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a  b  s  t  r  a  c  t

Highly  pathogenic  avian influenza  H5N1  remains  a persistent  public  health  threat,  capable  of causing
infection  in  humans  with  a high  mortality  rate  while  simultaneously  negatively  impacting  the  livestock
industry.  A  central  question  is  to  determine  regions  that  are  likely  sources  of newly  emerging  influenza
strains  with  pandemic  causing  potential.  A  suitable  candidate  is Bangladesh,  being  one  of  the  most  densely
populated  countries  in  the  world  and  having  an  intensifying  farming  system.  It is therefore  vital  to estab-
lish  the  key  factors,  specific  to Bangladesh,  that  enable  both  continued  transmission  within  poultry  and
spillover  across  the  human–animal  interface.  We  apply  a modelling  framework  to  H5N1  epidemics  in
the  Dhaka  region  of  Bangladesh,  occurring  from  2007  onwards,  that  resulted  in large  outbreaks  in  the
poultry  sector  and  a limited  number  of  confirmed  human  cases.  This  model  consisted  of  separate  poul-
try  transmission  and  zoonotic  transmission  components.  Utilising  poultry  farm  spatial  and  population
information  a set  of competing  nested  models  of  varying  complexity  were  fitted  to  the  observed  case
data,  with  parameter  inference  carried  out  using  Bayesian  methodology  and  goodness-of-fit  verified  by
stochastic  simulations.  For the poultry  transmission  component,  successfully  identifying  a model  of  min-
imal complexity,  which  enabled  the  accurate  prediction  of the size  and  spatial  distribution  of  cases  in
H5N1  outbreaks,  was  found  to  be dependent  on  the  administration  level  being  analysed.  A consistent  out-
come  of  non-optimal  reporting  of  infected  premises  materialised  in  each  poultry  epidemic  of  interest,

though  across  the outbreaks  analysed  there  were  substantial  differences  in the estimated  transmission
parameters.  The  zoonotic  transmission  component  found  the  main  contributor  to spillover  transmis-
sion  of H5N1  in  Bangladesh  was  found  to differ  from  one  poultry  epidemic  to another.  We  conclude  by

discussing  possible  explanations  for  these  discrepancies  in  transmission  behaviour  between  epidemics,

such  as  changes  in  surveillance
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. Introduction

The H5N1 subtype of highly pathogenic avian influenza (HPAI)
as caused considerable concern since the initial observation of the
irus in southern China during 1996 (Sims et al., 2005). From the
ime of the first large-scale epizootic that took place in the winter
f 2003/2004 in East and Southeast Asia (Alexander, 2007), H5N1
as killed or forced the culling of more than 400 million domes-
ic poultry and resulted in an estimated US$20 billion in economic
amage, with 63 countries infected at its peak in 2006 (FAO-DAH,
012). Being a zoonotic disease H5N1 HPAI remains a persistent
ublic health threat, capable of causing infection in humans with a
igh mortality rate. Since 2003 it has caused over 850 laboratory-
onfirmed human cases across 16 countries, leading to subsequent
eaths in 14 of these nations, with the cumulative death total
xceeding 450 (World Health Organisation, 2016).

With a number of countries in South and Southeast Asia,
ncluding China, Vietnam, Indonesia and Bangladesh, being gravely
ffected, a number of studies have predominately focused on either
patio-temporal analysis of outbreaks (Pfeiffer et al., 2007; Ahmed
t al., 2010, 2011; Minh et al., 2011; Dhingra et al., 2014), or on
etermining ecological/environmental risk factors for H5N1 avian

nfluenza emergence and spread at region-wide (Gilbert et al.,
008), national (Gilbert et al., 2007; Van Boeckel et al., 2012; Loth
t al., 2010) and sub-national levels (Henning et al., 2009). For
xample, H5N1 poultry epidemics in Thailand have been associ-
ted with the following risk factors: rice crop intensity, free grazing
ucks and water presence (Gilbert et al., 2007; Van Boeckel et al.,
012). Across studies and regions three types of variables with
imilar statistical association with H5N1 were identified: domes-
ic waterfowl, human related variables (e.g. human population
ensity) and indicators of water presence (Gilbert and Pfeiffer,
012).

Bangladesh is one of the most densely populated countries in
he world, with a human population exceeding 160 million (United
ations, 2015). In combination with an intensifying farming system
nd substantial poultry population (1194 birds/km2) (The World
ank, 2013), these conditions make Bangladesh a prime candi-
ate for being the source of newly emerging influenza strains with
andemic causing potential. Therefore, it is vital to enhance our
nderstanding of the factors in Bangladesh that enable currently
irculating influenza subtypes (e.g. H5N1) to be both continually
ransmitted between poultry and occasionally spillover across the
uman-animal interface. Bangladesh specific risk analyses have
etermined a number of biosecurity related risk factors associ-
ted with H5N1 infection in commercial poultry (Biswas et al.,
009a; Osmani et al., 2014a), while identifying free grazing duck
nd duck-rice cultivation interacted ecology as not being significant
eterminants (Gilbert et al., 2010; Ahmed et al., 2012). Risk factors
pecific to backyard chickens have also been investigated (Biswas
t al., 2009b). Osmani et al. (2014b) found the spread of highly
athogenic avian influenza H5N1 in Bangladesh to be characterised
y reported long-distance translocation events, with the relative
ontribution of trade and the market chain versus wild birds in
preading the disease still to be resolved. Loth et al. (2010) inves-
igated temporal and spatial patterns of H5N1 poultry outbreaks
n Bangladesh, occurring between March 2007 and July 2009, and
heir relationship with several spatial risk factors at a sub-district
evel. Human population density, commercial poultry population
ensity and number of roads per sub-district were found to be sig-
ificantly associated with H5N1 virus outbreaks. However, they
mphasise that research on the roles of wildlife, migratory birds

nd ducks in the epidemiology of H5N1 in Bangladesh is urgently
eeded. How the risk of H5N1 infection varies at different spa-
ial resolutions must also be determined, from local administrative
nits (in Bangladesh referred to as districts), to province level
s 20 (2017) 37–55

(referred to as divisions), up to the country level. This work focuses
on the district level and division level.

To date, very few zoonotic disease dynamic models incorpo-
rate zoonotic transmission from the animal reservoir to humans
(Lloyd-Smith et al., 2009). In particular, mathematical modelling
of H5N1 thus far has generally only quantified poultry trans-
mission parameters (Tiensin et al., 2007; Bouma et al., 2009).
Whilst recent seroprevalence and seroconversion studies have
been undertaken in poultry workers in Thailand (Dejpichai et al.,
2009) and Bangladesh (Nasreen et al., 2015), the work outlined has
predominately considered H5N1 infection in livestock only. Devis-
ing a new generation of approaches to model cross-species spillover
transmission is one of the several challenges related to modelling
the emergence of novel pathogens that requires attention (Lloyd-
Smith et al., 2015).

The purpose of this study is to outline a modelling framework
that incorporates zoonotic transmission at the human–poultry
interface, in addition to within-poultry disease dynamics. The
model will be utilised to ascertain whether the size and spatial dis-
tribution of commercial poultry H5N1 cases in specified regions of
Bangladesh can be predicted accurately at different administration
levels and, if so, the crucial modelling considerations that are nec-
essary for this to be achieved. Furthermore, we  analyse whether the
main contributor to the spillover of H5N1 influenza from poultry to
humans in Bangladesh, between H5N1 prevalence in the commer-
cial poultry population or other factors (such as interactions at live
bird markets (LBMs)), can be distinguished. The findings that arise
motivate further studies examining the effectiveness of interven-
tion measures aiming to minimise the risk of zoonotic transmission
of H5N1 influenza.

