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Accurate and timely rice paddy field maps with a fine spatial resolution would greatly improve our
understanding of the effects of paddy rice agriculture on greenhouse gases emissions, food and water
security, and human health. Rice paddy field maps were developed using optical images with high
temporal resolution and coarse spatial resolution (e.g., Moderate Resolution Imaging Spectroradiometer
(MODIS)) or low temporal resolution and high spatial resolution (e.g., Landsat TM/ETM+). In the past,
the accuracy and efficiency for rice paddy field mapping at fine spatial resolutions were limited by the

Il:fz/:voggz: poor data availability and image-based algorithms. In this paper, time series MODIS and Landsat
Cropl[;nd v ETM+/OLI images, and the pixel- and phenology-based algorithm are used to map paddy rice planting

area. The unique physical features of rice paddy fields during the flooding/open-canopy period are
captured with the dynamics of vegetation indices, which are then used to identify rice paddy fields.
The algorithm is tested in the Sanjiang Plain (path/row 114/27) in China in 2013. The overall accuracy
of the resulted map of paddy rice planting area generated by both Landsat ETM+ and OLI is 97.3%, when
evaluated with areas of interest (AOIs) derived from geo-referenced field photos. The paddy rice planting
area map also agrees reasonably well with the official statistics at the level of state farms (R? = 0.94).
These results demonstrate that the combination of fine spatial resolution images and the phenology-
based algorithm can provide a simple, robust, and automated approach to map the distribution of paddy
rice agriculture in a year.
© 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier
B.V. All rights reserved.
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1. Introduction

Food security is a growing concern worldwide; more than one
billion people lack sufficient food and micronutrients (Barrett,
2010). Rice paddy fields account for over 11% of global cropland
area, and produce food for more than half of the world’s popula-
tion, especially in monsoon Asia (FAOSTAT, 2009). The continuous
increase of paddy rice production (Matsumura et al., 2009), which
is mainly attributed to the expansion of rice paddy fields, increased
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cropping intensity, and higher rice yields since the Green
Revolution, plays a crucial role in supporting a growing global pop-
ulation in the last fifty years. The world population is projected to
keep growing up to 9 billion around 2050, and imposes huge pres-
sure on food security (FAO, 2009). As the major rice-producing
region, Asia comprises approximately 90% of the global rice harvest
area and production, and residents there obtain over 35% of their
daily calories from rice. As rice paddy fields are flooded during
most of the growing period, the expansion of rice paddy fields
can further exacerbate water shortages, threatening ecosystem
sustainability and services (Bouman et al., 2007), especially in
Asia, where agriculture irrigation accounts for over 80% of total
water use (FAOSTAT, 2009). Rice paddy fields have also been iden-
tified as an important source of global atmospheric methane (CH,)
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(Chen et al., 2013). The warming force of CH, is approximately 34
times stronger than that of carbon dioxide (CO,) per unit of weight
(IPCC, 2013). It has been demonstrated that increased CHy
emissions were associated with rapid expansion of paddy rice agri-
culture in Northeastern China (Zhang et al., 2012). Additionally,
rice paddy fields can facilitate the spread and transmission of the
highly pathogenic avian influenza (HPAI, subtype H5N1) virus, as
both wild waterfowl and domestic poultry (ducks and chickens)
used post-harvested rice fields in their wintering areas (Gilbert
et al., 2007, 2008).

It is necessary to map and monitor the spatial distribution and
temporal dynamics of rice paddy fields for the studies of food secu-
rity, water management, climate change, and transmission of avian
influenza viruses. Several global and national datasets of rice
paddy fields were developed with fairly coarse spatial resolution.
Agricultural inventory datasets and land cover products were
combined to produce global and national rice paddy field maps
at 0.05° and 0.5°, respectively (Frolking et al., 2002; Leff et al.,
2004). Compared with agricultural inventory datasets obtained
through extensive sample surveys, which are costly and time
consuming, remote sensing is highly efficient for monitoring paddy
rice agriculture at large scales.

Optical remote sensing data have been widely used to track
the phenology (Motohka et al., 2009; Sakamoto et al., 2006),
spatial distribution (Shi et al., 2013; Sun et al., 2009; Xiao et al.,
2006, 2005), and cropping intensity (Biradar and Xiao, 2011;
Peng et al., 2011; Son et al., 2014) of paddy rice at regional and
local scales. Many studies have used images from the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensors to map
rice paddy (Xiao et al.,, 2005, 2006; Shi et al., 2013). MODIS
sensors have daily revisit frequency, but its spatial resolutions
(250-m and 500-m) are usually coarser than most of rice paddy
field sizes. The mixed land cover types within MODIS pixels
may affect the accuracy of land cover maps. Fine spatial resolu-
tion images, such as Landsat TM/ETM+ and FORMOSAT-2 images,
were also used for rice paddy field mapping (Gao and Liu, 2011;
Shiu et al., 2012). One or two images in a year with no cloud
cover or a small amount of cloud cover were analyzed through
visual interpretation or digital classification methods to map rice
paddy (Li et al., 2012; Shiu et al., 2012). Because those issues
associated with the long revisit cycle of Landsat (16-day), fre-
quent clouds and cloud shadows, and crop calendar, selection of
high-quality images in a year to map croplands is a very challeng-
ing task. Satellite images from two or more years are usually
collected to map croplands.

