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Abstract Gross primary production (GPP) is an important parameter for carbon cycle and climate change
research. Previous estimations of GPP on the Tibetan Plateau were usually reported without quantitative
uncertainty analyses. This study sought to quantify the uncertainty and its partitioning in GPP estimation across
Tibetan alpine grasslands during 2003–2008 with the modified Vegetation Photosynthesis Model (VPM). Monte
Carlo analysis was used to provide a quantitative assessment of the uncertainty in model simulations, and
Sobol’ variance decomposition method was applied to determine the relative contribution of each source of
uncertainty to the total uncertainty. The results showed that the modified VPM successfully reproduced the
seasonal dynamics andmagnitude of GPP of 10 flux tower sites on the plateau (R2 = 0.77� 0.95, p< 0.001). The
6 year mean GPP in Tibetan alpine grasslands was estimated at 223.3 Tg C yr�1 (312.3 g C m�2 yr�1). The mean
annual GPP increased from western to eastern plateau, with the increase of annual temperature and
precipitation and the decrease of elevation, while the decrease of GPP from southern to northern plateau was
primarily driven by air temperature. Furthermore, the mean relative uncertainty of the annual GPP was 18.30%,
with larger uncertainty occurring in regions with lower GPP. Photosynthetic active radiation, enhanced
vegetation index, and the maximum light use efficiency (LUE) are the primary sources of uncertainty in GPP
estimation, contributing 36.84%, 26.86%, and 21.99%, respectively. This emphasizes the importance of
uncertainty in driving variables as well as that of maximum LUE in LUE model simulation.

1. Introduction

Accurate evaluation of carbon dynamics over regions is of major concern in current global climate change
research [Denman et al., 2007]. Gross primary production (GPP), defined as the overall rate of carbon fixation
through the process of vegetation photosynthesis, is the largest carbon flux driving several ecosystem
functions [Beer et al., 2010]. Continuous monitoring and accurate estimation of GPP is needed to improve our
understanding of the feedbacks between the terrestrial ecosystem and the atmosphere in the context of
global climate change, informing both policy andmanagement decisions [Canadell et al., 2000; Denman et al.,
2007]. Eddy covariance (EC) technique is a key atmospheric measurement technique to assess net ecosystem
CO2 exchange (NEE), and NEE data can be partitioned into GPP and ecosystem respiration [Falge et al., 2002a;
Falge et al., 2002b]. However, flux tower sites only provide integrated CO2 flux measurements over footprints
(the upwind area measured by a flux tower) with sizes and shapes (ranging from hundreds of meters to
several kilometers) that vary with the tower height, canopy physical characteristics, and wind velocity [Davis
et al., 2003; Osmond et al., 2004]. To quantify the terrestrial carbon dynamics over large areas, we need to
upscale flux observations from sites to regions [Desai et al., 2008; Xiao et al., 2008]. Generally, modeling is the
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commonly used approach for inferring GPP at larger spatial scales [Beer et al., 2010; Jung et al., 2008; Wang
et al., 2010; Wylie et al., 2007; Yang et al., 2007; Zhang et al., 2011; Zhuang et al., 2010].

Models applied for GPP estimation range in complexity from empirical models [Wylie et al., 2007; Yang et al.,
2007], light use efficiency (LUE) models [Xiao et al., 2004a; Yuan et al., 2007] to process-based models [Aber
et al., 1996; Cao and Woodward, 1998; Zhuang et al., 2003], with each type of models having advantages and
deficiencies. LUE models in particular have been developed for monitoring regional GPP with relatively
simple model structure and generally based on remote sensing products of high temporal-spatial resolution
[Mccallum et al., 2013; Wang et al., 2010]. Trials in this direction have been made in Europe, North America,
and the globe with aims to integrate flux tower data and remote sensing data for regional carbon budget
research [Beer et al., 2007; Jung et al., 2008; Papale and Valentini, 2003; Wang et al., 2010; Yang et al., 2010].

However, due to the large spatial heterogeneity and temporal dynamics of ecosystems across complex regions,
the simulations of terrestrial carbon budget at regional scale inevitably suffer from deficiencies and
uncertainties [Beven, 2006; Beven and Freer, 2001]. Model predictions are associated with uncertainties resulting
from model structure, input data, parameters, evaluation data, etc. [Beven, 1989; Haan, 1989; Luis and
McLaughlin, 1992; Shirmohammadi et al., 2006].We are still far fromproviding an accurate estimation of regional
GPP, which is still the focus of global carbon cycle research [Beer et al., 2010; Lin et al., 2011; Reich, 2010]. While
numerous modeling studies have included uncertainty considerations [Beer et al., 2010; Groenendijk et al., 2011;
Mccallum et al., 2013], uncertainties are rarely quantified, especially at regional scale, and so it is difficult to
determine how much confidence can be placed in the results [Ogle et al., 2010]. The advancement of
uncertainty analysis techniques in recent years provides promising tools for uncertainty quantification and
partitioning in carbon flux estimation at regional scale [Liburne and Tarantola, 2009; Saltelli, 2002].

The purpose of this paper is twofold: (1) to provide a relatively accurate estimation for GPP in Tibetan alpine
grasslands with a modified LUE model, based on eddy flux data, remote sensing, and meteorological data, and
(2) to quantify the spatial uncertainty of regional GPP estimation and the relative contributions of each
uncertainty source, addressing uncertainty in model parameters (maximum LUE) and input data
(meteorological and remote sensing data). The flow diagram of the methodology used to estimate GPP and its
uncertainty in Tibetan alpine grasslands was illustrated in Figure 1. First, spatiotemporal GPP variations over the
study area were simulated with a modified LUE model—Vegetation Photosynthesis Model (VPM) [Xiao et al.,
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Figure 1. Flow diagram of the methodology used for GPP estimation and uncertainty analysis in Tibetan alpine grasslands.
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2004a, 2004b]. Second, coupledwith the spatial uncertainty inmodel parameters derived fromeddy covariance
technique, meteorological observations, and MODIS products of vegetation and water indices, multiple results
are simulated based on repeated random samplings from the probability distribution functions of model
parameters and input data with Monte Carlo approach. Finally, the overall spatial uncertainty was partitioned
into each uncertainty source with a variance decomposition method. Our analysis provides an alternative and
quantitative fashion that can be used in uncertainty analysis of regional carbon dynamics evaluation.