2. Methods

2.1. The data

The data utilised were comprised of four main components: (i)
a commercial poultry premises census, (ii) poultry case data, (iii)
external risk factors (live bird markets, free-grazing ducks, pres-
ence of water, rice cropping), (iv) human case data.

2.1.1. Commercial poultry premises census
In 2010, the Bangladesh office of the Food and Agriculture

Organisation of the United Nations (FAO/UN) undertook a cen-
sus of all commercial poultry premises, listing 65,451 premises
in total, of which 2,187 were LBMs. Each premises was visited
once, with the premises location recorded along with the number
of the following types of avian livestock present during the visit:
layer chickens, broiler chickens, ducks, others (e.g. turkeys, quails).
Within the census data there were instances of multiple premises
having the same location (i.e. identical latitude and longitude co-
ordinates). For these occurrences the avian livestock populations
were amalgamated, giving a single population for each category at
each location.

Of the non-market locations, 23,412 premises had blank entries
for all avian types. It has been confirmed this did correspond to
no poultry being present on these premises when the census visit
occurred, due to the premises either being between poultry stocks
or being temporary closed by the farmer due to an ownership
transfer taking place, rather than data entry errors (M.G.  Osmani,
personal communication). We  made a simplifying assumption that
at any given time an equivalent proportion of premises would not

have any avian livestock at the premises. Therefore, we did not
make use of these locations in our analysis. While not discussed
here the sensitivity of model outputs to this assumption requires
further consideration.
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Table  1
Breakdown of H5N1 HPAI poultry epidemic waves in Bangladesh.

Start month End month Reported cases

Wave 1 March 2007 July 2007 55
Wave 2 September 2007 May  2008 232
Wave 3 November 2008 June 2009 37
Wave 4 January 2010 June 2010 31
Wave 5 January 2011 May  2011 161
Wave 6 November 2011 April 2012 26

Start month, end month and number of reported infected premises in each of the
H5N1 poultry epidemic waves in Bangladesh. In addition to the cases within each
wave listed above, the following reported cases occurred between waves: one case
i
A

2

p
p
r
p
2
O
f
w
r
t
t
c
r

t
t
i
e
t
e
o

t
a
w
w
w
r
v

2

i
H
e
i
c
s
o
o
d
R
t
r
N
T
m
a

n  September 2008; two cases in August 2009; one case in June 2001; four cases in
ugust–September 2011; four cases in October 2012–March 2013.

.1.2. Poultry case data
From 2007 to 2012 inclusive there have been 554 poultry

remises with reported H5N1 infection in Bangladesh. These were
redominately commercial premises (497 cases), with 57 cases
eported from backyard flocks. The Bangladesh office of FAO/UN
rovided a dataset of confirmed infected premises up to June
011. Cases occurring after June 2011 were obtained from the
IE World Animal Health Information Database (WAHID) Inter-

ace (OIE, 2013). For the case data provided by the latter source we
ere informed that the Department of Livestock Services reported

egularly to WAHID regarding HPAI outbreaks in Bangladesh, with
his usually occurring within 24 hours according to the code of
he World Organisation for Animal Health (M.G. Osmani, personal
ommunication). We therefore presumed WAHID contained all
eported Bangladesh HPAI event information.

For each infected premises the data documented its spatial loca-
ion, the date that infection was reported, the date of culling, and
he total number of poultry infected and culled. We  divided the
nfected premises data into distinct epidemic waves. These were
stimated by looking for significant gaps between premises infec-
ion dates, with a gap of two months or more used to signify the
nd of one wave and the start of a new one. The dates and number
f cases for each wave are displayed in Table 1.

There were 52 poultry premises recorded as being infected
hat were not part of the 2010 premises census. When analysing

 specific wave all additional entries that occurred during that
ave were considered, including the reported backyard farm cases
hen applicable. In addition, for premises infected during a specific
ave we modified the poultry populations to match the flock sizes

eported in the poultry case dataset (rather than using the reported
alues from the 2010 census).

.1.3. External risk factors
In addition to LBMs (Nasreen et al., 2015), presence of free graz-

ng ducks, water and rice paddy fields have been determined as
5N1 avian influenza risk factors for poultry in other areas of south-
ast Asia (Gilbert et al., 2007; Van Boeckel et al., 2012). Thus, to
nvestigate the importance of these ecological covariates our most
omplex models included information on these factors. Duck den-
ity at a 1km resolution was obtained from the Gridded Livestock
f the World (GLW 2.0) dataset (Robinson et al., 2014). Presence
f water bodies was determined from global land cover maps pro-
uced by GlobCover at a 300m spatial resolution (Arino et al., 2012).
ice paddy agriculture and cropping intensity in Asia can be rou-
inely mapped and monitored using images from the moderate
esolution imaging spectroradiometer (MODIS) sensor onboard the
ASA Terra satellite (Xiao et al., 2005, 2006; Zhang et al., 2015).

he satellite-based algorithms permit the production of maps and
onitoring of cropping intensity and the crop calendar (planting

nd harvesting dates). This source provided rice paddy coverage
s 20 (2017) 37–55 39

in Bangladesh at a 500m spatial resolution for the years 2008 and
2011.

2.1.4. Human case data
There have been eight reported human cases of H5N1 infec-

tion, causing one death (World Health Organisation, 2016). Latitude
and longitude co-ordinates for these cases were obtained using
the FAOs Global Animal Disease Information System (EMPRES-i)
database (FAO, n.d.). Seven of the eight human cases occurred
within the poultry epidemic waves outlined above. Of these, six
were located in the Dhaka division and five within the Dhaka dis-
trict, with the following distribution of cases across the poultry
epidemic waves: one in wave 2, two in wave 5, three in wave 6.

2.2. Poultry model

2.2.1. Selection of spatial scales and epidemic waves
With the majority of human cases being located within the

Dhaka district (area: 1,464 km2) and Dhaka division (in 2010, total
area 41,761.8 km2), our model was  focused on these two  dif-
fering administration (spatial) levels. Further, Dhaka district was
of notable interest due to being only one of two  districts (out
of 18 districts in the Dhaka division) that reported presence of
H5N1 infection in all six epidemic waves. For applying our poultry
model framework (performing parameter inference) we focused
on the epidemic waves containing both human cases and over 100
premises reporting H5N1 infection in poultry. These were wave
2 (September 2007–May 2008) and wave 5 (January 2011–May
2011).

Specifically for the Dhaka district our analysis of waves 2 and
5 considered 1,271 and 1,270 premises, with H5N1 infection in
poultry confirmed at 22 and 25 premises respectively. In partic-
ular, four out of the six sub-districts comprising the Dhaka district
had presence of infection in both waves (Fig. 1).