Radar remote sensing, not affected by cloud cover, has been also
used to map rice paddy, based on the significant backscatter
differences between rice paddy fields and other land cover types
(Chen and McNairn, 2006; LeToan et al., 1997; Shao et al., 2001).
However, radar remote sensing is limited by data availability and
the high cost for large-scale mapping of rice paddy (Bouvet and
Thuy, 2011; Koppe et al., 2013; Torbick et al., 2011; Wang et al.,
2009; Zhang et al., 2009).

Since 1970s the Landsat program has collected millions of
images over the world. Landsat 8 images have been available since
2013, and are in an 8-day offset to Landsat 7 images. The combina-
tion of Landsat 7 (ETM+) and 8 (OLI) images in time series would
increase the data availability for better tracking vegetation phenol-
ogy and mapping different land cover types (e.g., rice paddy fields).
The objectives of this study are (1) to evaluate the potential of
Landsat 8 (OLI) and Landsat 7 (ETM+) time series images for
mapping rice paddy; and (2) to evaluate the pixel- and phenol-
ogy-based algorithm for mapping rice paddy in the cold temperate
climate zone, where paddy rice is cultivated once a year (single
crop cultivation). The resultant simple, robust, and automated
algorithm will make it possible for timely mapping paddy rice

planting area, using good-quality observations within individual
pixels from time series Landsat images at the spatial resolution
of 30m. In this study we choose a pilot study area in
Northeastern China (Path/row 114/27). To our knowledge, several
studies have carried out to map the distribution of rice paddy fields
in Northeastern China; however, these rice paddy fields maps were
obtained using either MOD09A1 datasets (Shi et al., 2013) or visual
interpretation of Landsat TM/ETM+ images (Gao and Liu, 2011;
Zhang et al., 2011).

2. Materials and methods
2.1. Study area

The Sanjiang Plain, located in Northeastern China (Fig. 1), is an
alluvial plain and covers an area of ~10.9 x 10° ha. Brown, black,
white slurry, meadow, and marsh are the major soil types. The
annual mean temperature, precipitation, and sunshine hours are
approximately 4.0 °C, 548 mm, and 2431 h, respectively. The
temperature is seasonally dynamic with small inter-annual fluctu-
ations. Approximately 80% of the annual precipitation is concen-
trated in the summer and fall, with high inter-annual fluctuations.

2.2. Temperature-based plant growing seasons and crop calendar

Temperature is one of the important factors that determines the
plant growing season and the crop calendar. We downloaded an 8-
day Land Surface Temperature data from MYD11A2 at the spatial
resolution of 1 km from United States Geological Survey (USGS)
in 2013. The plant growing season ranged from 105 to 305 Day
of Year (DOY), according to the first date and last date of nighttime
Land Surface Temperature (LSTyigne) measurements greater than
0°C (Fig. 2), which agreed well with the observed vegetation
phenology (Fig. 3).

The Sanjiang Plain is an important grain production base dom-
inant by single crops, with a few dozen state-owned farms. Paddy
rice, corn, and soybeans are the major crops, accounting for
approximately 46%, 38%, and 11% of the total crop planting area,
respectively (Heilongjiang Statistical Bureau, 2013). Paddy rice
has a different cropping calendar from corn and soybeans
(Fig. 3). Rice seeds are usually planted in small seedbed nurseries
in mid-April, and rice seedling plants are transplanted to paddy
fields after one month. Flooding is a key practice of paddy rice
agriculture and usually takes place about two weeks before rice
transplanting (Xiao et al.,, 2002a). Rice plant seedlings are trans-
planted between mid-May and early June. Rice plants are
harvested from late September to early October. Corn and
soybeans are planted in the field from mid- to late-May and
mature at almost the same time as paddy rice. Evergreen forests,
deciduous forests, and natural wetlands usually have longer grow-
ing seasons than do paddy rice, corn and soybean crops (Fig. 3).

2.3. Landsat ETM+ and OLI images and preprocessing

2.3.1. Landsat ETM+ and OLI images

We downloaded all Landsat 7 (ETM+) and Landsat 8 (OLI)
images available for the study area from April 19 to November 5,
2013 from USGS EarthExplorer data portal (http://earthexplorer.
usgs.gov/), according to the growing season defined by MODIS
LSThigne. A total of 21 Landsat images are collected (Fig. 4),
including 9 Landsat ETM+ images and 12 Landsat OLI images. All
these Landsat ETM+ and OLI images are level 1T data with terrain
correction, referenced to the World Reference System-2.
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Fig. 1. The location of the study area in the Sanjiang Plain. The background in (b) is the 30-m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
Digital Elevation Model (DEM). Each of the agricultural meteorology-phenology station records the cropping calendars of one or two crops (e.g., corn, soybean, rice), and
these stations’ data are provided by the China Meteorological Data Sharing Service System. The red rectangle in (b) is the study area covered by Path (114)/Row (27). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2.3.2. Atmospheric correction

