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ABSTRACT
The urban development boundary (UDB) is a core issue in territorial spatial planning and remains 
a research focus in urban development. However, in the past, land use simulations of coastal cities 
have had some limitations. For example, new urban land outside the research boundary could not 
be effectively simulated, resulting in a large gap between the simulation results and reality. In this 
study, an artificial neural network (ANN) cellular automata (CA) model based on a new perspective, 
the Offshore Island Connection Line (collectively, OICL-ANN-CA), was developed to address this 
problem. We first proposed the delineation principles and methods of OICL and applied it to the 
Jinpu New Area of Dalian City, Liaoning Province, China. Based on the conversion probability and 
land use simulation results obtained by ANN and CA, this study validated the UDB simulations for 
2000–2020 in the Jinpu New Area and predicted the UDB for 2020–2035 under three scenarios: 
historical inertia development, ecological security protection, and ecological and economic bal-
ance. The results indicate that, compared with the traditional perspective model (the ANN-CA 
model based on the sea–land boundary), the OICL-ANN-CA model exhibited better simulation 
accuracy (the figure of merit was approximately 35% higher) and effectively simulated new urban 
land outside the traditional boundary. This simulation of urban land expansion is more consistent 
with recent development in the study area. In addition, the predicted results of UDB in 2035 also 
demonstrate the benefits of this model for detecting reclaimed land. This study illustrates that the 
OICL-ANN-CA model is a more capable method for capturing changes in new coastal urban land 
and can produce realistic simulations. It provides a reference for delimiting the UDB and defining 
the research boundary for the Jinpu New Area and other fast-growing coastal cities in China.
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1 Introduction

Since the 1990s, China has rapidly become urbanized, 
with surges in the urban population and expansion in 
built-up areas. This change is evident in China's coastal 
provinces (Wang et al. 2012). However, urbanization is 
followed by the shortages of construction land (Bai, Shi, 
and Liu 2014) and unsystematic coastal reclamation 
problems (Zhang et al. 2012). To improve planning 
systems to overcome these issues, the Ministry of 
Natural Resources was established in March 2018. 
Under the background of a reformed territorial spatial 
planning system (Liu and Zhou 2021), the urban devel-
opment boundary (UDB), as a legal boundary to control 
urban construction behavior, has strong constraint 
ability. Delineating the UDB and clarifying land use in 

coastal areas can avoid coastline use conflicts, reduce 
coastline ecological function and landscape damage, 
and reduce marine pollution (Martínez, Martín, and 
Gordon 2021; Wu et al. 2021; Zhai et al. 2020), to 
achieve the coordinated and unified development of 
land and sea (Li et al. 2020). Moreover, it helps to 
promote United Nations Sustainable Development 
Goal 11 (Sachs et al. 2019).

At present, most studies on the UDB have been lim-
ited to the exploration of new technologies by introdu-
cing various models under the framework of 
administrative divisions, and setting diversified and com-
plex control rules to delimit the UDB. The relationship 
between the delineation of the research boundary and 
the UDB has rarely been considered. Administrative 
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divisions are the most commonly represented research 
boundary. Some researchers have noted that urban 
expansion is not limited to the scope of administrative 
division (Huang, Kou, and Qu 2012). With the develop-
ment of economy and society, UDBs will inevitably break 
through the limitations of administrative divisions, and 
the administrative divisions will be adjusted accordingly. 
They have a dynamically coupled relationship (Wang 
and Zhang 2012). Especially, Chinese coastal cities are 
undergoing intense development, and populations and 
urban scale are growing rapidly. Insufficient land for 
inland construction and the benefits gained from recla-
mation continue to extend the coastline seaward. 
Changes in UDBs that cause them to break their original 
boundaries are more obvious in these locations. 
Furthermore, the past separation of planning institutions 
in China has resulted in disparate planning processes: 
the Land and Resources Bureau formulates land use 
planning, the Planning Bureau formulates urban plan-
ning, and the Marine Management Department formu-
lates marine development planning. Thus, planning 
decisions for unified territorial space have been artifi-
cially separated. Each city has a planning committee to 
coordinate the various contradictions arising from the 
development of land and maritime territories, however, 
differences remain between sea and land with respect to 
development goals, orientation, and functional layout 
between the sea and land (Wen and Liu 2019). In sum-
mary, many previous land use change simulation studies 
have paid too much attention to improving technical 
methods while ignoring the potential land outside the 
research boundary. This omission is likely to lead to 
inaccurate simulation results and affect the scientific 
integrity of urban planning policy formulation. While 
some researchers have addressed the dynamic nature 
of UDB and research boundaries, these studies remain at 
the theoretical level and the empirical research is 

insufficient. Redefinition of the land–sea research 
boundaries is needed for the development of 
a territorial spatial planning system. Therefore, there is 
an urgent need to combine model construction with 
empirical research to perform UDB simulations that can 
incorporate new research boundaries.

Herein, we propose a set of delimiting bound-
ary lines known as the Offshore Island Connection 
Line (OICL) (Figure 1) and defined their delinea-
tion methods and principles for the first time. The 
Jinpu New Area in Dalian City, China, was selected 
as the study area. This area is bordered by the sea 
on both sides, has experienced rapid develop-
ment, which is very suitable for research. Using 
the geographic simulation tool Geographic 
Simulation and Optimization System (GeoSOS) (Li 
et al. 2009a), we developed an artificial neural 
network (ANN) CA model from the perspective of 
the OICL (collectively, OICL-ANN-CA). We used the 
model to simulate the changes in the UDB in the 
study area, and compared the accuracy and spa-
tial distribution of this model with those of the 
traditional perspective ANN-CA. Subsequently, 
land use change and landscape patterns for the 
study area in 2035 were predicted under three 
scenarios: historical inertia development (HID), 
ecological security protection (ESP), and ecologi-
cal and economic balance (EEB).