2. Materials and Methods
2.1. Data Sets
2.1.1. Eddy Covariance Flux Measurements
In this study, we utilized 27 site-year data of 10 field sites collected in 2003–2010 on the Tibetan Plateau
(Figure 2), with elevation ranging from 3000 to 4800m, to estimate a model parameter (i.e., maximum LUE)
and evaluate model performance. These flux sites represented the dominant alpine grasslands in the region:

Figure 2. Spatial distributions of alpine grasslands on the Tibetan Plateau. Ten flux sites (filled red triangle symbol), three of
them are located in HB (HBKO, HBSH, HBSW) and two of them are located in DX (DXSW, DXST), and 108 meteorological
stations (filled black circle symbol) were plotted.

Table 1. Main Characteristics of the 10 Flux Tower Sites Over the Tibetan Alpine Grasslands

Alpine Grassland Subtype Site Location Elevation (m) Canopy Height (m) EC Height (m) Study Period

Alpine kobresia meadow HBKO 37.61°N 3148 0.2–0.3 2.2 2003–2005
101.31°E

GLKO 34.35°N 3980 0.2–0.3 2.2 2007
100.56°E

ARKO 38.04°N 3033 0.2–0.3 3.15 2008–2010
100.46°E

Alpine shrub meadow HBSH 37.67°N 3293 0.6–0.7 2.2 2003–2007
101.33°E

Alpine swamp meadow HBSW 37.61°N 3160 0.2–0.5 2.2 2004–2008
101.33°E

DXSW 30.47°N 4286 0.2–0.5 2.1 2009–2010
91.06°E

MQSW 33.76°N 3503 0.3–0.5 3.2 2010
101.68°E

Alpine meadow steppe DXST 30.50°N 4333 <0.2 2.2 2004–2008
91.06°E

ZFST 28.36°N 4293 <0.2 3.1 2009
86.95°E

NMCST 30.77°N 4730 <0.2 3.1 2009
90.96°E
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alpine kobresia meadow (HBKO, GLKO, and ARKO), alpine shrub meadow (HBSH), alpine swamp meadow
(HBSW, DXSW, and MQSW), and alpine meadow steppe (DXST, ZFST, and NMCST). An overview of the
characteristics of these 10 sites is given in Table 1.

Eddy covariance measurements of the surface-atmosphere exchanges of CO2, H2O, and energy have been
collected at these tower sites. The measurement system is described in detail by Yu et al. [2006]. Data were
processed by the ChinaFLUX CO2 data processing system [Li et al., 2008], including (1) triple coordinate
rotation for 30min flux data, (2) Webb-Pearman-Leuning (WPL) correction [Webb et al., 1980], (3) abnormal
data rejection [Papale et al., 2006], and (4) exclusion of data from nocturnal periods when the friction velocity,
u*, was less than a threshold calculated from the algorithm provided by Reichstein et al. [2005]. To fill small
blocks (less than 2 h) of missing and abnormal data, a linear interpolation method was applied to each time
series. Larger gaps during the daytime were filled with values derived from the Michaelis-Menten equation
[Falge et al., 2001]. The daytime ecosystem respiration was calculated with the Lloyd and Taylor equation
[Lloyd and Taylor, 1994], based on observations during nighttime. GPP was finally estimated as the difference
between daytime NEE and ecosystem respiration.
2.1.2. Meteorological Observations
Climate data were extracted from the daily data set produced by the China Meteorological Administration,
which contain daily summaries of hourly climate data from over 700 georeferenced nationwide weather
stations; 108 of these stations are located on the Tibetan Plateau (Figure 2). From this database, we extracted
the daily mean air temperature, sunshine hours, and global solar radiation of the region together with their
geographical coordinates. Photosynthetic active radiation (PAR) was estimated from sunshine hours and
global solar radiation using the method described by Zhu et al. [2010]. Then the mean values of air
temperature and PAR were calculated for each station at 8 day step during 2003–2008. We obtained 552
values for each station in total (2 meteorological variables × 46 periods/year × 6 years).

Thin plate spline function (ANUSPLIN) [Hijmans et al., 2005; Hutchinson and Xu, 2013] was used to spatially
interpolate observations from 108 weather stations across the Tibetan Plateau at the resolution of
1 km×1 km. With this procedure, we created 552 maps of air temperature and PAR on the plateau.
2.1.3. Remote Sensing Data Sets
Two vegetation indices were used in this study as input data: enhanced vegetation index (EVI) and land
surface water index (LSWI) [Huete et al., 2002; Xiao et al., 2004b]. Seven of 36 spectral bands provided by the
MODIS sensor onboard the NASA Terra satellite are primarily designed for the study of vegetation and land
surface. We downloaded these seven bands at 500m resolution during 2003–2010 via the MODIS 8 day Land
Surface Reflectance (MOD09A1) data sets from https://lpdaac.usgs.gov/ to generate spatial data sets of EVI
and LSWI (equations (1) and (2)). For the regional application on the Tibetan Plateau, the extracted EVI and
LSWI were resampled to 1 km resolution.