We performed atmospheric corrections for all Landsat ETM+
and OLI images, using the FLAASH model (ITT Visual Information
Solutions) in ENVI/IDL image processing software. The digital
number values of the Landsat ETM+ and OLI images were first
converted to radiance, and then the land surface reflectance was
derived using the FLAASH model. We used the Sub-Arctic
Summer standard atmospheric model with the rural aerosol model
and 2-Band (K-T) for aerosol retrieval. Additionally, the initial
scene visibility was assumed using approximate values for atmo-
spheric correction, based on weather conditions, if the aerosol
was not retrieved.

2.3.3. Clouds, cloud shadows and SLC-off strips

Clouds and shadows are a significant problem for time series
analysis of Landsat imagery, and their detection is an initial step
in most analyses. Land surface covered by cloud shadows only
receives scattered sunshine and usually has low reflectance, which
is similar to the spectral characteristics of water pixels. Two steps
were used to identify clouds and cloud shadows. First, we used
Fmask software to develop cloud and cloud shadow layers for each
of the Landsat ETM+ and OLI images (Zhu and Woodcock, 2012).
Second, considering the potential uncertainty (commission error)
of the Fmask algorithm, we added LSWI (Land Surface Water
Index) > 0 as an additional indicator to double-check the “cloud”
pixels. The SLC-off strips in Landsat ETM+ images were identified
as “no-observation” through Fmask software. Finally, we calcu-
lated good quality observations for each of the Landsat images
after excluding the clouds, cloud shadows and SLC-off strips
(Fig. 4).

2.3.4. Vegetation indices

For each Landsat image, we calculated the Normalized
Difference Vegetation Index (NDVI; Eq. (1)), Enhanced Vegetation
Index (EVI; Eq. (2)), LSWI (Eq. (3)), and Normalized Difference
Snow Index (NDSI; Eq. (4)), using the land surface reflectance
values of the blue (pp,), green (Ve ), red (Prq), NIR (py;,), and
SWIR (1570-1650 nm) (p,,,;,) bands.

NDVI:pnir_pred (1)
Prir + Pred
LSWI = Prir — Pswir (2)
pnir + pswir
Prir ~ Pred
EVI =25 x 3
pnir+6><pred77'5><pblue+1 ( )
NDSI — pgreen = Pswir (4)

P greeb + P swir

2.3.5. Snow and ice covers

Snow and ice cover have high reflectance in the visible spectral
bands and can potentially affect the values of vegetation indices,
especially for LSWI and EVI. Here, we used the NDSI and reflec-
tance of NIR (NDSI > 0.4 and NIR > 0.11) to generate snow/ice maps
for each image (Hall et al., 1995, 2002). Snow and ice pixels were
excluded from the data analysis.

2.4. Maps of non-cropland land cover types
There are several non-cropland land cover types, including

water bodies, built-up and barren land, evergreen vegetation, per-
manently flooded lands with open-canopy, and natural wetlands.
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Fig. 2. Spatio-temporal changes of LSTy;gn. derived from MYD11A2 product in 2013, including the first date of LSTpign: > 0 °C (a), 5 °C (b), and 10 °C (c) in spring, and the last
date of LSTpigne > 0 °C (d), 5 °C (e) and 10 °C (f) in the fall. The border of the mapped area is based on Landsat scene, i.e., Path (114)/Row (27).
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Fig. 3. Phenology of different land cover types in the Sanjiang Plain, including paddy rice, corn, soybeans, deciduous and evergreen forests (Chen and Pan, 2002; Chen et al.,
2001; Zhu et al., 1990), and natural wetlands (Jiang et al., 2009; Zhao et al., 2011). Paddy rice: 1 - Sowing, 2 - Seeding/Flooding, 3 - Transplanting, 4 - Reviving, 5 - Tillering, 6
- Booting, 7 - Heading, 8 - Milk stage, 9 - Mature and 10 - Harvest; Corn: 1 - Sowing, 2 - Seeding/Three leaves, 3 - Seven leaves, 4 - Stem elongation, 5 - Heading, 6 - Milk
stage, 7 - Mature and 8 - Harvest; Soybeans: 1 - Sowing, 2 - Seeding, 3 - The 3rd true leaf, 4 - Flowing, 5 - Pod setting, 6 — Mature and 7 - harvest; Deciduous forests:

1 - Tree liquid flow; 2 - Budburst, 3 -

leaf unfold, 4 - Total leaf expansion, 5 - Leaf coloration, and 6 - Defoliation; Evergreen forests: 1 - Tree liquid flow, 2 - Budburst,

3 - Bud unfold, 4 - Leaf expansion, 5 - Total leaf expansion, 6 — Leaf coloration and defoliation, 7 - Fruit from ripe to drop, and 8 - Dormancy; Natural wetlands (Deyeuxia
angustifolia): 1 - Reviving, 2 - Stem elongation, 3 - Booting, 4 - Heading, 5 - Dough stage, 6 - Mature, and 7 - Defoliate.
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We developed a procedure to mask these factors and minimize
their potential impacts on the paddy rice planting area map
(commission errors) (Figs. 5 and S. 1).