This paper is organized as follows: the next section 
presents the literature review. Section 3 describes the 
concept and principles of the OICL and delineates the 
research boundary of the study area. Section 4 pre-
sents the research data and methods, and the valida-
tion and prediction results of the OICL-ANN-CA model 
are presented in Section 5. Finally, the last section 
summarizes the conclusions of the study and analyzes 
the contributions and limitations of the study, indicat-
ing future research directions.

Figure 1. Distribution types of the Offshore Island Connection Line (OICL).
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2. Literature Review

2.1 The UDB concept

The term UDB comes from the western concept of 
the urban growth boundary, which is based on 
the theories of new urbanism and smart growth 
(Ding, Knaap, and Hopkins 1999; Nelson and 
Moore 1993). The UDB is the boundary between 
urban construction land and non-construction 
land, and it is a technical way and policy measure 
used to control the disorderly sprawl of the city. It 
was first used in Salem, Oregon, USA (Gustafson, 
Daniels, and Shirack 1982), and later became 
a control tool for urban development in the USA 
and many other countries worldwide (Harig et al. 
2021; Tayyebi, Pijanowski, and Tayyebi 2011; 
Tayyebi, Perry, and Tayyebi 2013; Wang et al. 
2020a) . The UDB is also the boundary line of 
the city's spatial expansion within a certain period 
and can be adjusted dynamically. The UDB has 
both rigid and flexible boundaries (Chakraborti 
et al. 2018; Chettry and Surawar 2021). The rigid 
boundary refers to the maximum construction 
scope that can be achieved under resource con-
straints. The flexible boundary refers to the range 
of urban construction land that meets the needs 
of economic and social construction within 
a certain period while ensuring the environment 
indicators. The UDB of this study is the concept of 
flexible boundary, which has the characteristics of 
dynamic aging and spatial elasticity. Another 
boundary is the research boundary, which refers 
to the geographical spatial distribution range of 
the research object. This boundary is typically 
based on administrative divisions (Yang et al. 
2018), basins (Twisa and Buchroithner 2019), func-
tional areas (Liu, Zhang, and Yang 2018) and land- 
sea boundaries (Chen, Zhang, and Jiang 2017), 
and so on. Generally, the boundary of the 
research scope is larger than that of the UDB.

2.2 Methods for delimiting UDBs

The methods for delimiting UDBs can be divided into 
three types: forward, reverse and comprehensive 
methods. First, the forward method regards urban 
construction land as a constantly changing organic 
whole, and comprehensively analyzes the develop-
ment trend of the city based on factors such as the 

population, industry, resources, and transportation 
of the city. The cellular automata (CA) model is 
widely used in the simulation of urban expansion 
due to its discrete, bottom-up, parallel, and open 
characteristics (Li, Yang, and Liu 2008; Li et al. 
2011a, 2012). The CA model is constantly being com-
bined with new methods such as statistical analysis 
models, artificial intelligence optimization algo-
rithms, system dynamics, multi-agents, and geo-
graphic partitions to obtain better simulation 
results (Azari et al. 2016; Geng, Zheng, and Fu 2017; 
Kong et al. 2017; Osman, Divigalpitiya, and Arima 
2016; Xia and Zhang 2021; Yang et al. 2019). 
Although the forward method has high simulation 
accuracy, its bottom-up research mode ignores the 
top-down role of urban policy control, and the land 
management system and government macro- 
control and other external factors are less consid-
ered. Second, the reverse method delineates the 
ecological red line and basic farmland protection 
red line based on comprehensively considering the 
characteristics of the local natural environment. The 
least resistance model, ecological security pattern 
analysis, and land adaptability evaluation are typical 
reverse methods (Liu, Wei, and Zeng 2020; Sakieh 
et al. 2015; Wang et al. 2019). It is relatively easy to 
implement and can determine the maximum range 
of suitable urban construction. However, because 
the limiting factors are generally static and cannot 
reflect the internal driving mechanism of urban 
growth changes, it is difficult to understand the 
future development direction of the city. Third, the 
comprehensive method combines the forward and 
reverse methods. It first uses the reverse method to 
determine suitable construction areas and prohib-
ited construction areas through suitability evalua-
tion (Xu et al. 2018) or combining with planning 
policies that the government has formulated 
(Huang, Wang, and Xiao 2022). Afterward, the for-
ward method is used to simulate the UDB based on 
factors such as the natural environment, population 
distribution, infrastructure, and CA elements (Feng 
and Tong 2018; Xia and Zhang 2021). The compre-
hensive method integrates the advantages of the 
previous methods, while organically unifying the 
natural resource background conditions and govern-
ment's macro-control policies. However, there is also 
the problem of excessively complex conversion 
rules.
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3 Offshore Island Connection Line

3.1 Definition and delimitation principles

The OICL is an established set of lines used to 
delimit the boundary of the study area, and consists 
of the largest outsourced lines of land or the main 
island and its affiliated islands. According to the 
sea–land boundary of the study area, when there 
is only one section of the offshore island connection 
as the land boundary, i.e. the study area is unilat-
erally coastal or peninsula region, this is defined as 
the unilateral coastal type (Figure 1). Similarly, when 
there are two land boundaries in the offshore island 
connection, i.e. the study area is on both sides of 
the sea, this is defined as the bilateral coastal type 
(Figure 1), and the Jinpu New Area belongs to this 
type. When there is no land boundary on the OICL 
and the study area is surrounded by sea (islands), 
defined as the island type (Figure 1).