EVI ¼ G� ρnir � ρredð Þ= ρnir þ C1 � ρred � C2 � ρblueð Þ þ Lð Þ (1)

LSWI ¼ ρnir � ρswirð Þ= ρnir þ ρswirð Þ (2)

where ρnir, ρred, ρblue, and ρswir represent the reflectance of near infrared band (NIR, 841–875 nm), red band
(620–670 nm), blue band (459–478 nm), and short wave infrared band (SWIR, 1628–1652 nm), respectively.
The coefficients used in the EVI algorithm are G= 2.5, C1 = 6, C2 = 7.5, and L = 1 [Huete et al., 2002]. EVI
includes the blue band for atmospheric correction and has been used for the study of vegetation dynamics
and production [Wu et al., 2010; Xiao et al., 2004a, 2004b]. Additionally, to reduce the effect of cloud
and capture seasonality with EVI, the original time series were smoothed with double logistic curve fit in
the TIMESAT software [Jonsson and Eklundh, 2002, 2004]. As the SWIR band is sensitive to vegetation
water content and soil moisture, a combination of NIR and SWIR bands have been used to derive water
sensitive index (i.e., LSWI), which is calculated as the normalized difference between NIR and SWIR [Xiao et al.,
2004a, 2004b].
2.1.4. Vegetation Distribution Information
The grassland distribution on the plateau was derived from the Atlas of Grassland Resources of China with a
scale of 1:1,000,000 [The Compiling Committee of the Atlas of Grassland Resources of China, 1993]. Fully
considering the representation of ecological properties from the 10 eddy covariance tower sites across all
alpine grasslands on the plateau, our work focused on alpine meadow and alpine meadow steppe. We
reclassified them into four alpine grassland subtypes: alpine kobresia meadow, alpine shrub meadow, alpine
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swamp meadow, and alpine meadow steppe. These subtypes account for 28.8% of the plateau, with total
area of 492,000, 81,000, 81,000, and 64,000 km2, respectively (Figure 2).

2.2. Description and Modification of VPM Model

The Vegetation Photosynthesis Model (VPM) is a LUE model developed by Xiao et al. [2004a, 2004b], and it
assumes that vegetation canopies are composed of photosynthetically active vegetation (mostly chlorophyll,
chl) and nonphotosynthetically vegetation (NPV). Thus, the fraction of photosynthetic active radiation
absorbed vegetation canopy (FPARcanopy) is partitioned into the fraction absorbed by chlorophyll (FPARchl)
and the fraction absorbed by NPV (FPARNPV). Note that only the FPARchl is used for photosynthesis. The
function used in the VPM model for the estimation of GPP is

GPP ¼ εg � FPARchl � PAR (3)

FPARchl ¼ a� EVI (4)

εg ¼ ε0 � T scalar �Wscalar � Pscalar (5)

where εg is the LUE (g C mol�1 PAR) and FPARchl is estimated as a linear function of EVI. The VPM model uses
EVI to estimate FPARchl, with the coefficient, a, set to be 1.0 [Xiao et al., 2004a, 2004b]. The parameter εg is
estimated as a function of the maximum LUE (ε0) and the scalars for the effects of temperature (Tscalar),
water (Wscalar), and leaf age (Pscalar) on LUE of vegetation [Xiao et al., 2004a, 2004b].

The effect of temperature on GPP (Tscalar) is estimated using the equation developed for the terrestrial
ecosystem model (equation (6)). In equation (6), Tmin, Topt, and Tmax (minimal, optimal, and maximal
temperature for photosynthesis, respectively) values were used to calculate Tscalar. Since it is unreasonable to
give each biome type the same parameter value, we calculate Topt of each pixel as the air temperature when
the EVI in the pixel reaches the peak of the year [Potter et al., 1993;Wang et al., 2010]. We used 0 for Tmin and
computed Tmax as Topt + (Topt� Tmin) for each pixel.

T scalar ¼ T � Tminð Þ T � Tmaxð Þ
T � Tminð Þ T � Tmaxð Þ½ � � T � Topt

� �2 (6)

Leaf age affects the seasonal patterns of plant photosynthetic capacity and net ecosystem exchange of
carbon dioxide. In this study, the period of pixel’s EVI exceeding the average value of EVI was defined as the
leaf full expansion period, when Pscalar was set as 1; for other periods, Pscalar was set as (1 + LSWI) / 2 [Xiao et al.,
2004a; Wang et al., 2010].

In VPM, Wscalar was used to estimate the effect of land surface water conditions on photosynthesis:

Wscalar ¼ 1þ LSWI
1þ LSWImax

(7)

where LSWImax is the maximum LSWI during the growing season [Xiao et al., 2004a, 2004b]. Equation (7) was
proven to work well in vegetation with semihumid and humid climate [Xiao et al., 2004a; Yan et al., 2009]. In
arid and semiarid climate, photosynthesis was more sensitive to short-term water availability. In order to
simulate the rapid response, we proposed a simpler approach (equation (8)).

Wscalar ¼ 0:5þ LSWI (8)

The proposed formula for Wscalar was similar to CASA water scalar [Potter et al., 1993; Field et al., 1995], with
the basic difference that the ratio of estimated evapotranspiration (ET) to potential evapotranspiration (PET)
was replaced with LSWI. The index was aimed to capture the rapid response of photosynthesis to water
availability regardless of water condition during the whole year. Taking LSWI in HBSH during 2004 as
example, the maximum LSWI was 0.355, and the slope for the original Wscalar was 1/(1 + LSWImax), which
equals to 0.738. For the modified version, the slope was 1, which showed higher sensitivity to short-term
water fluctuations than the original formulation.

2.3. Uncertainty Analysis
2.3.1. Determination of Uncertainty in Model Parameters and Input Data
The key parameter of the VPM model, i.e., the maximum LUE (ε0), needs to be estimated for different alpine
grassland subtypes. We used Markov Chain Monte Carlo (MCMC) technique to estimate the parameters in
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Michaelis-Menten light response function (equation (9)), based on NEE and PAR observation within the peak
period of the vegetation growing season (from July to August) of all the available sites in each alpine
grassland subtype. In equation (9), α, GEEmax, and Reco are undetermined parameters. The maximum LUE or
apparent quantum yield (g Cmol�1 PAR) is α, GEEmax (μmol CO2m

�2 s�1) is gross ecosystem exchange of CO2

at “saturating” light, and Reco (μmol CO2m
�2 s�1) is ecosystem respiration. The estimated α value was used as

an estimation of the ε0 parameter in the VPM model.

NEE ¼ α� PAR� GEEmax

α� PARþ GEEmax
� Reco (9)

Specifically, we used the Gibbs sampler implemented in JAGS (Just Another Gibbs Sampler) source
code (http://mcmc-jags.sourceforge.net/) to estimate the posterior probability distributions of the
parameters in light response function. The prior ranges of α, GEEmax and Reco were specified as
0–6 g C mol�1 PAR, 0–100 μmol CO2 m�2 s�1, and 0–60 μmol CO2 m�2 s�1. The posterior distributions
of α in each alpine grassland subtype can reflect the uncertainty on the parameter values, and the
statistical characteristics (e.g., mean, standard deviation, and coefficient of variation) of the key model
parameter ε0 could be obtained.