The Sanjiang Plain has abundant surface water bodies, such as
Amur, Ussuri and Songhua Rivers. Water bodies usually have low
NDVI and EVI values and high LSWI values. We extracted water
bodies by identifying pixels with NDVI<0.10 and LSWI > NDVI
for each Landsat image (Xiao et al., 2006, 2005). The pixels were
labeled as persistent water bodies if these pixels were always iden-
tified as water bodies in all good quality observations.

Built-up land and barren land are comprised of a variety of dif-
ferent materials; some of the materials have high reflectance in
visible and SWIR bands and are thus characterized by LSWI <0
(Zha et al., 2003). We counted the number of observations in which
a pixel had LSWI < 0 out of all the good quality observations in time
series and then divided it by the total number of good quality
observations. A pixel with a ratio (frequency) value >90% was then
identified as built-up or barren land.

Evergreen vegetation (coniferous forests or shrubs) has green
leaves all year long and has LSWI > 0 in all good quality observa-
tions (Xiao et al., 2009). Spring and late autumn are two critical
periods for identifying evergreen vegetation, but there is no
Landsat OLI image available in spring 2013. As an alternative, we
used 130 Landsat TM/ETM+ images from 2006-2012 to map the

distribution of evergreen vegetation, based on the criteria of
LSWI > 0 (Dong et al., 2015). We counted the number of observa-
tions in which a pixel had LSWI > 0 out of all the good quality obser-
vations in Landsat 5/7 images then divided it by the total number of
good quality observations. Pixels with a ratio (frequency) value of
>95% were then identified as evergreen vegetation.

It is necessary to distinguish permanently flooded land (pixels)
with open-canopy from seasonally flooded land (pixels) with open-
canopy (e.g., paddy rice fields). Some pixels along the rivers are
mixed with natural vegetation (grass, trees, or shrubs) and water
(rivers, lakes, or ponds). The resultant spectral feature of flooded
land with open-canopy may persist over the entire plant-growing
season. We used the criteria LSWI-EVI > 0 or LSWI-NDVI > 0 to
identify the flooded/open-canopy pixels for each Landsat image.
If a pixel had the flooded/open-canopy signal for all good quality
observations within the plant growing season, it was labeled as
permanently flooded/open-canopy.

Natural wetlands in the Sanjiang Plain are formed through long-
term waterlogging, and the main vegetation type is marsh mea-
dow. Natural wetlands start flooding in early spring when air tem-
perature rises above 0 °C and undergo several weeks of vegetation
growth by the time paddy rice fields are flooded and transplanting
begins (Fig. 3 and Tables S. 1-4). If a pixel was identified with the
flooded/open-canopy signal after the date at which LSTp;gne > 0 °C
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Fig. 5. A schematic workflow illustrating the algorithm for mapping paddy rice planting area.

and had a NDVI > 0.6 on the date at which LSTygne = 5 °C, it was
categorized as a natural wetland.

2.5. Algorithm for identifying inundation and rice paddy fields

2.5.1. Physical features of rice paddy fields and mapping algorithm

A unique physical feature of rice paddy fields is that rice plants
are grown on flooded soils (Xiao et al., 2002a). From the perspec-
tive of canopy development, rice paddy fields can be described in
terms of the (1) flooding phase (from the date of initial flooding
to the date of rice transplanting, only water can be seen), (2)
flooded/open-canopy phase (from the date of rice transplanting
to the date of rice canopy closure, a mixture of water and rice
plants), (3) closed canopy phase (only rice plant canopy can be
seen; water is under the canopy and cannot be seen by sensors
above the canopy), and (4) post-harvest phase (bare soils and rice
plant residue). During the flooded/open-canopy period, rice paddy
fields are a mixture of water and green rice plants, and LSWI values
are larger than NDVI or EVI values (i.e., LSWI-NDVI > 0 or LSWI-
EVI > 0) (Fig. 6a). After rice seedling transplanting, NDVI and EVI
of the rice paddy fields increase and LSWI declines gradually.
Approximately 50-60 days after transplanting, most of the rice
paddy fields are fully covered by rice canopy, and LSWI values
are lower than those of NDVI or EVI (i.e.,, LSWI-NDVI<O0 or
LSWI-EVI < 0). It is important to note that other land cover types
always have lower LSWI values than EVI or NDVI (i.e,, LSWI-
NDVI<0 or LSWI-EVI<0) throughout the entire plant-growing
season (Fig. 6). The unique spectral feature during the flooded/
open-canopy period (i.e., LSWI-EVI > 0 or LSWI-NDVI > 0) serves

as the spectral signal detection in the analysis of time series
satellite images such as MODIS (Xiao et al., 2006, 2005).

