74
,8
65

0.
57

11
,1
76
,8
50

24
,4
51
,7
15

21
Ir
ri
ga
te
d,
cu
,w
he
at
,r
ic
e-
ot
he
rc
ro
ps
,d
c

11
,6
82
,2
40

0.
78

9,
11
2,
14
7

0.
65

7,
53
7,
25
1

0.
59

6,
83
5,
13
0

14
,3
72
,3
81

22
Ir
ri
ga
te
d,
cu
,r
ic
e,
su
ga
rc
an
e-
ot
he
rc
ro
ps
,c
c

63
,4
32

0.
77

48
,8
42

0.
77

48
,9
22

48
,9
22

23
Ir
ri
ga
te
d,
cu
,w
he
at
-o
th
er
cr
op
s,
sc

4,
01
1,
67
0

0.
70

2,
80
8,
16
9

0.
70

2,
81
5,
82
1

2,
81
5,
82
1

24
Ir
ri
ga
te
d,
cu
,c
ot
to
n-
ot
he
rc
ro
ps
,s
c

2,
28
7,
51
0

0.
64

1,
46
4,
00
6

0.
61

1,
40
0,
84
8

1,
40
0,
84
8

25
Ir
ri
ga
te
d,
cu
,c
ot
to
n,
w
he
at
-o
th
er
cr
op
s,
dc

51
,8
19

0.
79

40
,9
37

0.
59

30
,4
11

0.
71

36
,6
39

67
,0
50

26
Ir
ri
ga
te
d,
cu
,s
ug
ar
ca
ne
-o
th
er
cr
op
s,
sc

3,
00
8,
37
7

0.
74

2,
22
6,
19
9

0.
66

1,
97
1,
46
3

1,
97
1,
46
3

27
Ir
ri
ga
te
d,
cu
,s
oy
ab
ea
n,
w
he
at
-o
th
er
cr
op
s,
dc

1,
57
6,
11
0

0.
63

99
2,
94
9

0.
60

95
3,
53
8

0.
39

61
0,
76
9

1,
56
4,
30
6

28
Ir
ri
ga
te
d,
cu
,m
ix
ed
cr
op
s,
sc

6,
21
9,
92
8

0.
64

3,
98
0,
75
4

0.
64

3,
97
4,
00
8

3,
97
4,
00
8

16
0,
12
6,
50
5

11
3,
04
9,
88
3

96
,4
86
,1
36

48
,4
98
,7
33

2,
18
6,
17
5

14
7,
17
1,
04
3

N
ot
e:
FP
A
=
fu
ll
pi
xe
la
re
a;
IA
F-
TA
AI
=
Ir
ri
ga
te
d
ar
ea
fr
ac
tio
n
fo
rT
ot
al
ar
ea
av
ai
la
bl
e
fo
ri
rr
ig
at
io
n;
TA
AI
=
To
ta
la
re
a
av
ai
la
be
lf
or
ir
ri
ga
tio
n;
IA
F-
Se
as
on
1
=
Ir
ri
ga
te
d
ar
ea
fr
ac
tio
n
fo
rS
ea
so
n
1;
AO
S1
=
Ar
ea
of
Se
as
on
1;
IA
F-

Se
as
on
2
=
Ir
ri
ga
te
d
ar
ea
fr
ac
tio
n
fo
rS
ea
so
n
2;
AO
S2
=
Ar
ea
of
Se
as
on
2;
IA
F-
Co
nt
in
io
us
=
Ir
ri
ga
te
d
ar
ea
fr
ac
tio
n
fo
rC
on
tin
uo
us
;A
O
C
=
ar
ea
of
Co
nt
in
uo
us
Cr
op
pi
ng
in
a
ye
ar
;A
IA
=
An
nu
al
iz
ed
Ir
ri
ga
te
d
ar
ea
;S
W
=
Su
rf
ac
e

w
at
er
;G
W
=
gr
ou
nd
w
at
er
;C
U
=
Co
nj
un
ct
iv
e
us
e;
SC
=
Si
ng
le
Cr
op
;D
C
=
D
ou
bl
e
Cr
op
;C
C
=
Co
nt
in
uo
us
Cr
op
;S
R
=
Sm
al
lr
es
er
vo
ir
s.