For the Dhaka division, our wave 2 dataset contained 13,369
premises while the wave 5 dataset contained 13,359 premises.
There were 109 and 75 reported cases in waves 2 and 5 respectively,
with specific sub-districts having a notably higher proportion of
total infection (see Fig. 2). Overall, 18 sub-districts (out of 113
contained within the Dhaka division) had confirmed cases dur-
ing both waves of interest, with 41 and 25 individual sub-districts
having infection present during waves 2 and 5 respectively. Note
that owing to the small number of premises recorded as having
ducks or other poultry types present, with only two such premises
in the Dhaka district and roughly 20 premises in the Dhaka divi-
sion, we  focused on layer and broiler chickens in our poultry
models.

The candidate models described below were fitted at the dis-
trict and division administration levels. However, it is possible that
a poultry epidemic had begun in Bangladesh outside the speci-
fied region, and/or continued in another region of Bangladesh after
the final case was  culled in the specified region. To address this,
for each spatial level and wave of interest we considered two  dif-
ferent sets of dates. The first was  a region-specific epidemic time
period. This began on the day poultry cases initially occurred in the
region of interest, ending on the day the final infected premises was
culled. If required, a second epidemic wave time period took the
country-wide dates for that epidemic wave. Initial notification and
final culling dates for each combination of administration level and
wave are provided in Table S1. Finally, for each reported premises
the time delay between notification and culling was  recorded in
the data.
2.2.2. Model structure
We formulated our candidate models as discrete-time com-

partmental models. At any given point in time a premises i could
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Fig. 1. Spatial locations of premises infected during the wave 2 and wave 5 poultry epidemic waves, located within the Dhaka district. (a) Locator map  depicting the location
o left co
t lumn 

d figure

b
s
a
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(
t
p
e
r
S

f  Dhaka district, shaded in magenta, within Bangladesh, shaded in cyan. (b–e) The 

hat  were infected and green circles those that remained susceptible. The right co
istrict; (d, e) wave 5 district. (For interpretation of the references to colour in this 

e in one of four states, S, I, Rep or C: i ∈ S implies premises i was
usceptible to the disease; i ∈ I implies premises i was  infectious
nd not yet reported; i ∈ Rep implies premises i was still infectious,
ut had been reported; i ∈ C implies that premises i had been culled.

We considered an overall poultry population at each premises
i.e. layer and broiler chickens were not treated as distinct poultry
ypes). This is based on a conceptualisation where the individual

oultry enterprise (premises) is the epidemiological unit of inter-
st. In other words, all poultry types within a premises become
apidly infected such that the entire premises can be classified as
usceptible (S), Infected (I), Reported (Rep) or Culled (C). We  define
lumn shows infection status of each premises, with red squares depicting premises
shows the proportion of infection aggregated at a sub-district level. (b, c) Wave 2

 legend, the reader is referred to the web version of the article.)

a premises i in one of these four states at time t as being in the sets
S(t), I(t), Rep(t) or C(t) respectively. While the poultry epidemic was
ongoing we  assumed a premises was not repopulated once culled.

2.2.3. Notification delays
Our modelling framework incorporated a reporting delay to take

into account a premises being infectious before clinical signs of

H5N1 infection are observed, which may  not be immediate (Biswas
et al., 2011), followed by the time taken for premises owners to
notify the relevant authorities (FAO, 2011). We  treated the delay
time as an integer and found that the distributions of other model
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Fig. 2. Spatial locations of premises infected during the wave 2 and wave 5 poultry epidemic waves, located within the Dhaka division. (a) Locator map  depicting the location
of  Dhaka division, shaded in magenta, within Bangladesh, shaded in cyan. (b–e) The left column shows infection status of each premises, with red squares depicting premises
t umn s
d ave 

t

p
d
s
s
(

hat  were infected and green circles those that remained susceptible. The right col
istrict is outlined in red to highlight its location within the Dhaka division. (b, c) W
his  figure legend, the reader is referred to the web  version of the article.)

arameters were quite sensitive to it. This made it natural to treat

ifferent plausible values for the delay as different models, and to
elect between them (as was done, for example, in the context of
election from discrete outbreak source locations by Hancock et al.
2014)). We  chose three fixed infection notification times of two,
hows the proportion of infection aggregated at a sub-district level. In (c, e) Dhaka
2 division. (d, e) Wave 5 division. (For interpretation of the references to colour in

four and seven days, corresponding to the 50%, 75% and 90% per-

centiles of the reporting delay distribution for 2009 H5N1 HPAI
reports of domestic poultry infection (Farnsworth et al., 2010). We
systematically compared model fit and predictions under these dif-
ferent values.
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.2.4. Force of infection
The force of infection towards a susceptible premises could be

ependent on a variety of factors. Therefore, we proposed a series
f nested models of increasing complexity. The base model used
s an adaptation of a foot-and-mouth disease model developed by
eeling et al. (2001). The rate at which an infectious premises j

nfects a susceptible premises i is given by

ij = scNc,i × tcNc,j × K(dij), (1)

here Nc,i is the total number of chickens recorded as being on
remises i; sc and tc measure the individual chicken susceptibility
nd transmissibility; dij is the distance between premises i and j
n kilometres; and K is the transmission kernel to capture how the
elative likelihood of infection varies with distance.

We extended the model by including a “spark” term parame-
er �i to allow for spontaneous, non-distance dependent infections
hat were unexplained by the susceptibility, transmissibility and
ernel components of the model (Deardon et al., 2010). In com-
ination with the distance-dependent transmission kernel, K, this
llows our model framework to capture premises contacts that are
oth dependent on, and independent of, distance. In the absence
f empirical poultry movement data, such an approach (including
eparate distance-dependent and distance-independent terms) has
een found to be preferred for modelling animal movement contact
ata compared to a solely distance dependent process (Lindström
t al., 2009). Further, despite the absence of explicit data on back-
ard poultry its contribution to the force of infection could be
ncorporated into �i.

Overall, the force of infection against a susceptible premises i on
ay t (RateM(i, t) for model label M)  was comprised of two  terms: (i)
he force of infection generated by an infectious premises j (�ij,M),
ii) the spark term (�i,M). As a result, the total force of infection has
he following general form for model M:

ateM(i, t) =

⎛
⎝ ∑

j ∈ I(t)∪Rep(t)

�ij,M

⎞
⎠ + �i,M.

e  now outline the key constituents of our proposed nested
odels for the force of infection, labelled A to E. We  give a full
athematical description of the baseline model (model A) below.

ubsequent models build upon one another through the inclusion
f additional parameters, with mathematical descriptions of the
emaining models provided in the Supplementary Material.

aseline model (A)
For the baseline model (model A) the infected premises contri-

ution to the force of infection matched the Keeling et al. (2001)
odel (Eq. (1)),

ij,A = scNc,i × tcNc,j × K(dij).

n this case K was derived from the Dhaka division poultry case
ata. For each infected premises we found the nearest premises
hat was infected within the previous two days before that farm
as reported. The distance between the infecting premises and the
ewly infected premises was calculated, with the process repeated
or each infected premises. Kernel density estimation (KDE) was
pplied, via the Matlab function kde(),  to the distances obtained
rom this process. This approximated a smooth functional form for
.

The spark term was the same fixed value for every premises,
i,A = �. Subsequently, the total rate of infection against a susceptible
remises i on day t satisfied
s 20 (2017) 37–55

RateA(i, t) =

⎛
⎝ ∑

j ∈ I(t)∪Rep(t)

�ij,A

⎞
⎠ + �. (2)

To make the model identifiable we  set sc = 1. This is carried forward
in all subsequent models. Note that although this changes the inter-
pretation of the parameters, it does not have any epidemiological
implications.