2.5.2. Landsat-based algorithm for paddy rice planting area mapping

With the time series Landsat ETM+ and OLI imagery, we also
used the unique physical features of rice paddy fields as the basis
for paddy rice planting area mapping. We selected Landsat images
within the appropriate time period to map flooded/open-canopy
pixels, using LSTpign-defined crop calendar. After LSTpigh: = 5 °C,
snow and ice have melted in the fields, natural vegetation begins
to grow quickly, and rice paddy fields are flooded (Fig. 2). We
selected Landsat images within a time window from the first date
of LSTyigne = 5 °C in spring through the next 50 days before the rice
paddy fields grew into a full and closed canopy (Xiao et al., 2002b).

2.6. Field survey data

To assess the accuracy of the paddy rice planting area map, we
conducted an extensive field survey in the Sanjiang Plain during
the flooded/open-canopy period in 2013. We designed detailed
field survey routes based on the major land use and land cover
(LULC) types as shown in high spatial resolution Google Earth
images from recent years and county road maps. We traveled along
the designed routes taking geo-referenced photos at random field
points using digital cameras. Photos were taken inside fields at a
distance of 60 m or more away from the roads. Most of the field
points were taken in areas of uniform LULC type that were longer
than 60 m in each direction. At each point, photos were taken in at
least five directions (east, south, west, north, and downwards), so
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the surrounding LULC conditions could be clearly identified. Along
the field survey routes, adjacent points had a distance of approxi-
mately 8 km between them. A total of 1643 photos at 123 points
were taken in the study area from June 5th to the 18th, 2013,
including 1268 photos (92 points) for paddy rice, 183 photos (14
points) for upland crops (corn or soybeans), 109 photos (10 points)
for forests and shrubs, and 83 photos (7 points) for water bodies
and natural wetlands (Fig. 7). All photos are stored and managed
in the Global Geo-referenced Field Photo Library (http://www.
eomf.ou.edu/photos/), a global data portal that is open to the
public and researchers (Xiao et al., 2011).

2.7. Accuracy assessment

We converted the geo-referenced field photos into the points of
interest (POIs) in kmz format that can be displayed in Google Earth.
Then we used vector (polygon) patches drawn around or near the
POIs which had the same land cover types as determined by refer-
encing field photos and high spatial resolution images from Google
Earth. 266 areas of interest (AOIs) (89,537 pixels) were generated
and used for the accuracy assessment of the paddy rice planting
area map. The high spatial resolution images were taken primarily
during the paddy rice flooded/open-canopy period in 2012/2013.
To get pure AOIs, the borders of all the AOIs maintained a distance
of over 30 m from other land cover types.

2.8. Comparison with other available datasets of rice paddy fields

To further assess our paddy rice planting area map, we com-
pared our results with the 2010 NLCD dataset, and the agricultural

statistics of state farms from 2012. The 1-km NLCD dataset was
produced mainly based on Landsat TM/ETM+ images (Zhang
et al.,, 2014). First, the selected Landsat TM/ETM+ images were
geo-referenced using ground control points on 1:50,000 relief
maps, and the Root Mean Squared Error was less than 45 m.
Then, vector patches of different LULC types were interpreted by
computer-aided interactive procedures of visual interpretation
and on-screen digitization. The resultant 1:100,000 vector data
were intersected with a fishnet of 1-km x 1-km grid cells, and
the area percentages of different LULC types were calculated and
assigned to each cell. Finally, the vector data were converted to
raster data. The NLCD dataset has six primary LULC types and 25
sub-types, including paddy land as one sub-type. Thousands of
geo-referenced field photos were used to evaluate and verify the
high accuracy of the NLCD dataset. The state farms have the same
administrative level with counties and are the major units for agri-
cultural activities in the Sanjian Plain. These state farms are located
in or fall within different counties. Paddy rice planting area data-
sets were collected from state farms.

3. Results

3.1. Spectral signatures of flooded/open-canopy pixels and other land
cover types

As an example, Fig. 8 shows the spatial distribution of EVI,
NDVI, LSWI-EVI, and LSWI-NDVI values on June 14, 2013. Most
rice paddy fields were not fully covered by plant canopies,
and the flooded/open-canopy signals were clearly identifiable.
The major land cover types presented quite distinguishable
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characteristics (Fig. 9a and b). The rice paddy fields had flooded/
open-canopy signals and low EVI (0-0.2) and NDVI (0.2-0.4)
values. Water bodies also had flooding signals but with negative
EVI and NDVI values. Upland croplands, which were mostly cov-
ered by soil, had low EVI and NDVI values and non-flooding signals.
Forests and shrubs had high EVI and NDVI values and non-flooding
signals. About 1.4 x 107 flooded/open-canopy pixels (34.7% of the
study area) were identified by the LSWI-EVI > 0 decision rule,
which were much more than those (8.9 x 10° pixels, 22.9%) identi-
fied by LSWI-NDVI > 0 (Fig. 9¢ and d).