Although it is very common to assume a fixed ε0 value for a given alpine grassland [Xiao et al., 2004a, 2004b],
actually, the maximum LUE values vary not only with alpine grasslands but also within the same alpine
grassland [Xiao et al., 2011]. So in addition to joint-sites estimation for each alpine grassland subtype, we also
employed the leave-one-out cross validation method [Ren et al., 2013] to test the validity of joint estimation
of the key parameter and explore how the ε0 varies across sites within the same alpine grassland subtype. For
each alpine grassland subtype that has more than one site, i.e., alpine kobresia meadow, alpine swamp
meadow, and alpine meadow steppe, one site was excluded at a time and data of all other sites were used to
estimate the key parameter.

Meanwhile, there are inevitable errors in gridded meteorological data sets that were generated by
interpolating the meteorological station data. In this study, Bayesian standard deviation for the gridded
meteorological data was provided during interpolation of the regional climate data from weather stations
[Hutchinson and Xu, 2013]. Therefore, we considered the standard error surfaces as the uncertainty of the
regional climate data.

The measurement error of remote sensing data is not easily quantified. In this study we assumed the error of
satellite vegetation indices (EVI and LSWI) falls within ± (0.02 + 0.02*value) by referencing the results of
several researches [Lin et al., 2011; Vermote and Kotchenova, 2008]. Further exploration of accuracy and
feasibility is needed.
2.3.2. Estimation of Uncertainty With Monte Carlo Analysis
After considering the uncertainty of maximum LUE and input data sets, we used the conceptually
straightforward Monte Carlo (MC) approach to quantify the uncertainty in GPP estimation. The equations of
modified VPM were repeatedly evaluated using possible model input values including ε0, T, PAR, EVI, and
LSWI, which were randomly selected from the known (or assumed) probability distributions. The probability
distribution of ε0 was obtained by the MCMC method. Uniform distributions were assumed for
meteorological data (i.e., T and PAR) and satellite data (i.e., EVI and LSWI). The boundaries for individual pixels
of meteorological data were obtained from the standard error surfaces, and the boundaries for satellite data
were considered as (value ± (0.02 + 0.02*value)) [Lin et al., 2011; Vermote and Kotchenova, 2008]. After
repeatedly initializing the modified VPM model with the perturbed model parameters and input data sets,
the resultant number of predictions were used to define the probability distribution of the propagated error.
In this study, the random sampling processes were repeated for a total of 1000 iterations. From the 1000
estimations for each 8 day pixel, the standard deviation (SD) of GPP estimation was calculated to represent
the uncertainty of estimated GPP in the Tibetan alpine grasslands. GPP for each pixel h across the study
region was computed as the average of the Monte Carlo iterations (m=1000) using

GPPh ¼ 1
m
∑
m

i¼1
GPPhi (10)
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The relative uncertainty (RU) of the GPP estimation was expressed as two standard deviations (approximately
95% confidence interval) divided by the mean prediction value (equation (11)).

RU %ð Þ ¼ Two standard deviations
Mean value

� 100 (11)

2.3.3. Uncertainty Partitioning Using Sobol’ Variance Decomposition Method
In addition to quantify the uncertainty in GPP estimation, it is also important to understand the relative
contribution of each source of uncertainty to total uncertainty and locate the most influential model input. In
this study, the Sobol’ variance decompositionmethod [Saltelli, 2002; Sobol, 1993; Tarantola et al., 2006] is used
to partition output uncertainty into different uncertainty sources (i.e., ε0, T, PAR, EVI, and LSWI) for GPP
simulation (equation (12)).

GPP ¼ f ε0 � PAR� T � EVI� LSWIð Þ (12)

In Sobol’ method, assuming the model inputs are independent, the total variance of model output
can be decomposed into components that result from individual model inputs and their interactions
(equation (13)).

V ¼ ∑
i
V i þ ∑

i
∑
j>i

V ij þ⋯þ V12…k (13)

where V is the total variance of the model output, Vi is the portion of V explained by the ith model input, Vi,…,k

is the share of V explained by the interactions among the first to kth model input, and k is the total number of
model inputs. Then the Sobol’ sensitivity indices can be obtained by normalizing the partial variances with
total output variance (equation (14)).

1 ¼ ∑
i
Si þ ∑

i
∑
j>i

Sij þ⋯þ S12…k (14)

where Si is the first-order sensitivity index of the ith input, representing the direct influence of a model input
on the model output, and Si…k is the kth-order sensitivity index which represents the interactions among the
first to kth input. The total order sensitivity index (STi) is the sum of all the sensitivity indices in equation (14)
that include the ith input, reflecting how individual model input and its interactions with other inputs impact
the model output.

For the regional application of themodified VPMmodel, the input data (i.e., T, PAR, EVI, and LSWI) and outputs
(i.e., GPP) are all spatially distributed raster maps, not scalars, while the computation of Sobol’ sensitivity
indices is based on scalar inputs and outputs. So, we need to figure out how to derive spatial Sobol’ indices.
There are two ways to do that, including pixel-by-pixel method [Tang et al., 2007] and map-labeling method
[Lilburne and Tarantola, 2009]. In pixel-by-pixel method, we compute the Sobol’ indices for each pixel
respectively, since the inputs and output of each pixel are scalars. Then we can get spatial maps of Sobol’
indices, denoted as map of pixel sensitivity indices. In map-labeling method, the spatial inputs are converted
to scalars through numbering the random realizations of input maps and the spatial outputs are converted to
scalars through setting an appropriate scalar objective function such as sum. Afterwards, we can compute the
Sobol’ indices for the whole study region, known as block sensitivity indices.

