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Forests and their changes are important to the regional and global carbon cycle, biodiversity and
ecosystem services. Some uncertainty about forest cover area in China calls for an accurate and updated
forest cover map. In this study, we combined ALOS PALSAR orthorectified 50-m mosaic images (FBD
mode with HH and HV polarization) and MODIS time series data in 2010 to map forests in China. We used
MODIS-based NDVI dataset (MOD13Q1, 250-m spatial resolution) to generate a map of annual maximum
NDVI and used it to mask out built-up lands, barren lands, and sparsely vegetated lands. We developed a
decision tree classification algorithm to identify forest and non-forest land cover, based on the signature
analysis of PALSAR backscatter coefficient data. The PALSAR-based algorithmwas then applied to produce
a forest cover map in China in 2010. The resulting forest/non-forest classification map has an overall
accuracy of 96.2% and a Kappa Coefficient of 0.91. The resultant 50-m PALSAR-based forest cover map
was compared to five forest cover databases. The total forest area (2.02 � 106 km2) in China from the
PALSAR-based forest map is close to the forest area estimates from China National Forestry Inventory
(1.95 � 106 km2), JAXA (2.00 � 106 km2), and FAO FRA (2.07 � 106 km2). There are good linear
relationships between the PALSAR-based forest map and the forest maps from the JAXA, MCD12Q1,
and NLCD-China datasets at the province and county scales. All the forest maps have similar spatial
distributions of forest/non-forest at pixel scale. Our PALSAR-based forest map recognizes well the
agro-forests in China. The results of this study demonstrate the potential of integrating PALSAR and
MODIS images to map forests in large areas. The resultant map of forest cover in China in 2010 can be
used for many studies such as forest carbon cycle and ecological restoration.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Forest areas are estimated to be 4.0 � 107 km2, accounting for
�31% of the world land area (FAOSTAT, 2011). Forests produce half
of net primary production in the world (Groombridge and Jenkins,
2002), and play an important role in the global carbon cycle
(Bonan, 2008; Fang et al., 2014b; Pan et al., 2011; Yu et al.,
2014), water and heat fluxes (Pongratz et al., 2010), biodiversity,
and soil and water conservation (Achard and Hansen, 2012). In his-
tory, about 40% of global forests have been converted to cropland,
pasture, and other man-made land cover types, especially for the
Mediterranean forests, and temperature deciduous and dry tropi-
cal forests, in response to increasing demand for food, energy,
and economic interests (Achard and Hansen, 2012; Foley et al.,
2005). In the last several decades, more than 80% of the world
agricultural expansion occurred in the tropical forest regions
(Gibbs et al., 2010). In the future, the increasing population and
the improvement of people’s living conditions will continue to
create significant demand and pressure on forests (FAO, 2009).
Forests are also affected by other disturbances, including wild fires,
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freezing rain, drought, and insect pests. The loss and degradation of
forests could affect various ecosystem services and result in a
series of ecological disasters. To reverse the adverse effects from
deforestation and forest degradation, extensive reforestation and
afforestation activities have also been carried out in many parts
of the world over the last several decades, especially in East Asian
countries, such as the ‘‘Grain for Green” project in China and refor-
estation projects in Vietnam (FAO, 2012; Lambin and Meyfroidt,
2011; Liu et al., 2014; Xiao, 2014). These reforestation and
afforestation mainly occurred in the abandoned or marginal lands,
which increases the forest area and carbon sequestration (Fang
et al., 2014b; Lambin and Meyfroidt, 2011). Timely and accurate
forest cover monitoring algorithm and data products are needed
for forest management (Hansen et al., 2008).

Optical images from airborne and space-borne sensors have
been used for monitoring forest areas and assessing forest cover
change (Potapov et al., 2011). The coarse spatial resolution images
from high-revisit-cycle satellites (e.g., National Oceanic and Atmo-
spheric Administration (NOAA)-Advanced Very High Resolution
Radiometer (AVHRR), SPOT4 VEGETATION, Moderate Resolution
Imaging Spectroradiometer (MODIS)) were used for global and
regional land cover mapping (e.g., forests), such as IGBP DIScover
(Loveland et al., 2000), UMd land cover dataset from the University
of Maryland (Hansen et al., 2000), GLC2000 (Bartholome and
Belward, 2005), GlobCover (Bontemps et al., 2011), and MCD12Q1
(Friedl et al., 2010). The updated global MCD12Q1 land cover maps
are available at 500-m spatial resolution annually, and have been
used to identify land cover changes since 2000 (Friedl et al.,
2010). Considering the uncertainties caused by mixed pixels from
the coarse spatial resolution, there is a need for using fine spatial
resolution images to map forest distribution and their inter-
annual changes. The freely-available Landsat archive with more
than 30 years of global observation records provides a valuable
resource for mapping forests at 30-m spatial resolution. Giri et al.
(2011) interpreted approximately 1000 Landsat scenes to map
the spatial distribution of world mangrove forest, using hybrid
supervised and unsupervised classification. Gong et al. (2013)
produced the first 30-m resolution global land cover maps using
Landsat TM/ETM+ images mainly from circa 1999 and circa 2011.
Hansen et al. (2013) generated 30-m global forest cover change
maps based on Landsat images from circa 2000 and circa 2012.