3.2. Spatio-temporal dynamics of flooded/open-canopy pixels

The amount of flooded/open-canopy pixels, identified either by
LSWI-EVI > 0 or by LSWI-NDVI > 0, increased first and then
decreased (Fig. 10). On April 27th and May 5th, LSTyighe began to
rise above 0°C and lower than 10 °C (Fig. 2), and the snow and
ice melted gradually. Some farmers began to flood rice paddy fields
and prepare the land for transplanting rice plants. On June 6th and
14th, the area of flooded/open-canopy pixels expanded substan-
tially, as most rice plants had been transplanted to the fields, which
were still not fully covered by plant canopies. On June 22th, paddy
rice plants had obvious canopy growth but some of the rice paddy
fields were identified with flooded/open-canopy signals. The

flooded/open-canopy pixels were considered to be the potential
paddy rice planting area.

3.3. Maps of the paddy rice planting area

We generated three maps of the paddy rice planting area at
30-m spatial resolution, using (1) Landsat ETM+, (2) OLI, and (3)
both ETM+ and OLI images, respectively, after the application of
the above-mentioned masks (see Section 2.3). Most of the rice
paddy fields were distributed at low elevations with flat terrain
from the northeast to the southwest, and few were distributed in
the low mountainous area (Fig. 11a—c). The paddy rice planting
areas of state farms estimated from only Landsat ETM+ and OLI
images were about 81.0% and 90.9% of that (75.79 x 10 ha) esti-
mated by both Landsat ETM+ and OLI images. Limited by data
availability, data quality, and the spatial variability of cultivation
time, Landsat ETM+ and OLI would miss some rice paddy fields;
however, the combination of Landsat ETM+ and OLI can provide
full coverage, as more data is available.

3.4. Accuracy assessment of the paddy rice planting area map

The AOIs were divided into two classes (rice paddy fields and
non-rice paddy fields) and used to assess the accuracy of the
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resultant paddy rice planting area maps through the confusion
matrixes (Tables 1-3). The paddy rice planting area maps estimated
by Landsat OLI, and ETM+ and OLI have similar and high Kappa coef-
ficients and accuracies, while the paddy rice planting area map esti-
mated by Landsat ETM+ has lower Kappa coefficient (0.75) and
overall accuracy (88.7%), and lower producer accuracy (72.8%) for
rice paddy fields and user accuracy (85.5%) for non-rice paddy fields.

3.5. Comparison to other available rice paddy field datasets

These 30-m paddy rice planting area maps were aggregated into
a 1-km spatial resolution grid cell (Fig. 11a—c), and compared with
the spatial distribution of the paddy land in the NLCD dataset
(Fig. 11e and f). Although these two rice paddy field datasets were
produced using different methods and images in different years,
there was reasonable agreement on the spatial distribution of rice
paddy fields. About 57.60% of pixels have a +20% area percentage
deviation of rice paddy fields. About 40.45% of pixels have 20% or
even more rice paddy fields than that of the NLCD dataset, mainly
in the northeast and the southwest. We analyzed high spatial res-
olution images in Google Earth and WorldView images at 0.5-m
spatial resolution from 2012 to 2013, and a large area of the rice
paddy fields was found in the increased paddy rice planting areas
through the shape and texture features, which confirmed the accu-
racy of our Landsat-based map.

At the level of the state farms, we compared the paddy rice
planting areas identified by Landsat ETM+, OLI, and ETM+ and
OLI images with the agricultural statistical datasets and NLCD
dataset (Fig. 12; Table 4). The results showed that these paddy rice
planting areas had significant linear relationships with agricultural
statistical datasets and NLCD dataset, indicating our mapping
results were reasonable.

4. Discussion
4.1. The combination of Landsat ETM+ and OLI images

Availability of good-quality data is essential for regional land
use/cover mapping through the phenology analysis. However, opti-
cal satellite images are often limited by bad observations (clouds,
cloud shadows, and SLC-off strips, etc.) or missing data, which
would affect the accuracy and stability of the algorithms. The
potential paddy rice planting area map can be well generated using
all the good observations of individual pixels from Landsat ETM+
and OLI images in the flooded/open-canopy period. The bad obser-
vation pixels caused by clouds, cloud shadows, and SLC-off strips in
one image were filled by other images. It was estimated that over
98.8% pixels had two or more good observations in the flooding
period (Fig. 4d). The combination of Landsat ETM+ and OLI images
increases the good observation frequency (Fig. 4), which indicates
more chance to track the phenology of paddy rice.