3. Results
3.1. Model Parameterization and Validation at the Site Level
3.1.1. Estimation and Uncertainty of Maximum LUE
The estimated values and distributions of the key parameter ε0 from joint-sites optimization for regional GPP
simulation are shown in Table 2 and Figure 3. The mean values of ε0 vary substantially with alpine grassland
subtypes, with the highest value (0.522 g C mol�1 PAR) occurring in alpine swamp meadow and the lowest
value (0.204 g C mol�1 PAR) in alpine meadow steppe. The estimated values of alpine kobresia meadow and
alpine shrub meadow are at an intermediate level, 0.425 g C mol�1 PAR and 0.443 g C mol�1 PAR,
respectively. And the estimated distributions of ε0 in the four alpine grassland subtypes are generally
following normal distribution; only alpine meadow steppe has a slightly skewed distribution (Figure 3). This
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indicates that the ε0 parameter can be well constrained by the observation. Meanwhile, SD and coefficient of
variation (CV) of alpine meadow steppe are significantly higher than other alpine grassland subtypes.

We also conducted the leave-one-out cross validation to validate the performance of parameterization with
eddy covariance data. The results showed that the ε0 varied not only with different alpine grassland subtypes

Table 2. Joint-Sites Estimation of the Maximum LUE Parameter (ε0) for Alpine Kobresia Meadow, Alpine Shrub Meadow,
Alpine Swamp Meadow, and Alpine Meadow Steppe; and Leave-One-Out Estimation for Alpine Kobresia Meadow, Alpine
Swamp Meadow, and Alpine Meadow Steppe

Sitea

ε0

R2 p
Mean

(g C mol�1 PAR)
Standard Deviation
(g C mol�1 PAR)

Coefficient of Variation
(%)

Alpine kobresia meadow
HBKO 0.346 0.016 4.742 0.718 <0.001
GLKO 0.460 0.014 3.038 0.561 <0.001
ARKO 0.423 0.016 3.723 0.682 <0.001
Joint sites 0.425 0.013 2.953 / < 0.001

Alpine Swamp Meadow
HBSW 0.533 0.047 8.839 0.653 <0.001
DXSW 0.509 0.022 4.422 0.462 <0.001
MQSW 0.503 0.021 4.16 0.428 <0.001
Joint sites 0.522 0.021 4.092 / <0.001

Alpine Meadow Steppe
DXST 0.207 0.11 53.228 0.161 <0.001
ZFST 0.184 0.041 22.126 0.231 <0.001
NMCST 0.233 0.056 24.147 0.216 <0.001
Joint sites 0.204 0.045 22.215 / <0.001

Alpine Shrub Meadow
Joint sites 0.443 0.012 2.709 / <0.001

aRepresents one site excluded.

Figure 3. Probability distributions of maximum LUE (ε0) derived fromMCMCmethod in Tibetan alpine grasslands: (a) alpine
kobresia meadow, (b) alpine shrub meadow, (c) alpine swamp meadow, and (d) Alpine meadow steppe.
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but also within the same alpine grassland subtype (Table 2); the variation of ε0 across different sites within a
given alpine grassland subtype is much smaller than that across different alpine grassland subtypes. The
determination coefficient (R2) of the cross validation for alpine kobresia meadow and alpine swampmeadow
varied between 0.43 and 0.72 (p< 0.001), while alpine meadow steppe had a much lower R2 varying from
0.16 to 0.23 (p< 0.001). We note that the estimated ε0with the joint-sites optimization are within the range of
leave-one-out variation for a given alpine grassland subtype.
3.1.2. Model Validation at the Site Level
We computed the 8 day step GPP of the 10 sites using the estimated mean value of ε0, based on the modified
VPMmodel and the original version. High values of R2 (0.77–0.95, p< 0.001) between GPP from fluxmeasurement
(GPP_EC) and GPP frommodified VPMmodel (GPP_VPMm) were observed for four grassland subtypes (Figure 4).

We also compared the GPP_VPMm with GPP from original VPM (GPP_VPM), MODIS GPP product (GPP_MOD,
MODIS-based GPP product [MOD17A2] downloaded from https://wist.echo.nasa.gov), and the GPP
observation at the tower sites. The results were illustrated in a Taylor diagram (Figure 5). In the Taylor diagram,
four statistical quantities are geometrically connected: the correlation coefficient (r), SD of observation, SD of
the model, and the centered pattern root mean square [Taylor, 2001]. The polar axis displays the correlation
coefficient and the radial axes display the root mean standard deviation (RMSD) of the modeled variable.
Simulated patterns that agree well with observations will lie nearest the observed point on the x axis, having
relatively high correlation and low RMSD. By integrating the consideration of r and RMSD, as shown in
Figure 5, we note that the GPP_VPMm provides a better agreement than the GPP_VPM and GPP_MOD. Most
notably, an obvious improvement in model performance with the modified VPM model is observed in the
alpine meadow steppe. The original Wscalar in the VPM is insufficiently sensitive to water stress in dry land,
and the modified Wscalar clearly improved the model’s capacity to reproduce summer 8 day productivity.

3.2. Regional GPP and Uncertainties

We calculated annual GPP for each year during 2003–2008 from the 8 day GPP estimates. The total annual
GPP for the studied area and for each subtype of alpine grassland over the period was shown in Table 3 and

Figure 4. Comparison between the observed and predicted GPP derived from the modified VPM model in 10 EC tower
sites on the Tibetan alpine grasslands: (a) alpine kobresia meadow, (b) alpine shrub meadow, (c) alpine swamp meadow,
and (d) Alpine meadow steppe.
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Figure 6. On average, the total annual GPP was 223.3 Tg C yr�1, with 4.6 Tg C yr�1 for alpine meadow steppe
and 154.8 Tg C yr�1 for alpine kobresia meadow. In our 6 year estimate, the carbon uptakes were the lowest
and highest in 2008 and 2006, with 212.8 and 233.7 Tg C yr�1, respectively. The regional simulations indicate
that there is large spatial variability in the capacity of carbon fixation in the region (Figure 7a), which
corresponds well with the spatial variations in climate and biophysical properties. To examine how the
climate gradients affected GPP, we selected an east-west transect along the latitude 30°–35°N and a south-
north transect along the longitude of 95°–100°E (Table 4). The result shows that GPP on the plateau grassland
followed a clear longitudinal gradient, increasing from west to east, attributable primarily to the increase of
precipitation, air temperature, and the decrease in elevation, while the decrease of GPP from south to north is
primarily controlled by air temperature.