Synthetic Aperture Radar (SAR) sensors with different band-
widths (X, C and L bands) can penetrate clouds, and provide
another source of images to map forests. The L-band microwave
energy has greater penetration into forests and exhibits substantial
volume scattering, as incident energy interacts with a large num-
ber of leaves, trunks, and branches, and thus is preferred for global
and regional forest mapping. The Japanese Earth Resources
Satellite-1 (JERS-1) was the first L-band SAR with HH polarization
and used for global forest analysis and mapping (Rosenqvist et al.,
2000; Shimada, 2005). Shimada et al. (2014) generated the first
25-m global forest maps from 2007 to 2010, using region-specific
threshold values of Phased Array type L-band Synthetic Aperture
Radar (PALSAR) HV backscatter coefficients as forest and non-
forest have larger differences in HV gamma naught than those in
HH. In some hotspots, the potential of PALSAR Fine Beam Dual
(FBD) mode images was assessed for mapping deforestation in
tropical (Longepe et al., 2011; Motohka et al., 2014; Rakwatin
et al., 2012) and boreal (Pantze et al., 2014) regions. However, for-
est mapping results based on only SAR data would have some noise
that is introduced by soil moisture and complex environment.

The combination of optical and SAR images provides comple-
mentary information and often increases the classification accu-
racy of land covers (Ban et al., 2010; Leinenkugel et al., 2011).
High quality and time-specific optical images (e.g., ALOS AVNIR-
2, Landsat, and MODIS) have been combined with PALSAR FBD data
to identify and monitor local land cover types (e.g., forests) (Bagan
et al., 2012; Dong et al., 2013, 2012b; Hoan et al., 2013; Lehmann
et al., 2012), or large area of forests at 500-m spatial resolution
(Sheldon et al., 2012). Most of these studies were carried out at
local hot spots in tropical regions, and highlight the potential of
combining PALSAR and optical data for mapping forests.

In this study, we aim to map forests through integration of
PALSAR and MODIS images acquired in 2010. The Chinese govern-
ment has successively implemented several ecological restoration
projects that aim to convert and improve the deteriorated ecolog-
ical conditions with huge investment and labor force, including
reforestation and afforestation (Fang et al., 2001; FAO, 2012). It
was reported that forest area in Asia shifted from net loss during
1990–2000 to great net gain during 2000–2010, mainly due to
the afforestation in China (FAO, 2012). However, a recent study
indicated that there was no obvious forest area increase in China
during 2000–2012 (Hansen et al., 2013). Because of the large
uncertainty of forest area estimates among available multi-
source forest products, it is necessary to develop an accurate forest
distribution map at fine (e.g., 50-m) spatial resolutions and esti-
mate forest area. The objectives of this study are (1) to develop
an algorithm to generate an accurate 50-m forest map in China
in 2010, combining the PALSAR FBD data with MOD13Q1 NDVI;
(2) to compare multi-source forest maps and quantify their agree-
ment and disagreement; and (3) to investigate the uncertainties of
multi-source forest maps in China in 2010. This study could pro-
vide a high quality forest map in China for various scientific
research, forest planning and management.
2. Materials and methods

2.1. Study area

China is situated in East Asia, and climate has distinct regional
and seasonal characteristics due to East Asian Monsoon and com-
plex topography (Fig. S1). The southeast marine monsoon prevails
fromMay to September and brings a large amount of rainfall, while
the northwest continental monsoon occurs from November to
March and brings dry and cool air. Southeast China has a warm
and humid climate, while Northwest China has a dry and cool cli-
mate. The Tibetan Plateau is characterized by cold and dry climate
because of the massive mountain ranges with high elevation.

The topography varies greatly from Eastern to Western China,
with an elevation range of �156 m to 8685 m above sea level
(Fig. S1). The Tibetan Plateau has an average elevation approxi-
mately 4500 m above sea level, followed by the plateaus and
mountains in Mid-western China (with an average elevation about
1000–3000 m) and the plains and hills in coastal areas (mostly
lower than 500 m). The mountain area is about 2/3 of the total area
in the country. The major agricultural production regions are
located in the plains and basins. Grassland (31.0% of the total land
area), woodland (24.8%), unused land (23.2%), and cropland (15.6%)
are the major land cover types in China in 2010, while water bodies
and built-up land account for 2.9% and 2.5%, respectively (Zhang,
2012).
2.2. 50-m PALSAR orthorectified mosaic dataset and pre-processing

The 50-m PALSAR orthorectified mosaic data with FBD polariza-
tion mode from 2007 to 2010, aggregated from the original obser-
vation with minimum response to surface moisture (Shimada et al.,
2014), is available on the Earth Observation Research Center, Japan
Aerospace Exploration Agency (JAXA). The dataset is organized in
latitude–longitude coordinate, and each tile has 2250 columns by
2250 rows. The dataset includes gamma-naught in HH and HV,
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local incidence angle and mask information (layover, shadowing,
ocean flag, effective flag and void flag), and total dates since the
ALOS launch. The HH and HV data are slope corrected and
orthorectified using the 90-m Shuttle Radar Topography Mission
(SRTM) Digital Elevation Model (DEM), and radiometrically cali-
brated. Because of the coarse spatial resolution of SRTM DEM,
the geometric accuracy of PALSAR HH and HV is about 12-m.
Gamma naught is normalized by the realistic illumination area
using the local incidence angle, and provides more uniform
backscattering coefficients than sigma naught (Shimada et al.,
2014; Shimada and Ohtaki, 2010). The Digital Number (DN) values
(amplitude values) in the data were converted into gamma-naught
in decibel units using a calibration coefficient, which is insensitive
to the focus of the impulse response (Shimada et al., 2009). Then
we calculated the Ratio and Difference values, using the resultant
HH and HV backscattering coefficient in decibel.

c� ¼ 10� log10 < DN2 > þ CF

where c� is the backscattering coefficient in decibel; DN is the dig-
ital number value of pixels in HH or HV; and CF is the absolute cal-
ibration factor of �83, which is dependent on incidence-angle
(Shimada et al., 2009) and can be used for the radiometric calibra-
tion of both sigma-naught and gamma-naught.