V. Dheeravath et al. / ISPRS Journal of Photogrammetry and Remote Sensing 65 (2010) 42–59 53
Fig. 10. The final 28 disaggregated irrigated area classes of India based on MODIS data.
Fig. 11. The two final aggregated irrigated area classes of India based on MODIS time series for 2001–2003.
considering areas of intensified cropping through multiple irri-
gated areas, referred to as AIAs. Both TAAI and AIA are reported
as SPAs, which represent the actual areas. The TAAI and AIA statis-
tics were reported for the 28-class map (Table 1) and for the Indian
states (Table 2). The TAAI (Tables 1 and2)was derived directly from
the 28-class irrigated area map (Fig. 10) by multiplying the FPAs of
the classes with IAFs. The AIAs (Tables 1 and 2) were determined
by multiplying the FPAs with IAFs for each season.
The MODIS-derived TAAI and AIA of India were 113 and

147 MHa, respectively (Table 1). Irrigated rice-dominant double
cropping (class 4) was the most prominent class under surface
water irrigation (Fig. 10). For the minor irrigation sources, the
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Fig. 12. Aggregated irrigated area classes within India’s Central Board of Irrigation and Power boundaries mapped using MODIS time series for 2001–2003.
Table 2
Irrigated areas of India by state. State-by-state irrigated areas of India reported (a) without considering intensity (TAAI or net areas), and (b) considering intensity (annualized
irrigated areas or gross areas).

SL (No) State (Name) TAAI SPA-HRI and SPDT (mean): IWMI GIAM-500 m (actual irrigated area)
HRI and GEE (mean) Season 1 (ha) Season 2 (ha) Continuous (ha) Annualized sum (ha)

1 Andaman & Nicobar 0 0 0 0 0
2 Andhra Pradesh 11,655,001 9,452,478 3,735,389 189,903 13,377,771
3 Arunachal Pradesh 94,216 87,199 62,598 1,434 151,230
4 Assam 2,531,447 2,410,390 1,687,035 5,665 4,103,090
5 Bihar 6,171,853 5,817,162 3,859,185 3,953 9,680,300
6 Chattisgarh 3,517,493 3,328,128 268,227 5,528 3,601,883
7 Chandigarh 6,026 4,394 3,404 1,474 9,272
8 Dadra and Nagar Haveli 16,043 13,659 3,232 0 16,891
9 Daman and Diu 41,741 40,292 4,662 0 44,954
10 Delhi 39,928 35,574 24,576 329 60,479
12 Goa 23,272 14,099 14,595 176 28,870
13 Gujarat 6,943,207 6,135,429 1,583,449 139,008 7,857,886
14 Haryana 3,041,243 2,556,291 2,177,755 224,982 4,959,027
14 Himachal Pradesh 89,558 31,775 26,501 62,087 120,364
15 Jammu and Kashmir 395,042 285,753 83,425 115,828 485,007
16 Jharkhand 2,590,682 2,492,336 188,713 146 2,681,195
17 Karnataka 7,259,681 5,312,445 2,297,709 53,248 7,663,401
18 Kerala 113,357 90,451 44,124 17,386 151,961
19 Lakshadweep 0 0 0 0 0
20 Madhya Pradesh 11,623,751 10,308,726 4,963,616 117,696 15,390,039
21 Maharashtra 12,763,374 9,279,588 3,666,826 73,712 13,020,126
22 Manipur 42,245 35,617 11,150 4,220 50,986
23 Meghalaya 66,867 63,178 42,114 648 105,939
24 Mizoram 794 633 606 0 1,238
25 Nagaland 12,126 12,033 8,928 19 20,980
26 Orissa 4,311,877 3,923,981 1,013,158 6,320 4,943,459
27 Pondicherry 32,903 12,333 18,942 5,419 36,694
28 Punjab 3,753,295 3,353,088 2,713,504 308,380 6,374,972
29 Rajasthan 7,789,158 6,634,087 3,426,588 330,356 10,391,032
30 Sikkim 0 0 0 0 0
31 Tamil Nadu 6,317,773 4,784,174 1,568,068 385,749 6,737,992
32 Tripura 144,343 139,432 102,325 90 241,848
33 Uttar Pradesh 16,310,986 14,745,330 11,940,359 93,817 26,779,506
34 Uttaranchal 236,679 189,367 160,031 25,388 374,786
35 West Bengal 4,905,306 4,712,636 2,658,311 10,525 7,381,471