To further analyze the interannual variations of regional GPP, we calculated the interannual variability (IAV) for
each pixel (Figure 7b), defined as the coefficient of variation of the quantity of GPP in each pixel across all
years. There are evident interannual variations in most areas, and the average IAV for all pixels is 15%. The
highest interannual variation of GPP occurred in the middle part of the plateau, with the values larger than

Figure 5. Performance of modified VPM (letter B), VPM (letter C), and MODIS (letter D) product in GPP estimation at 10 flux
sites during the study period. Letter A on the x axis means the observed value.

Table 3. Annual GPP Estimations for Four Alpine Grassland Subtypes on the Tibetan Plateau during 2003–2008a

Alpine Grassland Subtype 2003 2004 2005 2006 2007 2008 Mean

Alpine kobresia meadow 151.2 153.5 159.7 162.3 155.2 147.1 154.8
Alpine shrub meadow 31.9 31.9 33.4 34.2 33.8 31.3 32.7
Alpine swamp meadow 29.3 30.4 32.7 32.8 31.4 29.8 31.1
Alpine meadow steppe 4.7 5.1 4.5 4.4 4.6 4.6 4.6
Total 217.2 220.9 230.3 233.7 225.0 212.8 223.3

aUnit: Tg C yr�1.
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25%. From Figure 8, we can see that the
seasonal variations of regional GPP are also
distinct on the plateau, with the
significantly larger amplitude of GPP
occurring in the growing season (Figure 8a)
than the whole year (Figure 8b). The
seasonal cycle of EVI seams to dominate the
seasonal variations of GPP in most areas,
since the seasonal variations of GPP are
most strongly correlated with the seasonal
cycle of EVI across 88% of the study area
(Figure 8c). The seasonal variation of
temperature is strongly associated with
that of GPP in about 11% of the study area,
mostly distributed in the regions with small
amplitude of GPP (Figure 8c).

We compared the regional estimates of GPP
derived from themodified VPM (GPP_VPMm) and theMODIS-PSNmodel used for the MODIS GPP data product
(GPP_MOD, MOD17A2) (downloaded from https://wist.echo.nasa.gov/) (Figure 9). The spatial patterns of our

Figure 7. Spatial patterns of (a) annual GPP and (b) its interannual variation (IAV) in Tibetan alpine grasslands from 2003 to
2008. The GPP values were simulated with the modified VPM (unit: g C m�2 yr�1).

Figure 6. Annual GPP estimations and standard deviations for four
alpine grassland subtypes on the Tibetan Plateau during 2003–2008.
Unit: g C m�2 yr�1.
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estimate and GPP_MODwere generally similar to each other. Both estimates of VPMm andMODIS-PSN capture
the spatial patterns of GPP in the Tibetan alpine grasslands. However, the differences between the GPP_VPMm
and GPP_MOD at the regional scale are due to the following two aspects. (1) GPP_VPMm presented much
clearer spatial continuity, i.e., the values of GPP-VPMm gradually decreases from east to west in general,
following the gradients of air temperature and vegetation cover. By contrast, the spatial pattern of GPP_MOD
is not so obvious. (2) GPP_VPMm provides a higher GPP estimation for the study region than that obtained
from the PSN algorithm. GPP_VPMm ranges from 0 to 1367.1 g C m�2 yr�1 with an average value of
312.3 ± 198.2 g C m�2 yr�1, whereas GPP_MOD ranges from 0 to 1479.2 g C m�2 yr�1 with an average value
of 157.6 ± 115.4 g C m�2 yr�1. The difference between these two results increases with the increasing
magnitude of GPP, and it is highest in east-central part of the study region.

The uncertainty of GPP derived with modified VPM for the Tibetan alpine grasslands with MC approach was
presented in Figure 10. The spatial pattern of estimated SD is similar to that of GPP (see Figure 7a), with higher
values in eastern region (more than 35 g C m�2 yr�1) and lower values in the western part of the plateau. The
average SD of the GPP estimation in Tibetan alpine grasslands is 20.7 g C m�2 yr�1. Roughly 75% of grassland
has a SD of 10–30 g C m�2 yr�1, with GPP estimation ranging from 13.5 to 763.0 g C m�2 yr�1. In addition, the
minimum value of mean RU in the study area is about 6.9%, andmost of RU ranges from 10% to 30%, with the
largest uncertainty occurring in regions with lower GPP. RU originated from the model parameters, and input
data sets for the annual GPP at regional scale was ranging from 6.9% to 34.6%, averaged at 18.3%, which is
much larger than the global uncertainty estimate (9.86%) of Jung et al. [2011]. Such a difference is likely
because of the difference of study regions, Tibetan alpine grasslands versus all vegetation types of the globe.
Moreover, as shown in Figures 10 and 11, the spatial distribution of RU, SD of air temperature, and PAR are
rather similar to each other. In the northwest of the plateau, the number of the weather stations is limited
(see Figure 2), resulting in a high uncertainty for the gridded climate data that is propagated to the
estimated GPP.

3.3. Uncertainty Partitioning of the Modeled GPP

We conducted the map-labeling Sobol’ analysis in several 8 day steps covering different phases of the
growing season of the alpine grasslands, including DOY 161–168, 185–192, 209–216, and 233–240 in the year
2004, and found that the ranking of model inputs for uncertainty contribution is identical across different
time steps, although the specific values of uncertainty contribution are slightly different. So we chose one 8
day time step (DOY 209–216) to illustrate the relative contribution of each source of uncertainty to the total
uncertainty. The block sensitivity indices results presented in Table 5 showed that the sequence of relative
importance is: PAR> EVI> ε0> T≈ LSWI. More than 85% of uncertainty in estimated GPP is contributed to the
maximum LUE, PAR, and EVI, while Tand LSWI only contributed about 15%. This indicated that maximum LUE,
PAR, and EVI have much greater influence on estimated GPP than T and LSWI. Furthermore, the sum of first-
order sensitivity indices and the sum of total order sensitivity indices are 99.51% and 101.07%, respectively
(Table 5), with very small difference, reflecting that the influence of the parameters themselves dominates
their overall uncertainty contribution rather than the interactions with other variables.