Ratio ¼ c0HH=c
0
HV

Difference ¼ c0HH � c0HV

where Ratio and Difference are the ratio values of c0HH to c0HV and the
difference values of c0HH � c0HV , respectively; c0HH and c0HV are the
backscattering coefficients of HH and HV in decibel.

We downloaded all the PALSAR HH and HV data in China in
2010 and converted to backscattering coefficient in decibel
(Fig. 1). To reduce the adverse effects of snow, ice and soil
Fig. 1. Color composite map of PALSAR images at the spatial resolution of 50 m in China f
(For interpretation of the references to color in this figure legend, the reader is referred
moisture, we selected the PALSAR data in the main growing season
according to the climate zones (Fig. S2). One strip in the boreal
zone in Northeastern China was acquired in October, 2010, which
was out of growing season, and then replaced by the PALSAR data
acquired in September, 2009.
2.3. MODIS NDVI dataset for a mask of barren land, built-up land and
sparse vegetation

Some built-up lands, barren lands, and sparsely vegetated lands
with complex structure and rough land surface may have high
PALSAR backscattering coefficients, similar to forests. The annual
maximum NDVI (NDVImax) of these built-up lands, barren lands,
and sparsely vegetated lands are usually lower than 0.3, while for-
ests NDVImax are usually higher than 0.5 (Defries and Townshend,
1994). To reduce the commission error, we generated a map of bar-
ren land, built-up and sparsely vegetation, based on the threshold
value of NDVImax < 0:5 from 16-day composite MOD13Q1 NDVI
product (250-m spatial resolution) in 2010 (Solano et al., 2010)
(Fig. 2). The resultant map of barren land, built-up land and sparse
vegetation was applied as a mask to the data analysis of PALSAR
images.
2.4. PALSAR-based forest mapping algorithm

According to the FAO, forest is defined as land with tree canopy
cover larger than 10% with a minimum height of five meters (FAO,
2012) in this study. In the previous PALSAR-based forest mapping
studies (Dong et al., 2012a; Sheldon et al., 2012; Shimada et al.,
2014), the same forest definition was used. A detailed workflow
is developed for forest mapping and multi-source forest dataset
comparison (Fig. 3). L-band PALSAR data can capture the structure
and above ground biomass (AGB) of forests (Imhoff, 1995; Kovacs
or 2010, in a false-color combination of Red (HH), Green (HV), and Blue (Difference).
to the web version of this article.)



Fig. 2. Spatial distribution of annual maximum NDVI (A) and the binary map of vegetation/non-vegetation mask (B), based on 16-day MOD13Q1 NDVI in China in 2010.

Fig. 3. Workflow of forest cover mapping based on PALSAR and MODIS products in China.
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et al., 2013; Ni et al., 2013), as its great penetration into forests
with substantial volume scattering through the incident energy
interaction with large trunks and branch components. Forests usu-
ally have dense and large canopy and relative high AGB from
tremendous number of leaves, branches, stems, and trunks. Recent
studies show that forests and forest AGB exhibit a certain range of
PALSAR backscattering coefficients, respectively (Ni et al., 2013;
Peregon and Yamagata, 2013; Rakwatin et al., 2012; Shimada
et al., 2014). In this study, we tried to use the same decision
classification algorithm in our previous study in Southeast Asia
(Dong et al., 2012a, 2014). As the backscatter data used in this
study is gamma naught instead of sigma naught, we recalculated
the segmentation thresholds by using the same training samples.

Ground truth samples are important for land cover
classification, which are used for training or result validation. A
total of 2106 geo-referenced field photos are used for algorithm
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development in this study, which were collected in Mainland
Southeast Asia in 2009 and are freely available in Global Geo-
referenced Field Photo Library (http://www.eomf.ou.edu/photos/).
We located those geo-referenced photos in Google Earth, and dig-
italized a series of random Region of Interests (ROIs) as a reference
of geo-referenced photos and high spatial resolution images. About
1.4 � 107 PALSAR pixels were acquired from the ROIs, including
9.98 � 105 forest pixels (25 ROIs), 1.61 � 105 cropland pixels (32
ROIs), 3.04 � 105 water pixels (10 ROIs), and 2.70 � 104 built-up
pixels (11 ROIs) (Dong et al., 2012a). These ROIs were used for
PALSAR backscatter signature analysis and classification thresholds
among different land cover types (water, cropland, built-up, and
forests) (Fig. 4).

We calculated and generated the frequency distribution of two
polarizations (HH and HV), Ratio, and Difference of forests, crop-
land, water, and built-up lands. The histogram of the HH image
(Fig. 4A) shows that water has much lower backscatter values than
forests and partly overlapped with cropland, as water bodies are
calm and smooth, and can reflect most of the backscatter through
specular reflection. Water is separable from forests, built-up lands,
and most of cropland in HH backscatter. Both forests and built-up
lands have high HH backscatter values due to the strong reflec-
tance environment caused by their complex structure, and parts
of built-up lands have even higher HH backscatter values. Forests,
cropland, and built-up lands also have some overlap of HH
backscatter values. The histogram of the HV image (Fig. 4B) shows
that forests present higher values than water and cropland, and
have relatively more overlap with built-up lands due to the mixed
pixels of forests and build-up lands. HV is an additional and effec-
tive indicator to distinguish forests fromwater and cropland, and is
still limited to distinguish forests and built-up lands. The his-
togram of the Ratio image (Fig. 4C) shows that forests overlap with
the other three land cover types. The histogram of the Difference
image (Fig. 4D) shows that forests have low difference values,
while water has high Difference values.

