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Abstract: Vegetation phenology plays a critical role in the dynamic response of terrestrial ecosystems to
climate change. However, the relationship between the phenology of winter wheat and hydrothermal
factors is inadequate, especially in typical agricultural areas. In this study, the possible effects of
preseason climate changes on the green-up date (GUD) of winter wheat over the North China Plain
(NCP) was investigated, using the MODIS EVI 8-day time-series data from 2000 to 2015, as well as
the concurrent monthly mean temperature (Tm), mean maximum (Tmax) and minimum temperature
(Tmin) and total precipitation (TP) data. Firstly, we quantitatively identified the time lag effects of
winter wheat GUD responses to different climatic factors; then, the major driving factors for winter
wheat GUD were further explored by applying multiple linear regression models. The results showed
that the time lag effects of winter wheat GUD response to climatic factors were site- and climatic
parameters-dependent. Negative temperature effects with about a 3-month time lag dominated in
most of the NCP, whereas positive temperature effects with a zero-month lag were most common
in some of the southern parts. In comparison, total precipitation had a negative zero-month lag
effect in the northern region, but two lagged months occurred in the south. Regarding the time
lag effects, the explanation power of climatic factors improved relatively by up to 77%, and the
explanation area increased by 41.20%. Additionally, change in winter wheat GUD was primarily
determined by temperature rather than by TP, with a marked spatial heterogeneity of the Tmax

and Tmin effect. Our results confirmed different time lag effects from different climatic factors on
phenological processes in spring, and further suggested that both Tmax and Tmin should be considered
to improve the performance of spring phenology models.
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1. Introduction

The North China Plain (NCP) is one of the world’s major winter wheat production areas, accounting
for approximately three quarters of the total wheat production in China, and about one eighth of the
global wheat production [1–3]; it is therefore of importance for both Chinese and global food security.
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However, the monsoon climate makes it sensitive to global climate change. Numerous previous
studies have indicated that the climate of the NCP experienced abrupt warmer and drier spells in
the past decades, and that is projected to continue in the future [4–6]. Zhang et al. [7] noted that the
mean annual temperature in some parts of the NCP had increased rapidly, by 0.57–0.44 ◦C/10a, from
1981–2011, higher than the corresponding national and global average warming [8]. Duo et al. [9]
and Wang et al. [10] suggested that the changes in temperature differed greatly among seasons and
max–min temperatures, with the largest warming rate being for spring and nighttime. In comparison,
although its annual precipitation exhibited larger variations over the years as a whole [9], its seasonal
and regional reduction seemed to be significant [11,12]. These changing hydrothermal conditions have
inevitable consequences on winter wheat growing activity [13–15]. Thus, quantifying winter wheat
growth dynamics and understanding the driving mechanisms behind these variations are scientific
issues of great concern.

The vegetation green-up date (GUD) plays an essential role in biosphere–atmosphere interactions,
due to its strong impact on the growing season length, carbon uptake, and energy exchange [16–18].
Monitoring GUD changes in cropland could not only enhance our understanding of crop response
mechanism to environments, but could also help in devising adaptive management strategies. Based
on ground observation and crop model, a substantial number of studies explored the spatial temporal
variation of winter wheat GUD in NCP and its influence factors [19–22]. For example, Zhou et al. [19]
successfully applied digital camera images to monitoring winter wheat GUD in order to optimize an
ecological model in Yucheng station. Xiao et al. [20] and Tao, et al. [21] demonstrated that the advance
of winter wheat GUD in some stations was dependent upon temperature change. However, such
approaches are, to a large extent, limited by the number of observation sites, and thus, are almost
impossible to apply to entire regions [23].

Remote sensing data with the larger spatial coverage and higher observation frequency have
been involved in identifying winter wheat GUD variation in NCP recently [23–27]. Yet, there are
still some limits in previous studies. First of all, although the winter wheat land cover data was
considered for many of them, winter wheat area changes during the study period need more attention,
because spectral signals from other land use types and other crop species may significantly impact
satellite-derived GUD variations of winter wheat [26,28]. Secondly, increasing studies have found
that the responses of winter wheat GUD to climate have a certain time lag [23,27]. However, the
spatial patterns for the time lag effects of winter wheat GUD responses to climate and corresponding
driving factors remain unknown. Furthermore, it has been widely suggested that asymmetric warming
may affect vegetation growth differentially [29–31]. Piao et al. [32] found that the leaf unfolding date
variations were triggered more strongly by maximum temperatures than by minimum temperatures in
the northern hemisphere. Shen et al. [33] revealed that changes in temperate grassland GUD were
more strongly related to maximum temperatures than minimum temperatures in winter, but were
more controlled by minimum temperatures in spring. However, very few studies have been conducted
on the response of winter wheat GUD to asymmetric warming in this region.