To establish the reference standards in the 
actual delimitation process and outline the 
approach for certain special situations, we present 
the following four delimitation principles, defined 
for the first time. These principles can help relevant 
researchers delimit the OICL of their research area. 
The first is the full coverage principle, in which the 
closed range of the OICL should cover land and 
islands within the scope of all administrative divi-
sions in the study area to ensure the integrity of 
the original territory (Figure 1). The second is the 
extension principle, in which there is an intersec-
tion between the island line and main boundary; 
thus, it is necessary to extend outward to the land 
or island vertex of the non-study area, thereby 
retaining a certain amount of sea space (Figure 
1). This is to preserve a certain buffer zone. 
Theoretically, any sea area adjacent to land may 
be converted into urban land, ensuring that this 
part of the change can be simulated, which is also 
the core reason for the proposed OICL. The third is 
the exclusive principle, in which there is a non- 
study area within the scope of the connection, it 
is necessary to adjust the connection to the outer 
boundary of the non-research area to avoid includ-
ing non-study areas (Figure 1). Any land not 
included in the study area would interfere with 
the simulation results. The fourth is the consistency 
principle, in which the land part of the line should 
be consistent with the land administrative 

boundary of the study area. There is no outward 
expansion in the land administrative boundary, 
and therefore, it should be strictly delimited 
according to the original boundary (Figure 1).

As a new way to delineate maritime boundaries, 
the OICL also needs to handle the relationship with 
existing boundaries such as the International 
Maritime Boundary Line (IMBL) (Stephen 2014). 
Because the OICL is a set of lines delineated 
based on the land or the main island and the 
islands under its jurisdiction, it includes both 
a land portion and sea area portion. The connect-
ing part of the sea area typically extends to the 
outside of the island to which it belongs, which is 
similar to the Territorial Sea Baseline (TSB) (Specht 
et al. 2017). When there is no island or other land, 
it can also extend a certain distance outward based 
on the extension principle. In this case, we recom-
mend that this distance should not exceed the 
territorial sea (12 nautical miles away from the 
TSB) to avoid unnecessary disputes.

If many islands lead to a complex drawing line, the 
initial boundary drawing can be directly completed 
using the ArcGIS10.6 minimum boundary geometry 
tool. Thus, a research boundary can be defined by 
editing and adjusting the lines according to the 
above principles.

3.2 Research boundary delineation of the study 
area

The Jinpu New Area occupies the central and 
southern parts of Dalian City in Liaoning 
Province, China, and is between 121°30ʹ07” E – 
122°18ʹ46” E, 38°54ʹ49” N – 39° 32ʹ46” 
N (Figure 2). It is the tenth national new area 
(http://www.china.org.cn/business/2014-07/02/con 
tent_32838403.htm), with 25 streets in the 
Jinzhou District and three streets in the 
Pulandian District. The region experiences 
a temperate monsoon climatic, with marine cli-
mate characteristics. The terrain has a relatively 
high elevation in the middle and low elevation 
on both sides, with slight fluctuations. The Bohai 
Sea is shallower on the west side of the Jinpu 
New Area, whereas the Yellow Sea is deeper on 
the east side in the Jinpu New Area. At the end of 
2020, the population was 1.545 million, the 
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population density was 672 persons per km2, and 
the gross domestic product was 232.04 billion 
yuan, which is approximately USD 36.44 billion.

According to the principles of the OICL and the 
characteristics of the study area, the research 
boundary of the study area was delineated. 
Initially, based on the consistency principle, the 
northern and southern land boundaries of the 
study area were determined. Afterward, based on 
the full coverage principle, it was determined that 
the administrative boundary in the northern part 
of the new district enters the sea from the north-
ern side of Xingshutun Street, and that the line 
passes through the outer side of Hei Islands, 
Dantuozi Islands, Sanliangmache Islands. 
Afterward, based on the extension principle, it 
was determined that the line passes through the 
northern vertex of the Xiaosanshan Islands and 
connects with the southern land boundary of the 
new area. Subsequently, based on the exclusive 
principle, the southern land boundary of the new 
district was connected to the northern side of the 
Dalian New Airport. Finally, based on the full cov-
erage principle, the connecting line was connected 
from the northern side of the airport through the 
Shituozi Islands, and the Tu Islands were con-
nected to the northern land boundary of the new 
area. Thus, the final research boundary of the study 

area was delimited based on the OICL (Figure 2). 
The newly defined region covers a total area of 
2832.14 km2.

4 Research data and methods

Figure 3 illustrates the three stages of developing the 
OICL-ANN-CA model. The first stage was the data pre-
paration stage, in which the influencing factor data and 
land use data based on the OICL and traditional per-
spectives (sea–land boundary), were prepared, respec-
tively. The second stage was the model training stage. 
In this stage, the input data were randomly sampled, 
and an ANN model was used to train and obtain the 
transfer probability of various types of land use by 
integrating the neighborhood effect. The third stage 
was the combination stage of verification and evalua-
tion. After the threshold discrimination and use of the 
CA model, the simulation accuracies of the two per-
spectives were compared and analyzed using the over-
all accuracy, Kappa coefficient and figure of merit 
(FoM). Based on the land use data of historical years, 
combined with Markov chain and linear interpolation 
model, the urban construction land area of the study 
area in 2035 was calculated. The optimal perspective 
predicted the distribution of the UDB in the study area 
in 2035 and analyzed its landscape pattern.