The backscatter signatures of HH, HV, Ratio, and Difference are
the basis to build the decision tree algorithm to identify forests,
cropland, water, and built-up lands. First, water can be identified
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Fig. 4. The backscatter signature of different land cover
easily as it has very low HH and HV values. Second, forests have
high HH and HV values, and low Difference values, although it
partly overlaps with built-up lands. Third, most of cropland can
also be identified, although partly overlap with water. Based on
the 95% confidence intervals of the HH, HV, Ratio, and Difference
images, threshold values for the decision tree algorithm are
determined (Fig. 5). As some uncertainty may exist in the ROIs of
different land cover types, we exclude 2.5% pixels with the lowest
and highest values. The threshold values were further rounded to
integer numbers for HH and HV images, and to 0.5 for Ratio and
Difference images.

The PALSAR-based land cover mapping results were merged
into forest and non-forest. Through a dynamic link between the
forest/non-forest map and high spatial resolution images in Google
Earth, some noise was found, which may be attributed to the com-
plex topography, soil moisture, etc. Based on the slope distribution
map (Fig. S3) derived from the 90-m STRM DEM, we used 3 pixels
by 3 pixels median filter to exclude those noise in the area with
slope larger than 5�. In addition, the spatial distribution of
NDVImax (Fig. 2B) was used to further reduce the commission errors
in the forest/non-forest map, caused by some built-up lands and
bare lands that have large values of backscattering coefficients.
After these two post-processing refinements, we got the final
forest/non-forest map derived from PALSAR/MODIS, named OU
F/NF map.

2.5. ROIs for results validation and threshold values comparison

We set up the grid of one latitude degree by one longitude
degree in China (1127 grid cells). Based on high spatial resolution
images available in Google Earth in circa 2010, we manually digi-
talized ROIs through visual interpretation across the country in
each of 1� by 1� grid cells (Fig. 6). The high spatial resolution
images during the growing season were collected, and the land
covers can be clearly identified. Finally, 362,976 pixels (2120 ROIs)
were selected, including 98,820 pixels of forests (1520 ROIs) and
264,156 pixels of non-forests (600 ROIs). These ROIs were
used to compare threshold values for forests between Mainland
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Fig. 5. Decision tree classification for forest mapping based on PALSAR backscatter
in China.
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Southeast Asia (Dong et al., 2012a) and China, and to validate the
accuracy of forest/non-forest mapping result in this study.

2.6. Comparison with multi-source forest datasets in 2010

We collected three remote sensing-based forest datasets and
two inventory-based forest datasets available in the public domain.
We first compared the area and spatial distribution of these six
forest datasets in China in 2010 at country, province, and county
scales, respectively. For the spatial comparison, the 50-m OU
F/NF and JAXA F/NF maps and 500-m MCD12Q1 F/NF map were
aggregated into 1000-m. Here we provide a brief introduction of
these five datasets for inter-comparison (Table 1).
Fig. 6. Ground truth samples from high spatial res
2.6.1. JAXA forest/non-forest map (JAXA F/NF)
The 50-m JAXA F/NF maps were aggregated from the original

25-m F/NF maps, which were produced by using PALSAR FBDmode
data from June to September (Shimada et al., 2014). About 10–15%
of the data in the year before or after were used due to the data
availability. Data pre-processing includes speckle reduction,
ortho-rectification and slope correction, and intensity equalization
between neighboring strips. In general, three steps were used to
generate the JAXA F/NF maps. First, a 5 � 5 pixel median filter
was used to reduce noise in images, following a multi-resolution
segmentation in eCognition software. Then, 15 region-specific HV
threshold values were determined to identify forest pixels, based
on the ROIs and cumulative distribution functions. Finally, the
overall accuracy of JAXA F/NF maps were assessed approximately
85%, 91% and 95%, using validation points from the Degree Conflu-
ence Projects, forest area statistics from Global Forest Resource
Assessment, and Google Earth high spatial resolution images,
respectively.

2.6.2. MODIS land cover product (MCD12Q1)
Five different land cover classification systems were included in

the MCD12Q1 product (Friedl et al., 2010), and the International
Geosphere-Biosphere Programme (IGBP) classification was used
in this study. The IGBP classification map was produced using a
supervised classification algorithm, based on the training dataset.
The phenology and temporal variability features of land cover
types extracted from 500-m aggregated 32-day average nadir
BRDF-adjusted land surface reflectance (NBAR), enhanced vegeta-
tion index (EVI), land surface temperature (LST), and annual met-
rics (minimum, maximum, and mean values) for EVI, LST and
NBAR bands were used to identify and generate land cover types.
Post-processing refinements were applied to create the final land
cover product, including sample bias correction and spatial explicit
prior probability adjustments. The overall accuracy of the IGBP
land cover product is about 75% based on a cross-validation. Five
olution images in Google Earth in circa 2010.



Table 1
Multiple forest cover datasets used for comparison of forest cover area in China in 2010.