The map of pixel sensitivity indices was also analyzed for one 8 day time step (DOY 209–216) and used to
further analyze the spatial distributions of relative importance of each input variable. Figure 12 illustrated the
spatial distribution of total order sensitivity indices for each input variable. Due to the heterogeneous spatial
distributions of RU of each variable (Figure 13), the spatial patterns of uncertainty contribution of each input

Table 4. Pearson Correlation Matrix (P<0.05) for GPP and Environmental Variables in the East-West Transect (EWT, Along
the Latitude 30–35°N, Shown in the Upper Triangle) and the South-North Transect (SNT, Along the 95–100°E, Shown in the
Lower Triangle) on the Tibetan Alpine Grasslands

EWT

SNT GPP Longitude Elevation Air Temperature Precipitation

GPP 1 0.68 �0.76 0.37 0.48
Latitude �0.26 1 �0.79 �0.07 0.58
Elevation �0.38 �0.14 1 �0.39 �0.32
Air temperature 0.54 �0.74 �0.43 1 0.21
Precipitation 0.17 �0.84 0.08 0.60 1
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Figure 8. The regional map of the mean seasonal cycle of modeled GPP from 2003 to 2008 and the corresponding envir-
onmental variable with the maximum correlation coefficient. (a) The amplitude of the mean seasonal cycle of GPP during
2003–2008(unit: g Cm�2 8d�1), (b) themaximum 8 day flux of themean seasonal cycle of GPP(unit: g Cm�2 8d�1), and (c)
the maximum value composite of correlation coefficient between modeled GPP and environmental variables, i.e., T, PAR,
EVI, and LSWI.

Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002449

HE ET AL. ©2014. American Geophysical Union. All Rights Reserved. 478



variable are inhomogeneous across the region (Figure 12). For ε0, the spatial distribution of total order indices
is similar to the alpine grassland classification map in Figure 2, and alpine meadow steppe and alpine swamp
meadow have higher uncertainty contribution than alpine shrubmeadow and alpine kobresia meadow. For T
and LSWI, the uncertainty contribution is higher in the eastern than the western part of the plateau. For EVI,
the eastern and middle parts of the plateau have the lowest uncertainty contribution. For PAR, the
uncertainty contribution of the southern part of the plateau to estimated GPP is much higher than the
northern part.

4. Discussion
4.1. Maximum LUE and Its Influence on Model Estimation

The determination of maximum LUE, indicating the potential conversion efficiency of absorbed PAR under the
ideal growing condition, has been recognized as very important in GPP simulation with satellite-driven LUE
models in earlier studies [Xiao et al., 2004b, 2011]. The maximum LUE was assumed a universal invariant across
plant function types (PFTs) in some previous models [Potter et al., 1993]. Meanwhile, PFT-dependent maximum
LUE parameterization scheme was also found in many recent studies [Running et al., 2000; Xiao et al., 2004a,
2004b], with a fixed maximum LUE for a given PFT. In terms of grassland, the reported maximum LUE showed
considerable variation among existing studies. The maximum LUE for global data set was demonstrated as

Figure 9. The comparison of grassland annual GPP images of GPP_VPMm and (a) GPP_MOD, and (b) the difference
between GPP_VPMm and GPP_MOD in alpine grasslands on the Tibetan Plateau.
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1.0–3.5g CMJ�1 PAR (i.e., 0.21–0.76g Cmol�1 PAR) inGarbulsky et al. [2010]. An even larger variation was found in
European grasslands, with a mean maximum LUE value 2.09g CO2 mol�1 PAR (0.57g C mol�1 PAR) and varies in
the broad range from 0.7g CO2mol�1 PAR (0.19g Cmol�1 PAR) in a dry seminatural grassland to 3.3g CO2mol�1

PAR (0.90 g C mol�1 PAR) in an intensive managed grassland [Gilmanov et al., 2007]. For the grasslands in
northern China, the maximum LUE ranged from 0.16 to 0.47 g C mol�1 PAR [Wang et al., 2010].

The large within-PFT variability of the maximum LUE indicates that it is inadequate to use data from a single
site to extract the parameters of a given PFT for regional applications. Our study showed that the maximum
LUE exhibits considerable variation from 0.204 to 0.522 g C mol�1 PAR across four alpine grassland subtypes.
Even within the same alpine grassland subtype (e.g., alpine kobresia meadow, HBKO, GLKO, and ARKO), the
maximum LUE ranges from 0.346 to 0.460 g C mol�1 PAR, which also showed that the maximum LUE
optimized from a single site does not cover the full range of variability of parameter values within a given
alpine grassland subtype. The traditional parameter estimation approach may not capture the variability of
ecological properties within a PFT and could bring biases to the resulting regional carbon flux estimates.
Ideally, observations from multiple sites as much should be used for parameter estimation for a given PFT. In
our study, the overall regional GPP estimation based on joint-sites optimization were close to the results
based on leave-one-out model optimization, showing that the maximum LUE based on joint-sites
optimization can lead to more robust carbon flux estimation and reduce the uncertainty in regional
GPP estimation.

Figure 10. Uncertainty of GPP estimation in Tibetan alpine grasslands during the period of 2003–2008: (a) standard devia-
tion of the estimation with units of g C m�2 yr�1 and (b) relative uncertainty of GPP estimation.
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Although differences exist in model algorithm and input data, the discrepancy in GPP estimation between
VPMm and theMODIS-PSN algorithm is mainly attributed to the determination of themaximum LUE. The PSN
assumes one ε0 value per biome type [Running et al., 2000] and uses a value of 0.00068 Kg C MJ�1 PAR
[Heinsch et al., 2003], i.e., 0.148 g C mol�1 PAR (where 1MJ PAR is equal to ~4.6mol PAR) for grassland. This
value is much smaller than the values (0.204 to 0.522 g C mol�1 PAR) we obtained from eddy covariance
towers in this study. Zhang et al. [2008] pointed out that the maximum LUE in the PSN algorithm was
underestimated for the meadow, which may be the largest uncertainty of GPP_MOD [Wu et al., 2010].