Figure 2. Research boundary of the study area (the Jinpu New Area).
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4.1 Data source and processing

4.1.1 Data sources
The following types of data were utilized in this study: 
Landsat 5 Thematic Mapper (TM) imagery from 2000 
and 2010, Landsat 8 Operational Land Imager (OLI) 
imagery from 2020, topographic elevation data from 
the Global Multi-Resolution Topography Synthesis 
(GMRT DEM) (Ryan et al. 2009), three types of space 
(urban space, agricultural space and ecological 
space), ecological red line delineation schemes, land 
use survey data, agricultural land and urban built-up 

areas, planning coastal reclamation areas data, coast-
line, road transport network and administrative divi-
sion data. Table 1 shows the details of these data.

4.1.2 Land use data processing
The three phases of Landsat remote sensing images 
were preprocessed, including geometric corrections, 
radiometric corrections, cropping boundaries, super-
vised classification, visual interpretation, and bound-
ary cleaning. These images were verified using the 
mastered land use survey data in 2009 and 2019, 

Figure 3. Research framework.

Table 1. Data source and description.
Data type Date of acquisition Data Resolution/scale Sources

Raster data 17 September 2000 LANDSAT-5(TM) 30 m Geospatial data cloud of computer network information 
center of Chinese Academy of Sciences (http://www. 
gscloud.cn)

27 September 2010 LANDSAT-5(TM)
20 June 2020 LANDSAT-8(OLI)

2009 GMRT DEM 30 m/100 m Global Multi-Resolution Topography Synthesis(https:// 
www.gmrt.org/GMRTMapTool)

Vector data 2009, 2019 Land use survey data 1:10,000 Dalian Natural Resources Bureau
2014 Three types of space (urban space, 

agricultural space and 
ecological space)

1:20,000 Dalian main functional area planning

Ecological red line delimitation 
scheme

Agricultural land
Urban built-up areas
Planning coastal reclamation areas

2020 Coastline 1:50,000 Dalian administrative zoning map and Google Earth 
updateRoad transport network

Administrative division
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and the Kappa accuracy of the three images ranged 
from 0.81–0.86, meeting the requirements for almost 
perfect agreement with generally greater than 0.8 
(Ozturk 2015; Zheng et al. 2015). Because the target 
study area is relatively large (2283.14 km2), higher 
resolution was expected to consume more comput-
ing resources and time. To reduce the hardware bur-
den and shorten the calculation time, the original 
land use data were resampled under the premise of 
ensuring the simulation accuracy. These data were 
resampled to 100 × 100 m resolution to achieve the 
final land use status maps for the years 2000, 2010, 
and 2020 (Figure 4). The model was simulated with 
2010 as the base year to highlight the differences in 
the simulation results caused by the delineation of 
the research boundaries. Hence, the three-period land 
use data from the traditional perspective were 
obtained by clipping the sea–land boundary in 2010, 
as shown in Figure 4. The four major land use cate-
gories identified were urban land, ecological forest 
land, cultivated land, and sea and land water body. 
Table 2 lists the specific land classification standards 
of the identified land use classes.

4.1.3 Treatment of influencing factors
Urban development is affected by natural and cultural 
factors. Eight factors were selected to reflect the 
potential of urban expansion. Referring to the rele-
vant studies (Almeida et al. 2008; Gao et al. 2020; 
Ozturk 2015; Wang et al. 2016; Yang et al. 2019), 
they can be divided into three types: natural environ-
ment, infrastructure, and planning constraints 
(Table 3) and can be described as follows. First, natural 
environment factors, among which altitude and slope 
are widely used as influencing factors (Chen et al. 
2020; Feng and Tong 2019; Huang et al. 2014; Xu 
et al. 2021), are the basis for urban development. 
The study area is located in the hilly area of 
Liaodong Peninsula. Both sides are coastal areas, 
and the terrain is undulating. The terrain conditions 
greatly affect the layout of the city. The coastal zone 
has good environmental and fishery resources, is sui-
table for human habitation. Herein, the distance to 
coastline should be used as an important factor in the 
model building (Guo, Zhang, and Hao 2020; Yang 
et al. 2014). Altitude and slope were obtained from 
the GMRT DEM data, and the distance to coastline was 
obtained by buffer analysis. Second, infrastructure, in 