Forest cover
datasets

Forest land cover types Spatial
resolution (m)

Algorithms

MCD12Q1
(IGBP)

Woody vegetation with a percent cover more than 60% and tree height exceeding 2-m 500-m Supervised classification

NLCD-China Wood canopy cover more than 10% 1000-m (area
percentage)

Visual interpretation and
digitalization on the screen

JAXA F/NF Woody vegetation cover more than 10%, determined by high spatial resolution images in
Google Earth

50-m (25-m
original data)

Supervised classification

OU F/NF Woody vegetation cover more than 10% and tree height exceeding 5-m, determined by high
spatial resolution images in Google Earth

50-m Supervised classification

FAO FRA Land spanning more than 0.5 ha with tree height exceeding 5-m and a canopy cover more than
10%, or trees able to reach these thresholds in situ

Country Statistical datasets

NFI-China Natural, secondary, and planted forests have more than 30% coverage Country and
province

Statistical datasets
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forest types in 2010 were merged into a forest mask, including
evergreen needleleaf forest, evergreen broadleaf forest, deciduous
needleleaf forest, deciduous broadleaf forest, and mixed forest.
2.6.3. National Land Cover Dataset (NLCD-China)
The NLCD-China dataset uses a hierarchical classification sys-

tem, including 6 classes and 25 sub-classes (Liu et al., 2005). The
main data sources for development of NLCD-China were 30-m
Landsat TM/ETM+ images from the late 1980s to 2010. Most of
the satellite images used were acquired in the vegetation growing
season without cloud cover. Geometric correction was done for all
the satellite images using ground control points, with the relative
position error less than two pixels. Four steps were implemented
in the NLCD-China classification projects (Zhang et al., 2014). First,
interpretation symbols were built for the typical land use/cover
types, according to the field survey. Second, the baseline NLCD-
China for 1995 was produced. Interpreters analyzed and identified
land use/cover types from Landsat TM images in 1994/1995, then
digitalized the boundaries and labeled the properties for each poly-
gon at the scale of 1:100,000. Third, interpreters compared the
satellite images during different periods, and digitalized the Land
use/cover changes (LULCC). Fourth, the NLCD-China in 1995 and
the LULCC polygons from 1995 to 2010 were combined together
to produce the NLCD-China in 2010. The vector data was inter-
sected with a 1 km � 1 km fishnet, and the area percentages of
each land use/cover types were calculated as the values for each
cell. NLCD-China was validated with a high accuracy of about
95% for the 6 classes, using the re-interpretation map of randomly
10% of counties and field survey photos.
2.6.4. FAO Forestry Resources Assessments (FRA)
FAO had a long history in monitoring the world-wide forests at

5–10 year intervals since 1946 (FAO, 2012). The previous FRA were
mainly based on country reports collected from 233 countries and
territories in 1990, 2000, 2005, and 2010. With the great develop-
ment of remote sensing, satellite images became another impor-
tant data source. FAO worked closely with countries and
specialists in the design and implementation of FRA-2010. More
than 900 contributors were involved, including 178 officially nom-
inated national correspondents and their teams. FRA-2010 is the
most comprehensive assessment of forests and forestry to date. It
examines the current status and recent trends for about 90 vari-
ables covering the extent, condition, uses and values of forests.
However, the data availability and quality are still limited, espe-
cially in developing countries.
2.6.5. China National Forestry Inventory (NFI-China)
To get the area, composition, and distribution of forest

resources, the State Forestry Bureau of China organized eight
National Forestry Inventories around 1975, 1980, 1985, 1990,
1995, 2000, 2005, and 2010, respectively (State Forestry Bureau,
2014). The survey samples were systematically allocated according
to the principle of statistics. Based on the unified technical stan-
dard of continuous inventory method, investigators revisited the
survey sample sites periodically, and processed the data and
obtained the regional/national forest information using the statis-
tical software. The overall accuracy of the results was assessed to
be approximately 95% through the samplings (State Forestry
Bureau, 2003). The forest area at the national and province scales
from the eighth NFI-China (2010) was used in this study.
3. Results

3.1. Forest map of China in 2010 from the 50-m PALSAR mosaic
dataset (OU F/NF dataset)

The resultant OU F/NF map estimates the forest area of
approximately 2.02 � 106 km2 in 2010, which covers 21.31% of
the land area in China. The spatial distribution of forests in China
varies substantially over space (Figs. 7 and 8 and S1). About
1.7 � 106 km2 (85% of national forest area) forests are located in
those areas with an elevation of under 2000 m, mainly in North-
eastern and Southern China. About 3.0 � 105 km2 (15%) forests
are detected in the grain production plain regions, such as North-
east China Plain, North China Plain, and Yangtze Plain with dense
population and intensive agricultural production (Liu et al., 2005;
Zhang et al., 2014). Only a small number of forests are in Western
China, where there is a limitation for forests growing because of
the dry and cold climate, and high elevation above sea level.

The ground truth samples from Google Earth were used to val-
idate the classification accuracy of OU F/NF map. The OU F/NF map
has an overall accuracy of 96.2% and a Kappa Coefficient of 0.9. The
forest category has Producer Accuracy and User Accuracy of 87.6%
and 98.1%, and non-forest category has Producer Accuracy and
User Accuracy of 99.4% and 95.5% (Table 2). Forests in plain areas,
with the elevation lower than 200 m, are also assessed with rela-
tive high accuracy through the ground truth samples in plain areas
(Table 3). The omission error of forest is relatively higher than that
of commission error. Spatial analysis of accuracy assessment
shows that the omission error of the OU F/NF map is mainly
located in cold regions in Northern China with short growing sea-
son and agricultural production regions with scattered forests
(Figs. S1 and S4A). The omission and commission errors are ran-



Fig. 7. Spatial distribution of 50-m OU forest/non-forest in China in 2010.