Figure 11. The standard deviation of meteorological data derived from ANUSPLIN interpolation: (a) air temperature and (b)
photosynthetic active radiation.

Table 5. The Sobol’ Sensitivity Indices of Model Inputs of Modified VPM on the Tibetan Plateau (Take DOY 209–216, 2004
as Example), Estimated Using Spatial Version of Sobol’ Variance Decomposition Method

Input Variables First-Order Sensitivity Index (Si) Total Order Sensitivity Index (STi)

ε0 0.21812 0.21988
T 0.07025 0.08009
PAR 0.36756 0.36843
EVI 0.26846 0.26862
LSWI 0.07072 0.07369
Sum 0.99511 1.01071
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4.2. Uncertainty Analysis in GPP Estimations

The uncertainty in GPP simulation results from a combination of conceptual and functional model attributes
such as model structure, data inputs, and model parameters [Verstraeten et al., 2008]. In this study, with the
consideration of the rapid response of plant photosynthesis to short-term water availability, we modified the
model structure and improved the model performance in simulating GPP in four alpine grasslands (R2 = 0.82–
0.96, p< 0.001), especially alpine meadow steppe (Figure 5). By modifying model structure and validating
model simulation against observation, it is possible to reduce the uncertainty caused by model structure.

The Sobol’ analysis in this study showed how the overall model output uncertainty can be partitioned into
contributions from different model inputs. This uncertainty partitioning reflected not only the model
sensitivity but also the uncertainty of model inputs. If the model is very sensitive to an input but this input has
very small uncertainty, then the uncertainty contribution of this input might be small, and vice versa. To
further explore the reasons for the uncertainty contribution ranking of block sensitivity indices, i.e.,
PAR> EVI> ε0> T≈ LSWI, we performed one-at-a-time (OAT) local sensitivity analysis on the modified VPM
model. The OAT sensitivity ranking is PAR = EVI = ε0> T>> LSWI. This implied that estimated GPP is more
sensitive to maximum LUE, PAR, and EVI than air temperature, and much less sensitive to LSWI than air
temperature. This is clearly due to the model structure of the modified VPM model. Although the OAT

Figure 12. The total order sensitivity indices of (a) ε0, (b) T, (c) EVI, (d) PAR, and (e) LSWI (take DOY 209–216, 2004 as example), estimated using Sobol’ variance
decomposition method pixel by pixel.
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sensitivity of PAR, EVI, and ε0 are the same, their Sobol’ uncertainty contributions are different. This may be
attributable to the ranking of RU of these variables, i.e., PAR (16.16%)> EVI (6.40%)> ε0 (4.92%). In addition,
we note that the OAT sensitivity of air temperature is much larger than LSWI, while the uncertainty
contributions are almost the same. This is likely because the RU of LSWI (26.42%) is much larger than that of
air temperature (16.97%).

As for the spatial distribution characteristics of uncertainty contribution of each input variable derived from
pixel-by-pixel Sobol’ method, the RU of each input variable is the key factor. Figure 13 illustrated the spatial
distributions of RU of each input variable, and in combination with Figure 12, we can see that where there is a
large parameter uncertainty, there is a large uncertainty contribution; i.e., the spatial distributions of RU and
uncertainty contribution for each input variable are roughly similar. The minor differences between them
may be attributed to the interactions between input variables. Taking DXST and HBKO for example, the RU of
ε0 in DXST is 44.12%, larger than the value 6.12% in HBKO, and the total order sensitivity index in DXST is also
larger than that of HBKO, 87% versus 25%. Similarly, the RU of LSWI in DXST is 21.21%, smaller than the value
28.79% in HBKO, and the total order sensitivity index in DXST (1%) is also smaller than that of HBKO (11%).

Overall, a comprehensive analysis of the uncertainty of model output is still a big challenge for carbon cycle
research. This paper tried to quantify and partition the uncertainty of estimated GPP in Tibetan alpine
grasslands for the purpose of reducing the uncertainty in the future, and the main findings are that the

Figure 13. The relative uncertainty of (a) ε0, (b) T, (c) EVI, (d)PAR, and (e) LSWI.
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uncertainty of estimated GPP is 18.3% and PAR, EVI, and the maximum LUE are the main uncertainty sources.
While the maximum LUE is generally thought as the most important uncertainty source of regional GPP
estimation based on LUE model [Lin et al., 2011], the results of this study imply that reducing the uncertainty
in the driving variables of the LUE model is also very important in the regional simulation with LUE model.

5. Conclusions

With integration of CO2 flux observation, climate, and remote sensing data, we used the modified VPM, a LUE
model, to examine the magnitude, spatial pattern, and interannual variability of GPP in Tibetan alpine
grasslands. Our results show that themodifiedmodel was able to reproduce themagnitude and the temporal
dynamics of the carbon fixation on the plateau. The modeling results indicate that the mean annual GPP for
Tibetan alpine grasslands from 2003 to 2008 was estimated at 223.3 Tg C yr�1 (312.3 g C m�2 yr�1), ranging
from 212.8 Tg C yr�1 (297.7 g C m�2 yr�1) in 2008 to 233.7 Tg C yr�1 (326.9 g C m�2 yr�1) in 2006. Our
simulation also indicates that the regional GPP exhibited a large spatial variability due to changes in
temperature, precipitation, and vegetation distribution. The relative uncertainty of the estimation caused by
the impact of errors in model parameters and input data sets for the whole region was estimated as 18.3%,
with a SD of 20.68 g C m�2 yr�1. PAR, EVI, and the maximum LUE contributed 36.84%, 26.86%, and 21.99% of
the uncertainty in estimated GPP, respectively, while T and LSWI only contributed 8.01% and 7.37%,
respectively. It is clear that reducing the uncertainty in PAR and EVI is also important in the regional GPP
estimation using LUE model, probably even more important than the maximum LUE.
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