Figure 4. Land use classification in 2000, 2010, and 2020 under traditional and OICL perspectives (2010 coastline as reference 
boundary).
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which the urban built-up areas have perfect facilities 
to provide people with production and living, and its 
edge are easy to transform into an expansion area for 
new urban land (Liang et al. 2018; Liu et al. 2016). The 
traffic network carries the flow of people and goods, 
which can meet the needs of people's travel and 
goods trading. Surrounding residents tend to gather 
along the road, especially the intersections, so these 
places usually have a higher urban transformation 
potential (Van Berkel et al. 2019). The distance to 
urban built-up areas and the distance to expressways 
and trunk roads were obtained via buffer analysis. 
Third, planning restrictions, which are affected by 
food security and environmental protection policies, 
ecological red lines, basic farmland and land water 
(which has been integrated into the distance to coast-
line factor) in land use (Zhou et al. 2020), are limiting 
factors for urban development as these land types are 
rarely allowed to be converted to urban land. As the 
core achievement of land space planning, the preli-
minary division scheme of three types of space guide 
the direction of future urban development. The dis-
tance to ecological red line was obtained by perform-
ing a buffer analysis of the protected area, and the 
land use and the preliminary division scheme of three 
types of space were obtained by setting probabilities 
using a raster calculator according to the layer proper-
ties. To eliminate the dimensional differences and 
reduce the calculation amounts, the above layers 
were treated as standardized layers with intervals of 
[0, 1] and grid units of 100 × 100 m (Figure 5). 
Similarly, the layers of influencing factor from the 
traditional perspective were obtained by clipping 
the sea–land boundary (Figure 5). The basic descrip-
tive statistics of all eight factors computed from the 
OICL and traditional boundary are shown in Figure 6.

4.2 Research methods

4.2.1 Simulation and prediction of the urban 
development boundary
The GeoSOS was proposed by Professor Xia Li, and 
developed by his team based on CA, multi-agent mod-
eling, and spatial optimization (Li et al. 2009b). GeoSOS 
is an integrated model for data editing and basic analy-
sis. The model displays support functions of 
a geographic information system platform and has 
simulation and optimization functions for geographic 
simulation tools, representing a set of theories, methods, 
and tools. This is important for studying complex geo-
graphic pattern changes (Li et al. 2009a). GeoSOS has 
been applied in many practical cases such as in urban 
simulation and spatial optimization (Li et al. 2011b), 
planning path optimization (Li et al. 2011c), protected 
area zoning (Li et al. 2011a), geographical condition 
analysis (Li, Li, and Liu 2017a), land use change (Chen 
et al. 2010), UDB expansion (Ma and Li 2019), and envir-
onment evolution (Wang et al. 2020b). In this study, we 
utilized the ANN-CA model component in GeoSOS.

The calculation of the cell transition probability is 
the most critical and complex part of the multi-type 
land use change problem. Previous studies required 
considerable time and calculations to compute the 
cell transition probability (Clarke and Gaydos 1998). Li 
and Yeh (2002) developed a fast, convenient, and auto-
matic method for obtaining the transition rules and 
generating the transition probability of each cell by 
introducing an ANN to the CA model. The ANN-CA 
model comprises an input layer, hidden layer, and out-
put layer. The input layer injects the cell attribute 
values and influencing factors into the hidden layer, 
and the output layer generates the final transition 
probability from the hidden layer to the response 
value. The calculation formula of the cell transition 
probability with random factor as follows: 

pðk; t; lÞ ¼ ð1þ ð� 1n yÞaÞ � pannðk; t; lÞ � Ωt
k

� conðst
kÞ (1) 

In the formula, denotes the overall conversion probabil-
ity of type land in cell k and time k, 1þ � ln yð Þ is 
a random number, Pannðk; t; l denotes the transition 
probability of l type land in cell k and time 1þ � ln yð Þ

trained by the ANN method, Ωt
k denotes the proportion 

of urban land in the neighborhood window, and 

Table 2. Land use classification.
Category Describe

Urban land Contains urban residential, industrial parks, urban 
facility land, forests (less than 1 km2), excluding 
coastal salt fields, beaches

Ecological forest 
land

Forests (above or equal 1 km2), orchard with 
ecological forest value

Cultivated land Cultivated land, including facility agriculture, rural 
settlements, some orchards (new planting), etc.

Sea and land 
water body

Contains oceans, beaches, enclosures, land reservoirs, 
rivers
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Figure 6. Boxplots of eight influencing factors under traditional and OICL perspectives (see Table 3 for the meaning of the labels).

Figure 5. Spatial distribution of eight influencing factors under traditional and OICL perspectives (see Table 3 for the meanings of the 
labels and units).
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con St
k

� �
represents the suitability of conversion between 

the two land use types, with a value ranging from 1 or 0, 
which can either be transferred or not transferred.

4.2.2 Verification and evaluation of simulation 
accuracy
The accuracy of the land use simulation is the key 
criterion for land use change prediction, and its value 
directly affects the final results. At present, the user 
accuracy, producer accuracy, overall accuracy 
(Olofsson et al. 2014), Kappa coefficient (Stehman 
1997), FoM (Pontius et al. 2008), and other parameters 
are typically used. Therefore, in this study, the accu-
racy of the simulation results was verified based on 
the above parameters. Among them, the Kappa coef-
ficient was considered as the most representative and 
comprehensive metric for computing accuracy and, is 
mathematically expressed as follows: 

k ¼
p0 � pe

1 � pe
(2) 

where p0 represents the proportion of correctly classi-
fied samples, and pe represents the proportion of the 
sum of the product of the total number of actual 
samples and total number of predicted samples to 
the square of the total number of samples. Generally, 
a Kappa coefficient above 0.6 indicates an simulation 
effect indicating “substantial agreement,” and a value 
greater than 0.8 indicates an “almost perfect agree-
ment” of the simulation effect (Tong and Feng 2020).

The FoM only evaluates the accuracy of changing 
pixel simulation, not the statistics of all pixels; there-
fore, it better reflects the simulation results. The FoM 
is expressed as follows: 

FoM ¼ B=ðAþ Bþ C þ DÞ (3) 

where A is the error region of actual change but 
unchanged simulation, B is the correct region of 
actual change and consistent prediction category, 
C is the error region of actual change but inconsistent 
prediction category, and D is the error region of actual 
change but unchanged simulation.