Fig. 8. Forest distribution in different elevation intervals at 1 km spatial resolution
from multi-source forest maps in China in 2010.
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domly distributed in the acquisition date of PALSAR datasets,
elevation, local incidence angle, and terrain slope (Fig. S4B–E).

3.2. Area comparison of multi-source forest maps in 2010 at country,
province and county levels

The total forest area of the OU F/NF map is quite close to those
of NFI-China (1.95 � 106 km2), JAXA F/NF map (2.00 � 106 km2),
Table 2
Confusion matrix between OU F/NF map and ground truth samples from high spatial reso

Class Ground truth sampl

Forest

Classification Forest 86,571
Non-forest 12,249

Total ground truth pixels 98,820
Producer accuracy (%) 87.60
and FAO FRA (2.07 � 106 km2), and has slightly larger differences
with the MCD12Q1 (1.74 � 106 km2) and NLCD-China
(2.27 � 106 km2) (Fig. 9). About 65% of forests are distributed in
the area with elevation from 200 m to 1500 m in the multi-
source forest maps (Fig. 8). The OU and NLCD-China F/NF maps
identify more forests than the JAXA and MCD12Q1 F/NF maps in
the flat area with elevation of lower than 200 m (Fig. 8).

Significant linear relationships exist among multi-source forest
maps at province and county scales. At the province scale, the for-
est area of the OU F/NF map has significant linear relationships
with those of JAXA (R2 = 0.98, p < 0.001), MCD12Q1 (R2 = 0.96,
p < 0.001), NLCD-China (R2 = 0.93, p < 0.001), and NFI-China
(R2 = 0.82, p < 0.001) F/NF maps with the Root Mean Squared Error
(RMSE) about 0.88 � 104 km2, 1.4 � 104 km2, 1.8 � 104 km2 and
2.5 � 104 km2, respectively (Fig. 10). The slope of the forest area
linear relationships between OU F/NF map and JAXA, MCD12Q1,
NLCD-China, and NFI-China F/NF maps are about 1.02, 0.90, 1.09,
and 1.02, respectively. At the county scale, the forest area of OU
F/NF map has significant linear relationships with those of JAXA
(R2 = 0.98, p < 0.001), MCD12Q1 (R2 = 0.94, p < 0.001), and NLCD-
China (R2 = 0.95, p < 0.001) F/NF maps, with the RMSE about
2.9 � 102 km2, 4.5 � 102 km2, 4.6 � 102 km2, respectively
(Fig. 11). The slope of the forest area linear relationships between
lution images in Google Earth in 2010.

es (pixels) Total classified pixels User accuracy (%)

Non-forest

1639 88,210 98.14
262,517 274,766 95.54
264,156 362,976
99.38



Table 3
Confusion matrix in plain regions between OU F/NF map and ground truth samples from high spatial resolution images in Google Earth in 2010.

Class Ground truth samples (pixels) Total classified pixels User accuracy (%)

Forest Non-forest

Classification Forest 11,522 486 12,008 95.95
Non-forest 3003 77,553 80,556 96.27

Total ground truth pixels 14,525 78,039 92,564
Producer accuracy (%) 79.33 99.38
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Fig. 9. Forest area comparison among multi-source forest maps in China in 2010.
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OU F/NF and JAXA, MCD12Q1, and NLCD-China F/NF maps are
about 1.06, 0.97, and 1.09, respectively.
3.3. Spatial comparison of multi-source forest cover datasets in 2010
at grid cell level

The OU, JAXA, MCD12Q1, and NLCD-China F/NF maps present
similar spatial distributions of forests at the spatial resolution of
1 km in China in 2010 (Fig. 12), although they were generated from
different data source and algorithms. About 62% of the forest pixels
have a forest area percentage below 80% in OU F/NF map, which is
much higher than those of MCD12Q1 (26%), JAXA (31%), and
Fig. 10. Forest area comparison among multi-sourc
NLCD-China (39%) F/NF maps (Fig. 9). The detailed comparisons
of these forest maps are as followings.

There is a great agreement of forest/non-forest spatial distribu-
tion between the OU and JAXA F/NF maps. Approximately 83% of
pixels have the forest area percentage deviation within the range
of ±20% between the OU and JAXA F/NF maps at the same locations
(Fig. 13A). Compared with JAXA F/NF map, OU F/NF map identified
more forests in the major agriculture production plains with some
scattered forests, and less forests in the mountain areas with com-
plex reflectance environment in Northeastern China, Southern
China, and Western China.

Approximately 78% of pixels have the forest area percentage
deviation within the range of ±20% between the OU and MCD12Q1
F/NF maps (Fig. 13B). In the major agriculture production area and
Western China, the OU F/NF map identifies more forests than the
MCD12Q1 F/NF map, as the spatial resolution of MODIS data is a
coarse (500-m) and not sensitive to the forests in small patch sizes.
In the mountain areas, the OU F/NF map identifies a smaller
amount of forests than the MCD12Q1 F/NF map. Some relatively
large differences between the OU and MCD12Q1 F/NF maps
occurred in Southwestern China.

Approximately 78% of pixels have the forest area percentage
deviation within the range of ±20% between OU and NLCD-China
F/NF maps (Fig. 13C). The NLCD-China is easy to omit small patches
of forests and include small areas of other land cover types into
large areas of forests through visual interpretation (Liu et al.,
2005), and the OU F/NF map has some random omission and com-
mission errors (Fig. S4). The OU F/NF map has more forests in the
major agriculture production area, and Central and Northwestern
China, but less area of forests in mountain regions in Southern
e forest datasets in provinces in China in 2010.