This left two parameters in (2) requiring estimation, tc and �.

Parametric kernel model (B)
For the parametric kernel model (model B) we fit a paramet-

ric transmission kernel K in place of the kernel derived from the
poultry case data. Our chosen transmission kernel was  pareto dis-
tributed, with a single parameter  ̨ ≥ −1. This kernel form could
provide insights into how transmission risk varied with respect to
the distance between the infected premises and target susceptible
location. Values of  ̨ close to −1 would give a relatively constant
kernel over all distances, with  ̨ =−1 corresponding to transmission
risk being independent of distance. As  ̨ increases away from −1
localised transmission is favoured, with long-range transmission
diminished.

With this set up the following three parameters were fitted: tc,
˛, �.

Nonlinear farm size model (C)
Previous modelling work on foot-and-mouth disease in the

UK suggests including parameters that account for a non-linear
increase in susceptibility and transmissibility as animal numbers
on a premises increase provide a closer fit to historical epidemic
data than when these powers are set to unity (Deardon et al., 2010;
Tildesley et al., 2008). We  explored whether this behaviour applied
to H5N1 avian influenza by adding power law exponents to the sus-
ceptible population, pc, and infected population, qc. This gave five
parameters to be estimated (tc, ˛, �, pc, qc).

Full ecological model (D)
For each spatial level and epidemic wave, the preferred model

out of models A–C was ascertained by comparing deviance informa-
tion criterion (DIC) values (see model comparison methodology).
The preferred model was carried forward with the single premises-
independent spark term � replaced by four ecologically motivated
spark term covariates to form model D. In detail, these were the
presence or absence of the following in the neighbourhood of the
given premises, with the resolution used for each covariate stated
in brackets: (i) water bodies (300 m grid); (ii) paddy fields (500 m
grid); (iii) LBMs (within 5 km); (iv) local ducks (1 km grid). The rice
paddy data was taken from the same year the epidemic wave of
interest took place (i.e. from 2008 if considering a wave 2 model
and from 2011 if considering a wave 5 model).

Simple ecological model (E)
Despite a number of studies identifying domestic waterfowl and

rice crop intensity having a strong association with HPAI H5N1
presence (Gilbert et al., 2007; Van Boeckel et al., 2012; Gilbert and
Pfeiffer, 2012), previous work has determined these factors as not
being significant within Bangladesh (Gilbert et al., 2010; Ahmed
et al., 2012). Due to this, we  considered a simplified ecological
model that contained only the presence or absence of water bodies
and LBMs (in the same manner outlined above for the full ecological
model) in the neighbourhood of the given premises as ecological

spark term covariates.

Once more, for each spatial level and epidemic wave we  car-
ried forward the preferred model out of models A–C and added the
additional spark term covariates to form model E.
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.3. Parameter estimation

Parameter estimation was carried out within a Bayesian
ramework, with the parameter posterior distribution (given
he observed data) explored via Markov chain Monte Carlo
MCMC) using the slice sampling method (Neal, 2003) or adaptive

etropolis parameter updates (Haario et al., 2001). We assumed
niform priors for all our parameters: tc∼U(0,  0.1); ˛∼U(−1, 10);
c∼U(0,  2); qc∼U(0,  2); �∼U(0,  1); �water∼U(0,  1); �rice∼U(0,  1);
LBM∼U(0,  1); �ducks∼U(0,  1). Full details of the likelihood function
sed in this analysis are given in the Supplementary Material.

.4. Model comparison methodology

To compare models of the same type, differing only by the value
f the reporting delay, we used deviance information criterion (DIC)
Spiegelhalter et al., 2002; Gelman et al., 2003), calculated using
he samples generated from our MCMC  simulations. We  chose to
redict the notification time (reporting delay) based on the DIC in
rder to account for differences in the effective number of param-
ters of the fitted models, with the fixed time that gave the lowest
IC being preferred.

Further, after selecting the reporting delay that should be used
or each of our models, DIC was used again to compare our set
f nested models (at a given spatial level for a specific poultry
pidemic wave). This was due to its capability of accounting for
dditional parameters increasing model complexity. While mod-
ls with smaller DIC were preferred over models with larger DIC,
ote that models with a DIC value within two of the model with the

owest DIC value still deserved consideration, while being at least
hree greater meant there was considerably less support for that

odel given the data (Spiegelhalter et al., 2002). Further informa-
ion regarding DIC can be found in the Supplementary Material.

.5. Zoonotic transmission model

A simple zoonotic transmission model was constructed to fit to
he temporal human case data. We  focused solely on the within-
egion epidemic time period. The rate of spillover transmission on

 given day t, �(t), was chosen to have the following dependencies,

(t) = ˇIb(t) + �h,

here  ̌ is the poultry to human transmission rate, Ib(t) is the num-
er of infected poultry within the region of interest and �h is a
onstant human spark term.

With previous work finding the Poisson distribution provided an
dequate goodness of fit to daily human H5N1 case data in Egypt
Rabinowitz et al., 2012), we assumed the occurrence of human
ases followed a Poisson process. As a result, the waiting time until
he next human case occurrence followed an exponential distribu-
ion. The probability of a human infection event occurring in the
ext day (i.e. ıt = 1) was  given by

t = 1 − e−�(t).

ver the entire poultry epidemic a likelihood function for human
ase occurrence, Lh, could be constructed,

h =

⎛
⎝ ∏

i ∈ Dinf

(hi)

⎞
⎠

⎛
⎝ ∏

j ∈ Dsus

(1 − hj)

⎞
⎠ , (3)
ith Dinf the set of days a human case occurred and Dsus the set
f days there were no human cases. In detail, the first term cor-
esponds to the probability of a human case occurring on days
here the human case data reported at least one person becoming
s 20 (2017) 37–55 43

infected, with the second term giving the probability that no human
cases occurred on all other days. Subsequently, the log-likelihood
log(Lh) could be derived:

log(Lh) =

⎛
⎝ ∑

i ∈ Dinf

log(hi)

⎞
⎠ +

⎛
⎝ ∑

j ∈ Dsus

log(1 − hj)

⎞
⎠ , (4)

With human cases only occurring in epidemic waves 2, 5 and 6, we
applied our model to these waves only. Relationships between ˇ
and �h were analysed by producing log-likelihood surfaces using
(4), with parameter summary statistics inferred using MCMC  with
adaptive Metropolis updates (Haario et al., 2001). The follow-
ing uniform prior distributions were used for each parameter:
ˇ∼U(0, 1), �h∼U(0,  1).

2.6. Model verification

To verify the validity of our model fitting we performed stochas-
tic simulations, checking the correspondence of temporal and
spatial summary statistics with the observed data. Our simulated
poultry model was  a spatial individual-based model at the premises
level. It incorporated both the Tau-leap algorithm (Gillespie, 2001),
allowing multiple events to occur each time step, and a grid-based
approach outlined by Keeling and Rohani (2008). In addition, we
accounted for zoonotic transmission over the entire poultry epi-
demic in each simulation.