The above indicators can be used to evaluate the 
simulation effect at the macro-level, however, the land-
scape index is more conducive to finding differences 
between the various patches in the land use pattern 
and showing information at the micro-level (McGarigal 
and Marks 1995). To reduce redundancy between the 

indicators and to meet our research needs, the core 
indicators proposed by Tian and others (2019) were 
selected, including AREA_AM (patch area_ area- 
weighted mean, reflecting the average patch area), 
FRAC_AM (fractal dimension index_ area-weighted 
mean, reflecting the shape complexity), PARA_CV (peri-
meter-area ratio_ coefficient of variation, reflecting the 
shape complexity variation), ENN_AM (Euclidean nearest 
neighbor distance_ area weighted average, reflecting 
the spatial dispersion), and TECI (total edge contrast 
index, reflecting the landscape fragmentation). 
Fragstats4.2 was used to calculate the results.

5 Results

5.1 Model and its precision

Based on the traditional and OICL perspectives, the 
supervised classification results of the years 2000 and 
2010 were used as rules to extract the land use data 
layer of the initial year and end year, and the eight 
influencing factor layers under the corresponding per-
spective were used as inputs. The ANN-CA method was 
used considering a 5% proportional sampling and set 
as the total change according to the newly added 
urban land area of 194.08 km2 from 2010 to 2020. 
Urban land could not be converted to other land 
types; however, the remaining land types could be 
converted to other land types. Two hundred iterations 
were set, the diffusion coefficient was 1, and the con-
version threshold was 0.9. For comparison with real 
classification results in 2020, the simulation results 
from the traditional perspective (sea–land boundary) 
in 2020 supplemented the missing sea area according 
to the sea-land boundary in 2020. Finally, the land use 
results of 2020 under the two perspectives were simu-
lated and compared with the real classification for 2020 
(Figure 7).

The classification accuracy was calculated using 
point-to-point verification of the simulation results 
obtained in 2020 and land classification results from 
the two perspectives (Table 4). According to the accu-
racy evaluation index, the OICL perspective was better 
than the traditional perspective (sea–land boundary). 
The overall accuracies of the OICL and traditional 
perspectives (sea–land boundary) were 83.57% and 
75.42%, respectively, indicating that the OICL per-
spective was improved by 8.15%, whereas the Kappa 
coefficients were 0.768 and 0.601, respectively. Both 
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perspectives fell into the “qualified” category, and the 
OICL perspective was better by 0.167 (approximately 
27.79%). The FoM, which only reflects the accuracy of 
change cell simulation, was 0.172 and 0.128 for the 
OICL and traditional perspectives (sea–land bound-
ary), respectively, with the OICL perspective showing 
a value 34.38% higher than that of the traditional 
perspective. Based on the land layout of the simula-
tion results, the traditional perspective (sea–land 
boundary) was limited by the research boundary; 
hence, coastal reclamation areas could not be effec-
tively simulated, and some ecological forest land was 

occupied. The OICL perspective of the sea–land com-
bination effectively simulated sea area expansion of 
the UDB, particularly in the Puwan area (Figure 7, [1]) 
and for Qidingshan Street (Figure 7, [2]), Daweijia 
Street (Figure 7, [3]), and Dalijia Street (Figure 7, [4]), 
as well as other locations. The conversion of ecologi-
cal forest land to urban land was relatively small, 
which protects ecological forest land from excessive 
destruction. We compared the results from this study 
with those of two similar studies (Huang, Huang, and 
Liu 2019; Xu, Gao, and Coco 2019). Although the 
simulation accuracy of the OICL perspective met 
only the basic requirements (0.6 < kappa ≤ 0.8, sub-
stantial agreement), the simulation achieved very 
good simulation results for urban land expansion in 
some sea areas, demonstrating the scientific nature of 
the model construction and necessity of using the 
OICL perspective for land use change prediction in 
coastal areas.

Figure 7. Real and simulated land use under traditional and OICL perspectives in 2020.

Table 4. Classification accuracy evaluation.

Perspective
Overall 

accuracy Kappa FoM

Traditional perspective (sea–land 
boundary)

75.42% 0.601 0.128

OICL perspective 83.57% 0.768 0.172

GISCIENCE & REMOTE SENSING 813



5.2 Scenario simulation and parameter set-up

To reflect the development differences of different 
paths, three scenarios were set up: the HID scenario, 
the ESP scenario, and the EEB scenario. The HID scenario 
is a baseline scenario that did not consider any other 
interference factors but was still in accordance with the 
past development path. In this scenario, urban land 
could not be converted to other land types, whereas 
remaining land types could be freely converted to com-
pletely open coastal reclamation areas. The ESP scenario 
emphasizes ecological security issues, implemented the 
most stringent protection system, prohibited any ecolo-
gical forest land and sea–land water encroachment, and 
completely limited coastal reclamation behavior. The 
EEB scenario focuses on ecological protection and simul-
taneously considered economic and social development 
and limited the occupation of ecological forest land by 
construction land, while allowing some coastal reclama-
tion behaviors based on construction needs. The specific 
rules for the land conversion matrix are shown in 
Figure 8.