4.2. Algorithm comparison

Algorithms used to map croplands in previous studies (Friedl
et al.,, 2010; Liu et al.,, 2005; Pittman et al., 2010; Shao et al.,
2010; Zhong et al., 2014) with optical images can be categorized
into three groups. The first group uses individual cloud-free images
for statistical calculation and then uses unsupervised (e.g.,
ISODATA), supervised algorithms (e.g., maximum likelihood), or
visual interpretation and digitalization to map croplands, including
paddy rice fields (Liu et al., 2014; Pan et al., 2010; Shiu et al., 2012).
The second group used multiple images for statistical calculation
and supervised algorithms for cropland mapping (Friedl et al.,
2010). The third group uses time series data for individual pixels
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Table 1
The confusion matrix between the Landsat (ETM+)-based paddy rice planting area map and areas of interest (AOIs).
Class Ground truth Total classified pixels User accuracy (%) Commission error (%)
samples (pixels)
Paddy rice Others
Classification Paddy rice 24,787 868 25,655 96.62 3.38
Others 9279 54,603 63,882 85.47 14.53
Total ground truth pixels 34,066 55,471 89,537
Producer accuracy (%) 72.76 98.44
Omission error (%) 27.24 1.56
Overall accuracy (%) 88.67 Kappa coefficient = 0.75

Table 2
The confusion matrix between the Landsat OLI-based paddy rice planting area map and areas of interest (AOIs).
Class Ground truth Total classified pixels User accuracy (%) Commission error (%)
samples (pixels)
Paddy rice Others
Classification Paddy rice 31,740 124 31,864 99.61 0.39
Others 2326 55,347 57,673 95.96 4.04
Total ground truth pixels 34,066 55,471 89,537
Producer accuracy (%) 93.16 99.78
Omission error (%) 6.84 0.22
Overall accuracy (%) 97.26 Kappa coefficient = 0.94

and develops phenology-based algorithms to map paddy rice fields
(Bridhikitti and Overcamp, 2012; Peng et al.,, 2011; Xiao et al,,
2006, 2005). Given the influence of spectral heterogeneity, training
sample selection, post-classification processing, and the abilities

and experiences of interpreters, the first two groups of image-
based algorithms often produce maps that are difficult to compare
across different years, regions, and research groups. In comparison,
the pixel- and phenology-based algorithms in the third group are
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Table 3

The confusion matrix between the Landsat ETM+ and OLI-based paddy rice planting area map and areas of interest (AOIs).

Class Ground truth Total classified pixels User accuracy (%) Commission error (%)
samples (pixels)
Paddy rice Others
Classification Paddy rice 32,626 958 33,584 97.15 2.85
Others 1440 54,513 55,953 97.43 2.57
Total ground truth pixels 34,066 55,471 89,537
Producer accuracy (%) 95.77 98.27

Omission error (%) 423 1.73
Overall accuracy (%) 97.32

Kappa coefficient = 0.94
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Fig. 12. A comparison of paddy rice planting area estimates between Landsat ETM+, OLI, and ETM+ and OLI, NLCD, and official statistics in 17 state farms.

Table 4

A comparison of paddy rice planting area (x10% ha) at the levels of state farm among
ETM+-, OLI-, and combined ETM+ and OLI-based paddy rice planting area maps, NLCD
dataset, and official statistics.

State farms ETM+ OLI ETM+ and OLI NLCD Statistics
Qixing 6.70 6.77 7.25 5.74 7.33
Two nine zero 3.01 3.83 421 1.88 3.60
Erdaohe 1.91 3.52 3.74 2.03 3.43
Chuangye 3.78 3.74 4.05 3.70 3.73
Qianshao 1.99 3.78 4.04 0.98 3.53
Qianjin 5.29 5.49 5.97 5.17 5.20
Qianfeng 5.26 6.45 7.11 3.11 6.73
Qindeli 5.40 5.76 6.37 1.64 4,70
Daxing 3.96 4.05 4.57 2.39 4.53
Honghe 4.12 4.25 4.65 3.60 4.07
Nongjiang 4.03 3.88 427 3.06 3.55
Hongwei 3.71 3.74 4.28 3.80 3.80
Hongqiling 1.44 1.46 1.68 1.48 1.47
Shengli 3.23 3.39 3.93 1.90 3.20
Qinglongshan 3.10 3.57 3.84 2.96 3.33
Raohe 1.52 2.04 242 1.36 1.93
Yalvjiang 2.99 3.15 341 1.63 2.87
Total area 61.43 68.87 75.79 46.43 67.03

less impacted by these problems. The phenology-based algorithm
can track the growing profiles of different crops or vegetation
and explore the unique signals of selective targets according to
their differences in cropping calendar or management activities
(Zhong et al., 2014, 2011). Higher observation frequency of images
indicates more detailed growing profiles, which would increase the
identification capability of targeted land covers. In this study, the
unique flooding signals of rice paddy fields were investigated
through the comprehensive analysis of the 8-day Landsat NDVI,
EVI, and LSWI datasets.