We  carried out 1000 simulation runs for each model. Both model
components used distinct sampled parameter values, obtained
previously via MCMC,  in each run. The number of time steps
matched the length of the epidemic wave the particular model
had been fitted to. For the models fitted using region-specific epi-
demic dates we  initialised the simulation with a single infected
premises, corresponding to the location first reporting infection for
that respective epidemic wave and spatial level. For the models fit-
ted using country-wide epidemic dates all premises were initialised
as susceptible. For infected premises the time between reporting
and culling was  randomly sampled from the observed reporting to
culling time empirical probability mass function.

For both premises and human cases our first goodness-of-fit
check was  to compare the distribution of simulated final epidemic
sizes to the observed data. For the poultry model we also inspected
reported case temporal profiles to ensure our simulations produced
similar behaviour.

A separate class of goodness-of-fit tests focused on spatial
aspects. First order spatial patterns were compared by computing
the difference between a density surface of the observed case loca-
tions and a density surface of the predicted case locations averaged
over 1% of simulations with the largest aggregate two-dimensional
correlation with the data (when aggregated by sub-district). Fur-
ther, we  used Ripley’s K function (Ripley, 1976, 1977) to ascertain
whether the measure of clustering in the spatial pattern of observed
infected premises could be plausibly generated by our fitted mod-
els. To assess whether premises-to-premises transmission could be
sustained without the need for importations, or infections derived
from external sources, we  computed premises-level basic repro-
ductive ratios (Tildesley and Keeling, 2009). This determined the
expected number of other premises the given premises would
infect if infected itself. Those premises with the greatest transmis-
sion potential would therefore be highlighted. Further details of
the Ripley’s K function and premises-level reproductive ratio are
described in Supplementary material.
We  also assessed how accurately model parameters could be
inferred from the data. To do this we performed simulations using
sample outputs from the MCMC  model fitting procedure, with each
set of simulated data fitted to the same model it had been generated
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Fig. 3. Bar plots comparing �DIC values for the district datasets fitted to our models with various fixed infected to reporting times. For each model a reporting delay of seven
days  gave the minimum DIC value. The depicted �DIC is with respect to the version of the model using a seven day infected to reporting time. (a) Wave 2, region-specific
epidemic dates; (b) wave 5, region-specific epidemic dates; (c) wave 2, country-wide epidemic dates; (d) wave 5, country-wide epidemic dates.
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a listing of preferred models). At the division level the added com-
plexity in the nonlinear farm size model (model C) was preferred,
though adding in additional spark terms that were risk factor spe-
cific seemingly brought no additional benefits. On the other hand,

Table 2
Preferred models and fixed reporting delay time for each wave and spatial level.

Epidemic dates District Division
ig. 4. Bar plots comparing �DIC values for the division datasets fitted to our model
ays  gave the minimum DIC value. The depicted �DIC is with respect to the versio
pidemic dates; (b) wave 2, country-wide epidemic dates; (c) wave 5.

rom using MCMC  methods. The estimated posterior parameter
ensities were then compared to the “true” value.

All calculations and simulations were performed with Matlab
®

.

. Results

.1. Poultry model

In our comparison of DIC values for models of the same type,
iffering only by the value of the reporting delay, a fixed reporting

elay of seven days was common across both waves and spatial

evels (Figs. 3 and 4, see Tables S2 and S3 for a complete listing
f model DIC values). This indicates the reporting of cases during
hese poultry epidemics was non-optimal.
 various fixed infected to reporting times. For each model a reporting delay of seven
he model using a seven day infected to reporting time. (a) Wave 2, region-specific

Consistency in the complexity of the best fit models varied for
the two different administration levels of interest (see Table 2 for
Wave 2
Region Model E/7 days Model C/7 days
Country Model E/7 days Model C/7 days

Wave 5
Region Model B/7 days Model C/7 days
Country Model B/7 days –
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Fig. 5. Bar plots comparing �DIC values for the different datasets fitted to our nested models. For each model the fixed reporting delay time that minimised the DIC was
used  (see Tables S2 and S3). The preferred model had a �DIC = 0. Models with �DIC ≥ 3 have considerably less support and lie above the red, dashed line. Full DIC values are
given  in Table S4. (a) Wave 2 district, region-specific epidemic dates; (b) wave 5 district, region-specific epidemic dates; (c) wave 2 division, region-specific epidemic dates;
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d)  wave 2 district, country-wide epidemic dates; (e) wave 5 district, country-wide
For  interpretation of the references to colour in this figure legend, the reader is ref

cross both waves and sets of epidemic dates the chosen models
or our district datasets covered a wider array of the possible model
ptions (Table 2). This implied that differing modelling character-
stics were required based on the spatial scale of interest. Fitting
o the wave 5 district datasets the parametric kernel model (model
) was preferred. For the wave 2 data, considering only models
–C, the nonlinear farm size model (model C) was  chosen. Whilst
arrying forward the nonlinear farm size model framework we
etermined the simple ecological model (model E) as being pre-
erred relative to all candidate models (Fig. 5, see Table S4 for a
omplete listing of model DIC values).

Though the simple ecological model (model E) was only found
o be preferred for the wave 2 district datasets, the majority of the
emaining datasets found that this model had a DIC value within
wo of the DIC value for the best-fit model, meaning such a model
as still plausible given the data. In addition, for the majority of

ur datasets the full ecological model (model D) was found to have

onsiderably less support relative to the simple ecological model
see Table S4).

When comparing parameter summary statistics for our best
t models at the division level (Table 3) and district level
emic dates; (f) wave 2 division, country-wide epidemic dates; (g) wave 5 division.
to the web version of the article.)

(see Tables S5 and S6), a spatial level specific feature was  the appar-
ent greater contribution of importations and transmission from
other sources (characterised by the � parameters) to the force of
infection at the district level versus the division level. On  the other
hand, the relationship between increasing flock size and premises-
level susceptibility was  approximately linear (i.e. p ≈ 1) in both
model types (Tables 3, S5 and S6). A reasonable level of identifiabil-
ity was  observed for model parameters, giving extra confidence to
our results (see Supplementary Figs. S1 and S2).

Comparing the estimated parameter distributions for our wave
2 and wave 5 division-level models highlights noticeable differ-
ences in the factors driving disease spread across the two waves. Of
particular interest were discrepancies in ˛, the transmission kernel
parameter, and q, the infected premises population exponent (see
Table 3). While for wave 2  ̨ was  typically below 0, for wave 5

 ̨ was  approximately zero, giving a stronger preference towards
short-range transmission. For q, fitting to the wave 2 epidemic

found approximately equal contributions to the force of infection
from each infected premises against a susceptible premises, irre-
spective of the infected premises population size. In stark contrast,
fitting to the wave 5 epidemic we inferred the median value of q to
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Table 3
Parameter summary statistics for preferred division models.

Wave 2 Wave 5

Region specific Country-wide Region specific

Model C C C
Inf.  to Rep. time (days) 7 7 7

tc Mean 1.06 × 10−7 9.63 × 10−8 1.71 × 10−10

Median 7.70 × 10−8 7.03 × 10−8 1.56 × 10−10

(95% CI) (7.29 × 10−9, 3.78 × 10−7) (3.71 × 10−9, 3.42 × 10−7) (5.86 × 10−11, 3.63 × 10−10)

� Mean 4.11 × 10−6 2.49 × 10−6 1.04 × 10−5

Median 3.98 × 10−6 2.35 × 10−6 1.02 × 10−5

(95% CI) (1.42 × 10−6, 7.91 × 10−6) (8.80 × 10−7, 4.80 × 10−6) (5.02 × 10−6, 1.72 × 10−5)
˛  Mean −0.358 −0.394 0.0136

Median −0.345 −0.377 0.0136
(95% CI) (−0.666, −0.159) (−0.713, −0.172) (−0.122, 0.143)

p  Mean 1.06 1.05 1.05
Median 1.06 1.06 1.05
(95%  CI) (0.923, 1.19) (0.916, 1.18) (0.826, 1.26)

q  Mean 0.0574 0.0732 1.06
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Median 0.0427 

(95%  CI) (0.00175, 0.189) 

arameter mean, median and 95% credible intervals (CI) from 1,000 samples obtain

e greater than one, implying poultry premises with the largest
opulations had a significant role in H5N1 transmission.