As a random process research method, the core idea 
of the Markov chain is that the future state is only related 
to the current state, which is very similar to the change 
form of land use (Ching and Mooney 1971). The Markov 
chain has been widely used to predict future land total 
use in similar studies (Bai et al. 2018; Liang et al. 2021). In 
the prediction stage, the urban construction land area in 
2030 and 2040 was calculated based on Markov chain. 
Combined with historical data, the linear interpolation 
method was used to obtain a prediction of the urban 
construction land area of the study area in 2035, which is 
730.24 km2, and a prediction of the total area demand 
for urban construction land in the next 15 years, which is 
approximately 190 km2. To ensure the stability of each 
scenario, the random sampling rate was increased to 
20%, and the other parameter settings were the same as 
those used at the accuracy verification stage.

5.3 Land use pattern in 2035

Expecting an increase in the demand for the UDB in 
the future, the land use distributions under the three 
scenarios (HID, ESP, and EEB) in the study area in 2035 
were predicted based on the results of the land use 
classification in 2020 (Figure 9). The results showed 
that the land use pattern of the new district will 
undergo profound changes in the future. 
Macroscopically, urban land use under the three sce-
narios indicated that the Jinzhou and Puwan areas 
were the core expansion areas, with Qidingshan, 
Taiping, and Fuzhouwan streets along the Yellow 
Sea coast and Desheng, Dalijia, and Dengshahe 
streets along the Bohai Sea coast as several additional 
important clusters of urban growth. Overall, the land 
use patterns were similar between different scenarios. 
To analyze the differences between the core expan-
sion areas and scenarios of future urban land expan-
sion in the new area, the prediction results of each 
scenario were superimposed with the land use data in 
2020, and a type composition distribution map of the 
new urban land was obtained (Figure 9). Figure 8 
shows some of the key areas of change in the ampli-
fied maps. In all three scenarios, the most evident 
urban land expansion occurred in the (1) 
Songmudao, (2) Puwan, and (5) Desheng Street 
areas (Figure 9). This may be because these areas are 
consistent with the areas impacted by industrial and 
regional development policies, such as the 
Songmudao Chemical Industrial Park (National 
Circular Economy Demonstration Park), Dalian 
(Puwan) Administrative Center, and Advanced 
Equipment Manufacturing Industrial Park, built on 
Desheng Street.

In all scenarios, it was necessary to consider the 
protection of ecological corridors and maintain the 
ecological security pattern of (one ridge and multi- 
corridor, connected mountains and seas) within 

HID ESP EEB

Non convertible

Convertible

Legend
Urban

Forest

Farm

Water

Urban Forest WaterFarm Urban Forest WaterFarm Urban Forest WaterFarm

Figure 8. Setting of the land use conversion matrix for HID, ESP, and EEB scenarios.
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Dalian City (https://zrzy.dl.gov.cn/art/2020/4/20/art_ 
3083_506764.html). In the HID scenario, in addition 
to farmland, some ecological forest land was trans-
formed to urban land and was primarily distributed 
on the northern side of the Jinzhou area and southern 
side of the Puwan area. In the (1) Songmudao, (2) 
Puwan, and (5) Desheng Street areas (Figure 9), 
some inland waters were converted to urban land in 
both the HID and EEB scenarios, whereas forest land 
and water in the ESP scenario were not converted and 
were well protected. In addition, under the EEB and 
HID scenarios, there were portions of sea converted 
into urban land in the areas near (3) Qidingshan Street 
and (4) the Jinbohai Coast (Figure 9), indicating the 
future possibility of urban expansion into the sea. As 
the Qidingshan coast area is a new Japanese indus-
trial group area of the China–Japan (Dalian) Local 
Development Demonstration Area, and the Jinbohai 
Coast is a key support area of the Liaoning Coastal 
Economic Belt construction and is adjacent to Dalian 
New Airport, there will be a large number of urban 
land development and construction needs that may 

be affected by relevant policies and their strategic 
locations. Under the ESP scenario, no change in land 
and sea was affected by the simulation policy.

To further evaluate the distribution characteristics 
and differences in each scenario and provide more 
reference information for planners and decision makers 
in the delineation of the UDB, the landscape pattern 
indices of each scenario were compared (Table 5). The 
AREA_AM indices of each land use type significantly 
differed under the three scenarios. In terms of urban 
land use, the AREA_AM index of the HID scenario was 
highest, indicating that land use was relatively concen-
trated, and the patch area was largest, followed by that 
in the ESP scenario. Because of the restrictions to land 
conversion, except for cultivated land, urban land use 
was mostly limited to extended development of the 
cultivated land concentrated areas. In fact, the EEB 
scenario hindered the generation of large urban 
patches because of the barrier effect of ecological 
land use and conversion to sea–land water bodies. 
Thus, the AREA_AM index value was lowest in all sce-
narios. Overall, the FRAC_AM and PARA_CV indices 

Figure 9. The 2035 land use patterns and the composition of new urban land under HID, ESP, and EEB scenarios.
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reflected the complexity and difference of the patch 
shapes. These two indices for urban land were highest 
in the ESP scenario, whereas those for cultivated land 
were lowest, indicating that a large amount of urban 
land expanded to the cultivated land, and the culti-
vated land boundary became smoother. However, 
urban land adjacent to the sea–land water body and 
ecological forest land maintained the original bound-
ary, which was complex and changeable. In contrast, 
the complexity of the patch shape within a single land 
category was quite different. The urban land boundary 
in the HID scenario was the smoothest, and the internal 
difference was the smallest. The FRAC_AM and 
PARA_CV indices of the EEB scenario were between 
those of the ESP and HID scenarios. The ENN_AM 
index reflects the degree of dispersion of the same 
land type. With respect to this index, the urban land 
under the HID scenario was relatively dispersed, and 
the independence between urban patches was strong. 
The distribution of urban land under the EEB scenario 
was relatively concentrated, and urban patches exhib-
ited good connectivity. The connectivity of the ESP 
scenario was between those of the two other scenarios.