Total 112,841,267 96,302,057 48,359,104 2,183,484 146,844,646

Note: TAAI: Tota Area available for Irrigation.
SPA: Sub pixel area; HRI: High resolution Image; GEE: Google earth estimation.
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Fig. 13. Comparison of TAAI with FAO/UF. The TAAI is compared with areas equipped for irrigation by FAO/UF.
Fig. 14. Comparison of AIA with MoWR data. The annually averaged irrigated area (AIA) is compared with MoWR (MoWR, 2005) and Central Water Commission (CWC)
data.
most prominent class was the mixed single crop (class 17), closely
followed by rice-dominant single crop (class 19) and rice-wheat-
dominant double crop (class 20). Overall, the dominant crops are
rice, wheat and cotton (Table 1). State-by-state TAAI and AIA
were also computed (Table 2) and were very useful in comparing
the statistics for these administrative units obtained from MoWR
(2005), FAO/UF (Siebert et al., 2006) and other studies (Thenkabail
et al., 2009b).

4.3. Comparisons, accuracies, errors and uncertainties in irrigated
areas

The final irrigated areas derived in this study were tested for
accuracies, errors and uncertainties based on the field-plot data.
Comparisons were made between the MODIS-derived TAAI and an
equivalent parameter (areas equipped for irrigation) in the FAO/UF
(Siebert et al., 2006) yielding an R2 value of 0.79 (Fig. 13). The TAAI
areas were consistently higher for an overwhelming proportion
of the Indian states. The AIAs were related to an equivalent
parameter (irrigation potential utilized or IPU) derived by MoWR
(2005) yielding an R2 value of 0.84 (Fig. 14). The MODIS 500 m-
derived TAAI and AIA were also compared with the equivalent
areas derived using fused AVHRR 10 km and SPOT Vegetation 1
km data reported in (Thenkabail et al., 2009a) providing an R2
value of 0.97 (Figs. 15 and 16). This match between the two scales
indicated consistency of irrigated area estimates using remote-
sensing approaches. This is not that surprising given the use of
similar methods. However, the areas are larger at finer spatial
resolution due to better distinction of fragmented irrigated patches
(Velpuri et al., in press) specifically in India where minor irrigation
from small tanks and groundwater iswidespread (Thenkabail et al.,
2006). Ozdogan and Woodcock (2006) reported large errors in
area estimates for classes which are possible even when based
on accurate thematic maps, and the magnitude of the problems
depended on the sub-pixel proportions used to define class
memberships and the proportion of the class in the overall study.
Determining accuracy based on Google Earth Very High

Resolution Imagery (GE VHRI) provided an overall accuracy of the
irrigated areas of 83%, with a 17% error of omission and a 23% error
of commission (Table 3). Determining accuracy based on other
field-plot data showed an overall accuracy of 89%, with an 11%
error of omission and a 33% error of commission (Table 3). Accuracy
determined by pooling the Google Earth and other field-plot data
showed an accuracy of determining irrigated areas of 88%, with a
12% error of omission and a 32% error of commission suggesting an
uncertainty of 20% in determining exact irrigated areas. The errors
of commission and omission were mainly due to mixing between
the rain-fed and irrigated areas. Some mix between the rain-fed
and irrigated classes cannot be avoided at MODIS 500m resolution
(1 pixel = 25 ha) due to the sub-pixel nature of the areas where
there are more than one land cover type within a pixel. Areas may
be adjusted based on confusion matrices (Card, 1982; Hay, 1979)
which are likely to improve our area estimates, but thiswill require
more careful field verification. Resolution is not the only cause of
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Fig. 15. Comparison of 500 m TAAI with TAAI generated at 10 km. The TAAI computed for the Indian states in this study using 500 m MODIS data is compared with TAAI
obtained from 10 km AVHRR data reported in literature (Thenkabail et al., 2009a,b).
Fig. 16. Comparison of 500mAIAwith AIA generated at 10 km. The AIA computed for the Indian states in this study using 500mMODIS data is comparedwith AIA obtained
from 10 km AVHRR data reported in literature (Thenkabail et al., 2009a,b).
Table 3
Accuracies and errors. Accuracies and errors were assessed for the irrigated areas using (a) Google Earth imagery, (b) field-plot data, and (c) pooled data from 1 and 2.