.2. Zoonotic transmission model

Log-likelihood surfaces were produced for waves 2, 5, and 6

sing (4). Two preferred regions of parameter space were found in
eneral, though there is evidence of parameter dependent thresh-
ld values (Fig. 6a and b). Below these threshold values the other
arameter dominates the dynamics of the system. When fitting to

ig. 6. 2D likelihood surface of temporal zoonotic transmission model parameters. Lighte
tting  to the following datasets were: (a) Wave 2 district – the dynamics were dominated 

 much more significant role; (c, d) wave 6 district and division – the spark term �h was d
gure  legend, the reader is referred to the web  version of the article.)
0.0458 1.06
(0.00243, 0.300) (0.844, 1.28)

m MCMC.

the wave 5 data there was little dependence upon the spark term
�h, with  ̌ playing a much more significant role. In other words, the
number of infected birds has some significance in the likelihood of
zoonotic transmission occurring. The opposite was found to be true
for wave 2, with more importance placed on the human case spark
term.

Within wave 6 there were three human H5N1 case occurrences.

All three were situated inside the Dhaka division, while two  of the
three were contained within the Dhaka district. At both spatial lev-
els there was  very little dependence on the number of infected
poultry, with the spark term �h being dominant (Fig. 6c and d).

r colours signify a higher likelihood. The preferred regions of parameter space when
by �h; (b) wave 5 district – little dependence upon the spark term �h , with  ̌ playing
ominant at both spatial levels. (For interpretation of the references to colour in this
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Parameter summary statistics inferred from approximately
0,000 samples generated via MCMC  are stated in Table S7.
remises infection dates were computed from the observed repor-
ing dates using the fixed reporting delay time in the preferred

odel for the respective wave and spatial level. Acceptance rates
ere between 20 and 25%. As for the poultry transmission compo-
ent, we were able to recover unbiased estimates of the zoonotic
ransmission model parameters from simulated data (Supplemen-
ary Figs. S3 and S4).

.3. Model verification

Simulation output from our district-level models were found
o agree favourably with the observed data. Using region-specific
pidemic dates the simulated final premises and human epidemic
izes captured the observed data for both waves. This was  main-
ained when considering country-wide epidemic dates, though the
istributions for both waves became heavy-tailed (Fig. 7). Further,
he observed spatial distribution of infected premises could be
lausibly generated by our fitted models (Fig. 8). The simulated
odels did exhibit a much broader range of possibilities for spa-

ial structure, but the observed data was predominately within the
5% prediction interval (Supplementary Fig. S5). Lastly, the fitted
istrict-level models were capable of generating plausible reported
ase temporal profiles, which were dominated by single daily cases
Supplementary Fig. S6).

Across the majority of the district models the number of
remises with premises-level reproductive ratios estimated to be
reater than one was limited. Therefore, infections seeded in a ran-
om premises by importations or other ecological factors would
ore than likely fail to spread (Fig. 9). On the other hand, for both
aves small clusters of premises, all with Ri > 1, were present in the

entre third of the district (and in the south-west and north-west
or wave 5). Our results indicate that localised outbreaks would
e possible here, corresponding well with the true locations of the
ave 5 observed cases in particular (see Fig. 1).

For our division-level models the amount of agreement between
he simulated output and the observed data was  more variable.
lthough predictions from the models fitted to the wave 2 data
enerally underestimated the observed premises epidemic size
Fig. 10), they did generate infection spatial distributions with com-
arable measures of spatial homogeneity (Fig. 11). In contrast, for
ave 5 we obtained a bimodal distribution, with the observed
remises epidemic size lying just above the lower valued peak
Fig. 10e). The knock-on effect of this is a widely spanning human
ase distribution (Fig. 10f). Measures of spatial homogeneity in
he spatial pattern of the observed infected premises data could
e plausibly generated (Fig. 11c). Although first order spatial cor-
espondence with the case data was not as strong for our fitted
ivision-level models (compared to the district models), a subset
f simulation runs could capture the prominent outbreak regions
ocated centrally and on the eastern edge of the division (Supple-

entary Fig. S7). Temporally, both waves exhibited two typical
ehaviours. These were either a single large outbreak, or a small
utbreak with intermittent spikes in cases that mirrored the true
emporal profiles (Supplementary Fig. S6).

Spatially, of particular interest was the wave 5 division model.
he observed cases mainly lie in the centre third of the division,
panning the entire width of the region. However, model simula-
ions found the regions infected most often lay further north of this
and (Supplementary Fig. S8). Analysis of premises-level reproduc-
ive ratios revealed the extent to which a number of premises are

heoretically able to transmit infection. Both wave 2 division-level

odels gave the highest Ri values in a similar area, though these
ere only just above one and smaller in scale when compared to

he wave 5 division-level model (Fig. 12). Furthermore, the wave 2
s 20 (2017) 37–55 47

division-level models predict that the areas capable of continuing
a transmission chain are concentrated in a single central region.
In contrast, the wave 5 division-level model gave a smaller central
region with Ri > 1, but indicated extra sporadic areas in the north
and south-west with the capability of continuing the chain of trans-
mission if infection arose in those localities (Supplementary Fig.
S9).

4. Discussion

This analysis illustrates how altering the spatial scale of interest
can revise the factors meriting inclusion in mathematical models of
H5N1 HPAI influenza transmission among poultry. For Bangladesh,
a preferred model framework was  identifiable at the division level,
with the nonlinear farm size model (model C) chosen. This implies
that fitting a transmission kernel, rather than using a kernel esti-
mated from case data, and allowing for non-linear dependencies in
both infecting and susceptible premises population sizes are impor-
tant inclusions. In contrast, at the district level a preferred model
could not be established, suggesting the data were not sufficient to
determine the key aspects of a district-level model for general use.

Finding that the simple ecological model (model E) was  strongly
preferred to the full ecological model (model D) for the majority
of our wave and spatial level combinations corroborates previous
studies, which found ducks and rice cropping systems were not
strongly associated with H5N1 HPAI infection risk in Bangladesh
(Gilbert et al., 2010; Ahmed et al., 2012). However, the inclusion of
extra parameters (relative to models A–C) was penalised in the DIC
calculation, resulting in the simple ecological model (model E) not
being considered as the ‘best-fitting’ of our candidate models for
the majority of our datasets. Nonetheless, other ecological covari-
ate dependencies besides linear could have been chosen. Modified
conclusions may  be drawn with these alternative choices.