Fig. 11. Forest area comparison among multi-source forest datasets at counties in China in 2010.
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China, in comparison with the NLCD-China F/NF map. Some rela-
tively large differences between the OU and NLCD-China F/NF
maps occur in Central and Southern China.

4. Discussion

4.1. PALSAR-based algorithm for forest mapping

The large uncertainty of multi-source forest maps and their
changes affect our studies of climate dynamics, ecological ser-
vices, and biodiversity. In this study, we developed a PALSAR-
based algorithm for forest mapping at 50-m spatial resolution,
based on the threshold value combination of HV, HH–HV, and
HH/HV. Forest and non-forest can be easily distinguishable in
HV images (Shimada et al., 2014), and the HV polarized images
may be one of the best choices for forest mapping in mountain-
ous areas as it was less sensitive to slope variations (Jensen,
2006). HH–HV and HH/HV were also included to exclude the
commission errors from cropland and built-up lands. PALSAR
images were proved to be stable from 2006 to 2010, as well as
the gamma-naught of HH and HV for forest areas (Shimada
et al., 2014). Although the threshold values are first derived from
the ROIs in Mainland Southeast Asia in 2009 (Dong et al., 2012a),
they are suitable for forest mapping in other years. Forests have
similar backscatter signature contributed by similar physical
structures, which would have small differences for different forest
types, terrain and soil moisture (Shimada et al., 2014). It is esti-
mated that approximately 92.4%, 94.1%, and 88.4% of forest ROIs
pixels in China are in the threshold intervals of HV, HH/HV, and
HH–HV (95% confidence level) in Mainland Southeast Asia, indi-
cating the same threshold values can be extended to China for
forest mapping (Fig. 14).

The JAXA F/NF map used the median filter in data analysis,
which presents high accuracy in those areas with large forest
patches, but may overestimate or underestimate the forest distri-
bution in certain regions with small forest patches. The OU and
JAXA F/NF maps present similar distribution histograms in HH,
HV, Ratio, and Difference (Fig. 15). Approximately 26% of forests
in JAXA F/NF map were out of the threshold interval in East Asia
(Fig. 15B), which would be attributed to the median filter in the
pre-processing and the algorithm. Compared with the JAXA F/NF
map, several improvements are achieved in the OU F/NF map in
China. First, we use the same threshold values to map forests in dif-
ferent climate regions from Mainland Southeast Asia to China. Sec-
ond, the annual maximum NDVI mask effectively excludes the
commissioned forests from mountains, barren lands, and sparely
vegetated lands (Fig. 16A). Third, more forests are identified in
the major agricultural production areas in China (Fig. 16B). Fourth,
the detailed distribution of forest/non-forest pixels are preserved
in this study (Fig. 16C).



Fig. 12. Spatial distribution of forest/non-forest maps at 1 km spatial resolution in China in 2010: (A) OU F/NF, (B) JAXA F/NF, (C) MCD12Q1 F/NF, and (D) NLCD-China F/NF.
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4.2. Factors for the differences among the multi-source forest maps in
China

Considering the features of multi-source forest datasets, three
main factors might be responsible for their differences in area
estimates and spatial distribution in China, including the defini-
tion of forests, data sources, and the algorithms for forest
mapping.

(1) Definition of forests among the multi-source forest maps

The forests in the FAO FRA are defined as the land (0.5 ha) with
tree crown cover more than 10% and a minimum tree height of 5-m
(FAO, 2012). The JAXA (Shimada et al., 2014) and OU F/NF maps use
similar definition of forests with the FAO FRA, which may explain
why their forest area estimates are almost the same (Fig. 9). The
forest definition in the NLCD-China dataset requires tree canopy
cover more than 10%, but no criterion for tree height (Liu et al.,
2005). The forests in the MCD12Q1 (IGBP) dataset are defined as
the land dominated by woody vegetation covering more than
60% and tree height exceeding 2-m (Friedl et al., 2010). The forests
in the NFI-China dataset are divided into natural, secondary, and
planted forests, all of which have more than 30% coverage
(Forestry Ministry of China, 1983).
(2) Data source

The FAO FRA and NFI-China forest datasets are primarily based
on in-situ forest inventory data and statistics, with supplemental
information from remote sensing, and have rich information such
as forest species, stand age, and forest management. However,
these datasets are only available at country or province scales.
The reliability of the MCD12Q1 product would degrade with sub-
stantial levels of missing data because of heavy cloud cover, espe-
cially in the tropical regions, and low illumination and polar night
in the northern high latitudes (Friedl et al., 2010). 30-m Landsat
images have much finer spatial resolution than other primary
satellite images. The high data quality and reasonable acquisition
time of Landsat TM/ETM+ images are necessary for NLCD-China,
as only one image is used for the interpretation and digitalization
(Liu et al., 2005; Zhang et al., 2014). The backscatter signature of
land cover types from PALSAR data can be used to distinguish for-
est and non-forest, but limited by the observation frequency, data
acquisition time, soil moisture, and complex terrain (Figs. S4 and
S5). The spatial resolution and acquisition date of PALSAR data
used for OU and JAXA F/NF maps are different. 50-m PALSAR FBD
data in the main growing season was used to generate OU F/NF
map, while 25-m PALSAR FBD data from June to September was
used to generate JAXA F/NF maps (Shimada et al., 2014).