4.3. Potential sources of uncertainty in the pixel- and phenology-based
algorithms

Several factors can potentially affect the regional mapping of
rice paddy fields from Landsat ETM+ and OLI images. The first fac-
tor is the availability of Landsat imagery. Due to instrument acqui-
sition plan, five Landsat 7 and Landsat 8 images are missing in the
growing season of 2013 (Fig. 4c), which result in a loss of good-
quality observations for rice paddy field mapping. The second fac-
tor is image quality affected by clouds, cloud shadows, and SLC-off
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strips. It is estimated that approximately 50% of the land pixels are
contaminated with clouds, cloud shadows, and SLC-off strips
(Fig. 4c), which would further reduce the good quality observa-
tions. Clouds can be identified with high accuracy, but the identifi-
cation of cloud shadows often has a relatively low accuracy (Zhu
and Woodcock, 2012). Cloud shadow pixels often meet the thresh-
old of LSWI-EVI>0 and can potentially affect rice paddy field
mapping. The third factor is the effect of mixed pixels of rice paddy
fields and non-rice paddy fields (roads, agro-forests, etc.) at a 30-m
spatial resolution, especially for the early flooded/open-canopy
period. The fourth factor is inundation of land surface due to
extreme precipitation event. In the late spring and early summer
of 2013, heavy rainfall (400-730 mm) resulted in extensive flood-
ing, which usually happens once in fifty to one hundred years.

4.4. Significance and implications

In the past, optical remote sensing images (e.g., Landsat TM/
ETM+) at a spatial resolution of a few tens of meters were only avail-
able at a high price, making large-scale LULC mapping projects quite
costly. The rice paddy field maps were mainly derived from individ-
ual cloud-free images using image-based algorithms. In this study,
all the pixels in a time series of Landsat images, and a pixel- and
phenology-based algorithm were used to produce a highly accurate
rice paddy field map, demonstrating their potential for rice paddy
field mapping. MODIS-based LSTgn: images were quite helpful in
defining the plant-growing season and selecting Landsat images
for the rice paddy field mapping. This procedure of integrating time
series MODIS and Landsat images has the potential to be extended
to the similar climate regions without cropping calendar records.
The application of this algorithm to other climate regions where
paddy rice can be cultivated more than once (double- or triple
cropping) should be carefully considered. Landsat TM/ETM+/OLI
imagery and the automated algorithm can provide inter-annual
paddy rice planting area maps at higher spatial resolution than
those generated by MODIS datasets after 2000, especially in those
regions of highly fragmented landscapes and agricultural land use.

In addition to Landsat ETM+ and OLI, a few optical sensors with
similar spatial resolutions are or will be in operation, for example,
Landsat TM, FORMOSAT-2, SPOT HRB/HRVIR, and Sentinel-2A/B.
Data availability will be greatly improved when Sentinel-2 imagery
becomes available in the near future, which has a 5-day revisit fre-
quency. An increase in good quality observations could further
increase the efficiency and stability of the algorithm for mapping
rice paddy fields, and decrease the uncertainties of the resultant
maps.

This 30-m rice paddy field map is more detailed and spatially
resolved than the NLCD datasets at 1:100,000 scale (Liu et al.,
2014; Zhang et al., 2014). The comparison between the NLCD and
our mapping result shows those areas where rice paddy fields
remain unchanged from 2010 to 2013, and where rice paddy fields
differ (increase or decrease) too. Areas experienced a reduction in
rice paddy fields can be attributed to either the commission error
associated with the visual interpretation of Landsat images in the
NLCD dataset or the expansion of built-up lands. Areas with an
increase of rice paddy fields are mainly attributed to the expansion
of rice paddy fields. The loss of rice paddy fields occur mostly
around the built-up lands and they usually are good quality crop-
lands. The expansion of rice paddy fields largely occur through con-
version from upland croplands, driven by the comprehensive
effects of economic interests, improved irrigation facilities, and
national agricultural policies (Liu et al., 2014). Some of the newly
converted rice paddy fields could be easily degraded into marginal
and low-quality land, due to poor natural conditions and inappro-
priate agricultural management (Liu et al., 2005; Yan et al., 2009),
and much attention is needed for their quality and sustainability.

5. Conclusions

A pixel- and phenology-based algorithm for mapping rice paddy
fields has been developed, based on the unique spectral feature in
the flooded/open-canopy period and Landsat ETM+/OLI images
during the thermal growing season defined by MODIS LSTygnc. All
the pixels from 8-day Landsat images are used, and a high accuracy
and updated paddy rice planting area map at the spatial resolution
of 30 m is generated. Compared with rice paddy field maps based
on coarse spatial resolution images such as MODIS, the effects of
mixed pixels can be greatly decreased in this Landsat-based study.
Compared with paddy rice field maps based on fine spatial resolu-
tion images and image-based algorithms, higher efficiency can be
achieved in the algorithms reported in this study. The planting
areas retrieved from the paddy rice planting area map have a
strong linear relationship with the official statistics for the state
farms. In addition, the 30-m rice paddy field map can provide the
spatial distribution of rice paddy fields in detail.

Although this algorithm is tested in the Sanjiang plain, one of
the emerging major rice production region in China, the algorithm
should be applicable in the similar climate regions, as the obvious
flooding signals occur in the flooded/open-canopy period for rice
paddy fields. Data availability is the primary factor limiting the
accuracy and stability for rice paddy field mapping. Multi-source
satellite images with similar spatial resolution can be combined
to increase observation frequency in the near future. The algorithm
developed in this study is a very promising tool for rice paddy field
mapping in cold temperate region, and further studies are needed
in other climate zones.
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