By fitting models at both district and division levels we could
uncover model characteristics that were independent of spatial
scale. Demonstrated by a reporting delay of seven days being
persistently selected across the entire nested model range, this
is noteworthy in indicating non-optimal reporting of infected
premises during these poultry epidemics. Furthermore, finding an
approximately linear relationship between increasing flock size
and premises-level susceptibility highlights a potential detection
bias (as an alternative to the natural interpretation of larger flock
sizes having increased risk of exposure), with outbreaks more likely
to be reported by large premises. This is in agreement with Osmani
et al. (2014a), who  hypothesised poor disease detection and repor-
ting within endemically infected regions of Bangladesh as plausible
reasons for genetically identical viruses seemingly causing inde-
pendent outbreaks over moderate time periods (<14 days). Such
behaviour is conceivable due to the mortality rate within a flock
in the early course of HPAI H5N1 infection being low, meaning
detection of such clinical events may  be delayed (Biswas et al.,
2011).

Detection delays are further compounded by many producers
being wary following past experiences with government veteri-
nary services, especially those that carried out mass culling or
offered poor compensation for poultry destroyed, further extend-
ing the time from initial premises infection to reporting (FAO,
2011). This hinders intervention efforts, with pre-existing strate-
gies to combat H5N1 infection of poultry having a limited impact.
For example, a recent H5N1 surveillance study in Bangladesh
poultry found no significant difference in anti-H5 seropositivity

between vaccinated and unvaccinated chickens, indicating a failure
of the vaccination program and a need for updated poultry vaccines
(Ansari et al., 2016). Moreover, a practice of weekly rest days at
LBMs that started in April 2012 and the introduction of improved
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Fig. 7. Simulated premises epidemic size and human case occurrence versus observed data at the district level. Left column shows the premises epidemic size versus the
observed data for each of our district datasets. Similarly, the right column shows simulated human case occurrence verses the observed data. (a, b) Wave 2, region-specific
epidemic dates; (c, d) wave 2, country-wide epidemic dates; (e, f) wave 5, region-specific epidemic dates; (g, h) wave 5, country-wide epidemic dates. The normalised
frequency at 100 also includes all epidemic sizes 100 or greater.
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Fig. 8. Simulated infected premises numbers aggregated at the sub-district level versus observed data for all district model datasets. For each district-model dataset the first
column shows the empirical data, with the second column showing the mean number of infected premises per sub-district obtained from ten simulations. The third column
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ives  the absolute difference between these two values. In all panels lighter colours
imulated data, with the general spatial pattern captured by the model simulations.
o  the web version of the article.)

ygienic measures from FAO did not seemingly impact the relative
isk of H5N1 circulation in LBMs (Biswas et al., 2012). To ensure
uture policy recommendations are well informed, the quantita-
ive evaluation of proposed intervention strategies to reduce the
oonotic transmission risk of influenza warrants further study. This
an encompass both traditional methods (culling, vaccination, tar-
eted surveillance) and innovative direct interruption strategies,
uch as intermittent government purchase plans (so that farms
an be poultry-free for a short time and undergo disinfection) or
estrictions on species composition (to synchronise flocks to the
ame birth-to-market schedule and allow for disinfection between
ocks).

Inspecting the inferred parameter distributions for our division-
evel models revealed an apparent contrast in transmission
ynamics across epidemic waves. For wave 2, the fitted trans-
ission kernel exhibited similar values regardless of the distance

etween premises involved in an infection event (with  ̨ < 0). On the
ther hand, the wave 5 data-informed model gave a stronger pref-
rence towards short-range transmission (  ̨ ≈ 0). Further, the force
f infection was amplified by increasing the infected premises pop-
lation size (q > 1), providing the rationale for our simulations with
his fitted model determining that the regions with the greatest

nfection risk lay to the north of the observed cases (Supplementary
ig. S8).

These differing transmission characteristics between epidemic
aves may  have been the result of either a combination of, or solely,
spond to greater values. We see a reasonable spatial fit between the observed and
nterpretation of the references to colour in this figure legend, the reader is referred

a change in disease dynamics and surveillance sensitivity. During
the wave 5 poultry epidemic in 2011 a new clade of H5, 2.3.2.1, was
identified in Bangladesh (Islam et al., 2012; World Health, 2014).
The introduction of this virus could have altered transmission pat-
terns compared to the viruses circulating during 2008, including
how the force of infection scaled with the premises flock size. Addi-
tionally, spatial and temporal changes in surveillance between the
two poultry epidemics of interest may  have altered the proportion
of infected cases actually reported. With the surveillance system
mainly relying on passive surveillance, substantial under-reporting
of poultry cases may  have occurred (FAO, 2011). However, due to
experiencing a number of previous epidemics by 2011 there may
have been a reduction in this factor since 2008. A greater propor-
tion of subsequent infections occurring in the local neighbourhood
of an already infected premises may  therefore have been found in
the wave 5 epidemic of 2011, giving extra weight to short-range
transmission events relative to the wave 2 fitted model.

Our preferred wave 5 division model revealed the presence of
premises with “super-spreader” potential, where premises-level
productive ratios Ri were much larger than one. In total, 25 premises
obtained an Ri > 10. These had large poultry populations (at least
25,000, with only 33 premises in the entire Dhaka division having

populations at or above this level) and were situated in areas with a
high concentration of poultry farms. We speculate these conditions
enhance the ability of a premise to transmit infection, with epi-
demics of greater magnitude compared to when these premises do
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Fig. 9. Binary indicator of premises-level reproductive ratios Ri being greater than one for the district-level models. Red crosses denote premises with a Ri < 1, cyan diamonds
premises with Ri ≥ 1. Across the models only a limited number of premises obtained premises-level reproductive ratios greater than one. However, small clusters of premises
with  Ri > 1 were present in the centre third of the district for both waves, and in the south-west and north-west for wave 5. (a) Wave 2, region-specific epidemic dates; (b)
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ot become infected. A bimodal distribution for infected premises
pidemic size would subsequently be expected, in agreement
ith our simulations (Fig. 10e). Crucially, these regions were very

ocalised and the observed cases were predominately absent from
hem, with Ri < 1 for the majority of the division (Supplementary
ig. S9). The small scale of the wave 5 epidemic may  have been a
irect result of this. Such behaviour may  have occurred as a result
f heterogeneity in biosecurity compliance. Industrial premises
ith larger flock sizes implement clearly defined standard oper-

ting procedures for biosecurity (FAO, 2008). In contrast, smaller
cale commercial operations may  suffer from having less strict
easures, such as village farms frequently being built side by side
ith little separation, which may  promote the spread of H5N1

The World Bank, 2013). This emphasises the importance of main-
aining compliance of biosecurity regulations, preventing premises
ith super-spreader potential becoming infected, echoing conclu-

ions drawn by the FAO who stated there was a strong need to
mprove biosecurity in commercial and government poultry farms
n Bangladesh (FAO, 2008).

At the district level, premises-level reproductive ratios sug-

ested that, in principle, chains of transmission from premises-
o-premises would not be sustained. Thus, importations and
ransmission from other sources appeared to be vital contributors
o the poultry outbreak size. Ultimately, this culminates in a low risk
e 5, country-wide epidemic dates. (For interpretation of the references to colour in

of infection across the entire region. This may  be a consequence of
the poultry value chain, with commercial poultry farms sourcing
day-old chicks from a limited set of parent stock farms and grand
parent farms (FAO, 2008). In other words, there is a risk of dis-
ease transfer from grand parent or parent farms to the producers,
rather than via a chain of transmission occurring between-premises
within the district itself. An issue to highlight is the potential for
cases caused by premises that lay outside the district (so effec-
tively imported in). While these may  in fact have been a short-range
transmission event from premises just outside the district, if there
were infected premises in the district that were further away the
fitting procedure could give a misleading level of support for long-
range transmission. This leads to a further knock-on effect with the
spark term value, as true infection importation events should be
solely captured by that term.