Level of accuracy assessment Accuracy of irrigated area classes (irrigated
GT points falling on irrigated areas) (%)

Errors of Omission (Irrigated GT points
falling on non-irrigated) (%)

Errors of Commission (non-irrigated GT
points falling on irrigated) (%)

1. India accuracy and errors
GEGTa 83* 17 23
IMWI+ DCP GTb 89* 11 33
GE+ IWMI+ DCP GTc 88* 12 32
a Completely Independent GT Datasets.
b Partially independent GT Datasets.
c Pooled data from 1 and 2.
* Overall Accuracy: Google GT—83%; IWMI+ DCP GT—89%; Pooled GT—88%.
uncertainty; a detailed discussion on the causes of uncertainties
and approaches to overcome them follows in Section 4.4.

4.4. Causes of uncertainties in irrigated areas

Differences between MODIS-derived irrigated areas and non-
remote-sensing-based national statistics can be attributed to (a)
inadequate accounting of informal or minor irrigation (groundwa-
ter, small reservoir and tanks) in the national statistics; (b) defini-
tion issues, (c) IAFs, and (d) resolution of the imagery.

4.4.1. Inadequate accounting of minor irrigation
The irrigated area statistics for India were influenced by

162 major and 221 medium surface water reservoirs reported
in the CBIP map (CBIP, 1994, Fig. 4b). However, the MoWR
(2005) released minor irrigation (small reservoirs, tanks and
groundwater) statistics along with major- and medium-irrigation
statistics but these statistics do not adequately account for the
massive expansion of groundwater irrigation and small reservoir
irrigation over the years (Selvarajan, 2001; Thakkar, 1999). For
example, groundwater tubewells in India increased from ameager
100,000 in the early 1960s to about 19 to 26 million (Endersbee,
2005) by the end of the year 2000. The overwhelming proportion of
these tubewells are used for irrigation. Yet, there are is only a small
amount of data on the areas irrigated by these tube wells which
are, at best, rough estimates. for the years 1984–85 to 1993–94
(Thakkar, 1999). Also, often unaccounted in irrigation statistics
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Fig. 17. Surface water (major and minor) irrigated areas within and outside the command areas as shown in a Landsat 30 mmosaic of the study area. The boundaries of the
areas irrigated by major and medium surface water reservoirs according to CBIP are shown. The ‘‘zoom in views’’ show surface water reservoirs (major and minor) within
and outside CBIP boundaries.
are significant proportions of the small reservoirs and tanks. To
highlight these issues, we assembled a fine-resolution Landsat
30 m mosaic of India and highlighted small reservoirs and tanks
(Fig. 17). The Landsat non-thermal bands were classified and the
water bodies in the classified outputs were identified. This showed
a large number of small reservoirs and tanks (see blue areas in
Fig. 17). In the Krishna river basin, encompassing about 8% of the
study area, 6100 small tanks and small reservoirs (water surface
area between 5 ha and 2000 ha) were counted by Velpuri et al.
(in press) using Landsat data. In the same area, there were 24
major reservoirs with a surface area greater than 2000 ha. Velpuri
et al. (in press) reported that minor sources in the basin irrigated
52% of the area but these values are not adequately accounted by
any reported statistics. There are an estimated 1.2 million tanks
(Mishra, 1993, 1995) in India, most of them built and maintained
by local communities. Some of themare used for drinking purposes
and others for irrigation. Minor reservoirs built and maintained
by the Public Works Department (PWD) are generally used for
irrigation in rural areas and for purposes of drinking and utilities
in urban areas. Although these reports and statistics account for
most of the government projects, few statistics are gathered for use
in private initiatives. Indeed, the overwhelming proportions of the
tube wells are a result of private initiatives. We overlaid our field-
plot groundwater data points on the Landsat 30 m data (Fig. 17)
and found that most of these areas are not included in any known
maps and statistics.
The proportion of major irrigation, largely from surface water

(classes 1 to 11; Fig. 10), was 38% and that in minor irrigation,
mainly from groundwater, small reservoirs and tanks (classes 12 to
28), was 62%. The spatial distributions ofmajor andminor irrigated
areas are shown in Fig. 11. The current rate of groundwater
expansion is 0.72 MHa per annum, which is clearly unsustainable.
Already, the groundwater levels are declining rapidly in the states
of Gujarat, Haryana, Punjab, Tamil Nadu, Karnataka and Rajasthan.