Fig. 13. Spatial distribution comparison among multi-source forest maps at the spatial resolution of 1 km in China in 2010. (A–C) Are the spatial comparison between OU F/
NF and JAXA, MCD12Q1 and NLCD F/NF maps, respectively.
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(3) Forest mapping algorithms

There are two general approaches to estimate forest area: (1)
forest inventory and statistics, including the FAO FRA and NFI-
China, and (2) remote sensing, including OU, JAXA, MCD12Q1,
and NLCD-China F/NF maps. FAO FRA provides a simple way to
estimate global and regional forest area and changes, based on
the data from governments and research groups. A 5-year to
10-year period was usually needed to produce each NFI-China, as
it consumes huge investment and labor force, compared with the
other forest products. Intensive forest inventories have obtained
a lot of forest samples in different countries for several decades
(FAO, 2012). The NFI datasets are considered reliable and widely
used to estimate forest area changes (Ohmann et al., 2014;
Vibrans et al., 2013) and analyze their effects on carbon balance
(Fang et al., 2014a, 2001, 2014b).

Human–computer interactive method, i.e. visual interpretation
and digitalization on the screen, is used in the NLCD-China project.
This procedure is time consuming and requires a large number of
labor force. The accuracy depends on the knowledge and skill of
different interpreters about the spectral and geometric features
of different land cover types from Landsat images. Only the land
cover change polygons larger than 4 ha were drawn when updat-
ing NLCD-China, so small change areas were missed. However, this
method can work better than automated algorithms in compre-
hensive land cover classification and has obtained satisfactory
results (Zhang et al., 2014).

The automated supervised classification algorithms, used by
OU, JAXA, and MCD12Q1 F/NF maps, has high efficiency of process-
ing large volume of satellite images to map land cover types. These
algorithms work well for certain land cover types with homoge-
nous spectral or backscatter features, but often perform not well
in the areas with complex land cover types. Some pre-processing
or post-processing are included to eliminate the image noises
and improve the product accuracy, such as median filter, region
segmentation, and spatial probability adjustment for mixed pixels.
4.3. Implication of this study

China has the fifth largest forest area (FAOSTAT, 2011) and the
largest plantation forest area (State Forestry Bureau, 2014) in the
world. The area of plantation forest accounts for approximately
36% of the total forest area in China. In the past 40 years, the forest
area and volume have increased at the rates of 80% and 75%,
respectively (State Forestry Bureau, 2014), indicating substantial
carbon storage and sequestration by forests. Although more and
more global and regional forest cover maps have become available,
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some uncertainties about the area and distribution of forests and
plantations still exist, especially in regions with large changes in
forests. The PALSAR-based algorithm developed in this study can
generate accurate and detailed forest maps at 50-m spatial resolu-
tion in a simple and robust way. The low forest area percentage
within 1-km grid cells estimated by the OU F/NF map indicates
large potential for further reforestation/afforestation and carbon
sequestration in the future (Fig. 9). The PALSAR-based algorithm
also provides a potential method to assess the reforestation/
afforestation effects of various ecological restoration projects in
China, such as Three-North Shelterbelt Program across the North-
east, North, and the Northwest of China from 1978 to 2050, and
six super large forestry projects started in the early 21st century.
The accurate distribution and dynamics of forests could serve as
an important baseline data for carbon cycle, forest management
and policy.



Fig. 16. Comparison between OU F/NF map and JAXA F/NF map in the plateau (A), plain (B), and mountain regions (C) in China in 2010.
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In recent years, the Chinese government is paying great atten-
tion to the protection of natural forests, while the demand for tim-
ber in China is increasing, which results in a large gap for the
supply and demand of forest products. An annual average of
3.1 � 107 m3 crude wood is imported into China, in addition to
other kinds of wood products (State Forestry Bureau, 2012). Under
the financial benefit from the local government’s subsidy and cash
income, Poplar and other types of tree plantations expanded exten-
sively in the major agricultural production area, especially in the
North China Plain. These forests are mainly the household-based
plantations and distributed in small-size patches over landscapes.
The plantation forest encroachment into croplands could pose a
threat to food production and food security in those regions with
limited cropland area, which is now a growing concern in China.
Until now, there is no detailed information about the agro-forests
in China. The 50-m PALSAR-based algorithm in this study can iden-
tify these forests in the major agricultural production, which can
be used to assess the effects of forest plantation expansion on food
security and cropland quality.

5. Conclusion

Some uncertainty exists among multi-source forest cover maps
and inventory-based forest datasets in China in 2010, which high-
light the needs to produce an accurate forest map at fine spatial
resolution (e.g., 50-m). An algorithm was developed to map the
area and spatial distribution of forests, based on the combination
of PALSAR FBD data and MODIS NDVI in 2010. The resultant 50-
m PALSAR-based forest cover map was proved to be reasonably
accurate, through the accuracy assessment of ground truth sam-
ples, with an overall accuracy of 96.2%, and comparison with JAXA,
MCD12Q1, NLCD-China, FAO FRA, and NFI-China F/NF datasets.
Large areas of forests, in the major grain production plains with
the elevation lower than 200 m, were identified in the OU F/NF
map, compared with the other forest/non-forest datasets. The
resultant map of forests in China, together with the forest maps
in Southeast Asia (Dong et al., 2012a), have demonstrated that
the PALSAR-based algorithm developed could be applied to map
forests in the whole monsoon Asia where forests may have similar
physical structure and backscatter signature. The resultant 50-m
forest cover map can serve as a background map to investigate for-
est changes and their effects on carbon cycle, food security and
ecosystem services.
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