The zoonotic transmission element of our modelling framework
discerned differing causal mechanisms for the reported zoonotic
spillover events across waves. Infected poultry is no doubt a
baseline causal factor, but such event occurrences may also be
influenced by LBM specific risk factors like poor biosecurity and

slaughter practices (FAO, 2008). Due to wave 2 only containing a
single human case there was  a higher chance it was caused by the
latter, with �h encapsulating such determinants. On the other hand,
the human cases within wave 5 had a greater association with the
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Fig. 10. Simulated epidemic size versus observed data at the division level. (a, c, e) Poultry epidemic size. (b, d, f) Human epidemic size. First row (a, b) used wave 2
region-specific epidemic dates, second row (c, d) used wave 2 country-wide epidemic dates, final row (e, f) used wave 5 epidemic dates.

Fig. 11. Observed Ripley’s K function versus simulated Ripley’s K function distribution for division-level models. The Ripley’s K function for the observed infected premises
data  is given by the solid blue line. Median Ripley’s K function estimated from simulated data is represented by the red dotted line, with the black dashed lines giving the
95%  prediction interval bounds. The observed data lay within the 95% prediction interval for all division-level models. (a) Wave 2, region-specific epidemic dates; (b) wave
2,  country-wide epidemic dates; (c) wave 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.)
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Fig. 12. Aggregated premises-level reproductive ratios Ri for the division-level models. Aggregated values were evaluated by taking the mean Ri over all individual premises
situated in the region of interest, with lighter colours indicating a higher average premises-level reproductive ratio. First column used the wave 2 model fitted to region-
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i aggregated into 5 km × 5 km regions. (For interpretation of the references to colo

umber of infected poultry, a consequence of the reduced chances
f them both being caused by alternative determinants. Fitting to
he wave 6 human case data, ascertaining that the �h term dom-
nated the zoonotic transmission dynamics is in agreement with
he World Health Organisation reporting LBMs as the source of
nfection for these specific cases (World Health Organisation, 2012).

In terms of minimising human risk, the study presented here
uggests merely limiting the size of the poultry outbreak may  not
n isolation reduce the risk of spillover transmission, while reduc-
ng contact between humans and poultry would be prudent. Yet,

e note that due to the low number of confirmed human cases
e cannot attain strong evidence for these conclusions as they

re supported by very few events. Furthermore, there are likely
o be inherent biases in the reporting of human cases. Intensive
ommunity surveillance efforts only happen in a few communi-
ies, meaning many cases may  have been missed (Nasreen et al.,
015). Additional human cases correlating temporally with peaks

n poultry infection would strengthen the models preference for
uman case occurrence being linked to H5N1 prevalence in poul-
ry. In light of these conditions, further study is required to verify
hese findings and ascertain their sensitivity to differing levels of
nder-reporting. Such analysis is becoming feasible through the
evelopment of novel methods for fitting models to an unknown
umber of infections, including fully Bayesian approaches (Jewell
t al., 2009a, 2009b).

The quality of data used had some limitations. Firstly, the follow-
ng inherent reporting biases could exist and have been discussed
bove: under-reporting can result in the true extent of both poul-
ry and human cases not being known; the likelihood of an infected
remises reporting the outbreak may  increase the larger the flock

ize. Second, in the absence of information on the premises notifi-
ation time for reporting disease we assumed all premises had the
ame fixed value reporting delay, treating it as an unknown param-
ter with a set of different plausible values tested. In reality, there
idemic dates; final column used the wave 5 model. The highest Ri values across the
maller in scale when compared to wave 5. (a–c) Ri aggregated by sub-district; (d–f)
his figure legend, the reader is referred to the web version of the article.)

is likely to be variability in this value across premises that may
influence the estimated transmission parameters. Third, we chose
not to include premises locations that had no poultry populations
present in the poultry census database. While this should portray
the proportion of premises that are between-flocks at any one time,
the impact of alternative sets of poultry farms being populated at a
given moment, with the effect on risk of zoonotic H5N1 transmis-
sion that follows, requires further study. Further, our assumption
of culled premises not being restocked while a poultry epidemic
was still in progress may  not hold for all our datasets, as in real-
ity the restocking period following a cull is three months (World
Organisation for Animal Health, 2015). Fourth, due to not having
data on movements of poultry we were unable to include highly
preferential trading links between premises and LBMs explicitly in
our analysis. However, previous work concluded that when propos-
ing models for animal movement contact data between holdings,
those that included separate distance-dependent and distance-
independent terms were preferred to purely distance dependent
models (Lindström et al., 2009). This therefore motivated our model
framework including both a fitted distance-dependent transmis-
sion kernel and a spark term to seed infections from other sources
independent of distance. Finally, factors that have been previously
determined to increase risk of H5N1 infection in poultry, such as
the number of roads per sub-district and human population den-
sity (Loth et al., 2010), were not incorporated here. Further work
focused specifically on these factors should be able to enhance
understanding of public accessibility as a H5N1 poultry infection
risk.

To address this the modelling framework outlined can be
extended in numerous ways. The first would be to treat layer

and broiler chickens as distinct types, rather than considering the
total poultry population per premises. It could then be ascertained
whether there are type-specific risk factors or, for a specific
risk factor, differing levels of risk against each poultry type.
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ext, as previously discussed, while we have focused on a linear
ependence on the presence/absence of a number of covariates
nd the resulting contribution to overall risk of infection, many
ther choices for the spark term dependence could be made. For
xample, if the necessary data were available, a non-distance
ependency on LBMs could be used based on total LBM visits
rom personnel working on the premises of interest. The impact of
arying these dependencies merits further investigation. Thirdly,
estocking of previously culled premises can be integrated into
he poultry transmission model component, while modifications
an be made to the zoonotic transmission component to produce a
omplete spatially dependent model. Implementing these changes
ould allow information such as human population density and

BM locations to be explicitly incorporated. Another direction for
urther work is to relax the assumption of every premises having
he same delay-time for reporting disease, and to determine the
obustness of the modelling framework by applying it to other
egions that have recorded H5N1 cases in both poultry and humans.

Overall, with the data available, our findings suggest the key
omponents that should be incorporated within a general division-
evel framework for H5N1 poultry infection in Bangladesh were
dentifiable (despite apparent differences in behaviour for each
oultry epidemic of interest), while this was not achievable at the
istrict administration level. Across spatial scales we  saw a con-
istent outcome of non-optimal reporting of infected premises,
uggesting we should seek procedural improvements that will
educe the notification time of infected poultry premises. Further-
ore, our simple zoonotic transmission model capably identified

iffering significant contributors to spillover transmission from
oultry to humans across epidemics. Yet, for H5N1 influenza the
ynamic interplay between animal health, environmental factors
nd the immune system of the human host must be resolved to
nsure policy decisions result in the minimisation of zoonotic trans-
ission occurrence. Given these complexities, it is imperative that

urther work to enhance understanding of influenza transmission
ynamics at the human–animal interface is pursued.
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