4.4.2. Definition issues
Another source of uncertainty is due to a large proportion

of previously rain-fed areas that are being currently irrigated
through informal sources, specifically from groundwater. The
total cropland area estimated during this study was 150 MHa
(Thenkabail et al., 2009a) comprising 46% of the geographic area
of India. This matches well with the generally quoted proportion
of 43% in the national statistics. However, the annualized irrigated
area reported in this study was 147 MHa (Tables 1 and 3) which
is substantially higher than 84 MHa of the irrigation potential
utilized (IPU) as reported by (MoWR, 2005). We see that the total
cropland areas reported in the national statistics and in this study
are about the same. The differences were in irrigated areas. First,
the definitions used to map irrigated areas comprised one of the
important causes of this difference. In this study, all areas that
had significant supplemental irrigation were mapped as irrigated
areas and so was informal irrigation from various minor irrigation
sources, such as groundwater, tanks and small reservoirs. In many
studies (see Agarwal et al., 2003; Loveland et al., 2000) large
proportions of the supplemental irrigated areas of India were
mapped and/or accounted as rain-fed.

4.4.3. Irrigated Area Fractions (IAFs)
The sub-pixel areas (SPAs) are true irrigated areas and are

determined by multiplying FPAs with IAFs. The accuracy of
SPAs is dependent on accuracies of IAFs. The IAFs in this study
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were determined using three distinct methods reported by
Thenkabail et al. (2007b) and hence were considered quite robust.
Nevertheless, someuncertainties in IAFs due to estimates could not
be avoided (Biggs et al., 2006) leading to uncertainties in areas. The
uncertainties in irrigated areas due to uncertainties in IAFs can be
reduced by determining the IAFs through better field knowledge of
the class.

4.4.4. Resolution of imagery
The resolution of imagery can influence the identification of

irrigated areas (Ozdogan and Woodcock, 2006; Velpuri et al., in
press; Xiao et al., 2006). Some studies (Thenkabail et al., 2007b;
Velpuri et al., in press) showed that irrigated areas increased as
the resolutions got finer. This was because at finer resolutions the
fragmented areas such as those fromgroundwater, small reservoirs
and tank irrigation can be accounted for more accurately. In con-
trast, the other studies (Ozdogan and Woodcock, 2006) showed
that the coarser the spatial resolution the higher the area esti-
mates. This may happen in two situations: (a) when FPAs are ac-
counted as actual areas instead of SPAs; and (b) in contiguous areas
such as very large flat beds of homogeneous irrigated areas. In such
situations, finer-resolution imagery will differentiate roads and
settlements within irrigated areas, whereas coarser resolution im-
agery may fully miss them. These results indicated that the resolu-
tion can be amajor factor in uncertainty of irrigated area estimates.

5. Conclusions

The study demonstrated a comprehensive methodology for
estimating irrigated areas using MODIS 500 m every 8-day
time series of India for years 2001–2003. The methodology
consisted of: (a) MFDC composition involving 952 bands; (b)
image segmentation based on climate, elevation and temperature;
(c) creation of an ISDB on irrigated areas; (d) generation of
class spectra; (e) SMTs to group class spectra and match them
with ISDB; (f) class identification and labeling protocol involving
bispectral plots, field-plot data, and very high resolution imagery
(e.g., from Google Earth); (g) approaches such as spatial modeling
and decision tree algorithms to resolve mixed classes; and (h) a
standardized hierarchical class naming protocol.
Irrigated areas reported without considering the intensity of ir-

rigation were called total area available for irrigation (TAAI) while
(b) those considering the intensities of irrigation were called an-
nualized irrigated areas (AIAs). The TAAI for India was 113 MHa
and the AIA was 147 MHa. A particular strength of remote sensing
was in its ability to establish AIAs (areas irrigated during differ-
ent seasons over the same area). The irrigated areas were mapped
with an overall accuracy of 88% with an error of omission of 12%
and an error of commission of 32%. The TAAI, when comparedwith
its nearest equivalent—the net irrigated areas of India’s Ministry of
Agriculture statistics—showed an R2 value of 0.79. The AIAs, when
compared with their equivalent—the irrigation potential utilized
(IPU) from MoWR—showed an R2 value of 0.84. However, the AIA
was consistently higher than the IPU. The study identified five chief
causes of uncertainties in irrigated areas: (a) inadequate account-
ing of informal irrigation (groundwater, small reservoirs and tanks)
in traditional statistics; (b) definition issues in both remote sens-
ing and traditional statistics; (c) irrigated area fractions in remote
sensing; (d) imagery resolution in remote sensing; and (e) failure
to share adequately the data by various Indian states due to vested
interests in water resources in traditional statistics.
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