6 Discussion and conclusions

We constructed the OICL-ANN-CA model based on 
the perspective of the OICL. This model was used to 
simulate land use change in the Jinpu New Area of 
Dalian City, China, from 2000 to 2020. We developed 
multi-scenario projections for land use patterns in 
2035, and analyzed differences in these patterns 
among the scenarios. In contrast to the concepts 
proposed in previous studies to improve the accu-
racy of data (Bai et al. 2018; Li et al. 2017b) and 
algorithms (Omrani, Tayyebi, and Pijanowski 2017; 

Zhou et al. 2020), we focused on the influence of 
the research boundary delineation on land use simu-
lation results in rapidly urbanizing coastal areas. We 
verified the effectiveness of the OICL-ANN-CA model 
for urban land expansion simulation. The results 
showed that the overall accuracy, Kappa coefficient, 
and FoM in the model validation stage from the OICL 
perspective were 83.57%, 0.768, and 0.172, respec-
tively. Compared with those of the traditional per-
spective, these values increased by 8.15%, 27.79%, 
and 34.38%, respectively. Notably, we set the coast-
line as the research boundary for the traditional 
perspective. Consequently, the conversion of sea to 
construction land was missing in these simulations. 
Even if the administrative divisions were used as the 
research boundary, along with the influence of rapid 
development of the city, there was some construc-
tion land outside the boundary that could not be 
simulated. However, this situation can be effectively 
avoided based on the OICL perspective. In addition, 
the significant improvement in the key indicator, 
FoM (Li et al. 2021; Zhang and Wang 2021), high-
lights the capability of the OICL-ANN-CA model for 
UDB simulation.

We predicted future trends for the UDB in the 
Jinpu New Area under multiple scenarios 
(Figures 9, 10), and realized an effective simulation 
of potential land for urban construction outside 
the traditional boundary. The ESP scenario was 
subject to strict control policies, with no reclama-
tion. However, in the HID and EEB scenarios, there 
were some conversions from coastal water bodies 
to urban land. Compared with the large number of 
coastal reclamation areas that have appeared in 
the past 20 years, the scale of conversion in the 
future will be smaller, and mostly distributed in key 

Table 5. Comparison of landscape pattern index of each scenario.
Scenario Type AREA_AM FRAC_AM PARA_CV ENN_AM TECI

HID Urban land 14,508.49 1.14 78.65 354.56 65.54
Ecological forest land 1901.54 1.12 67.57 358.65 83.63
Cultivated land 71,524.06 1.23 47.65 213.24 73.44
Sea-land water body 37,044.12 1.15 50.36 213.15 68.67

ESP Urban land 12,919.88 1.16 80.11 315.48 68.96
Ecological forest land 1934.21 1.12 57.51 320.28 82.42
Cultivated land 64,318.13 1.22 45.92 212.38 74.51
Sea-land water body 38,197.32 1.16 47.05 211.01 70.54

EEB Urban land 11,916.54 1.15 79.14 303.21 68.14
Ecological forest land 2576.13 1.13 58.53 310.38 82.13
Cultivated land 65,679.15 1.23 47.00 223.71 74.38

Sea-land water body 36,946.11 1.15 49.06 211.15 68.74
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construction areas. The results of the above multi- 
scenario prediction show that the OICL-ANN-CA 
model conforms to current marine protection and 
development policies and can capture the subtle-
ties of coastal reclamation construction within the 
region, particularly in the EEB scenario. The growth 
of urban land outside the traditional boundary 
described in the HID and EEB scenarios was also 
noted by Liang and others (2018). They used the 
Clustering-based Future Land Use Simulation 
(CFLUS) model to find potential urban develop-
ment land in the sea area without any original 
urban area. The CFLUS model can provide decision 
support for the establishment of development 
zones. Whether the isolated growth of urban land 
detected in the ocean by Liang and others (2018), 
or the fringe growth of urban land found outside 
the traditional boundary in this study, the findings 
of these two types of urban land growth illustrate 
the importance of using a similar OICL perspective 
to expand the research boundary in coastal city 
land use simulation studies.

Furthermore, unlike methods that delimit the 
research scope according to isobath or marine 
functional zoning data, functional zoning at differ-
ent administrative levels is difficult to determine 
because of factors such as data confidentiality 
and incomplete data for planning processes. 
However, the OICL required no external data. 
Thus, the study area at any administrative level 

could be quickly framed, ensuring the stability of 
the study area to ensure convenience and flexibil-
ity in delimiting the research boundary.

This study, demonstrates that the OICL-ANN-CA 
model can effectively detect the growth of new urban 
land outside the traditional boundary that was 
neglected in the past, and improve the accuracy of 
UDB simulation. This study has the following limita-
tions. Political and economic conditions are increas-
ingly dominant factors that influence urban 
development (Li et al. 2018; Yang et al. 2021). Data 
regarding the population of the study area, night light-
ing, points of interest, and coastal zone protection 
policies could be added to further improve the simula-
tion results. In the future, the sensitivity of different 
factors influencing the simulation results and optimal 
regulation path analysis of the UDB are also worth 
exploring. Moreover, the model could be compared 
with other excellent modeling methods and applied 
to more regions to further validate this method.
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