In this study, we employed the EVI data from the MODIS and meteorological data to assess
the variation of winter wheat GUD in the NCP, and to analyze diverse responses under changing
hydrothermal conditions. The objectives of this study are: 1) to investigate the spatiotemporal pattern
of winter wheat GUD during 2001–2015, 2) to quantify the time lag effects of climate factors on the
variation of winter wheat GUD and illustrate its relative contribution, and 3) to identify the major
driving factors of climate on winter wheat GUD variation.

2. Materials and Methods

2.1. Study Area

The study area is located in the NCP (31◦51′–40◦32′N, 110◦14′–122◦45′E), covering two
municipalities (Beijing and Tianjin) and six provinces (Shandong, Hebei and Henan, Shanxi, Anhui and



Remote Sens. 2019, 11, 1593 3 of 21

Jiangsu) (Figure 1). It is the largest agricultural area in China, and is commonly covered by a winter
wheat–maize/cotton double cropping system [34]. Winter wheat in this region, generally, is sown in late
September to early October, and starts to grow before entering a dormant stage when the temperature
drops in the winter. With rising temperatures in spring, the plant enters the green-up stage as leaves
rapidly turn green before harvesting in the early summer. The winter wheat life cycle spans about 230
to 260 days.

2.2. Data

MODIS time series vegetation index data: To provide more available points in winter wheat
growth, we used 8-day EVI data with 500 m spatial resolution from 2000 to 2015, which was obtained
from the center for Spatial Analysis, University of Oklahoma. These data were derived from the
MOD09A1 C6 500 m 8-day land surface reflectance data. The Best Index Slope Extraction algorithm
was used to detect and remove the lower values affected by bad conditions [35], while a SG filter was
used to smooth the EVI after gap-filling [36]. These data have been widely used to monitor global
environmental changes [37,38].

Cropland maps with 1-km spatial resolution: A 1 km agriculture land map for 2000 and 2015
was obtained from the Resources and Environment Data Center, Chinese Academy of Sciences
(http://www.igsnrr.cas.cn) [39].

Meteorological data: Meteorological data during 2000–2015 were collected from the China
Meteorological Data Sharing Service system (http://data.cma.cn/) [40], which provided monthly mean
air temperature (Tm), mean maximum air temperature (Tmax), mean minimum air temperature (Tmin)
and total precipitation (TP) data for 604 meteorological stations in China. Based on Digital elevation
model (DEM) data, the original meteorological data was interpolated to a 1-km spatial resolution
dataset using the AUSPLINE. Finally, the EVI data and land use map were resampled in accordance
with monthly meteorological data using the ArcGIS software.

In situ data on winter wheat GUD: Historical observation of winter wheat GUD data for the
period of 2001–2009 was recorded at the national agro–meteorological stations, and was maintained
by the Chinese Meteorological Administration [13,14,23]. In practice, although winter wheat GUD is
defined as the date when leaves begin to turn green after winter dormancy and the length of the new
leaves reaches 1–2 cm, it is difficult to accurately determine the date of this occurrence, especially with
large spatial coverage [23,25,26]. Therefore, only the stations with winter wheat GUD records between
the day of the year (DOY) 30 and 140, and which were located near the winter wheat cultivating pixels
derived from 2.3 section were selected. We finally obtained data from 11 agro-meteorological stations
in the NCP, which contained 99 GUD records for winter wheat (Figure 1).
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2.3. Identifying Winter Wheat Cropland

To focus on the areas with winter wheat, pixels were extracted by further analysis if they matched
the following criteria (Figure S1). First, to reduce the impacts associated with land use change, images
of the 1 km agricultural land for 2000 and 2015 were masked upon each other. Then, the remaining
agricultural land was used to further mask the EVI time series data. Second, areas with sparse
vegetation with EVI values no greater than 0.05 from January to February (i.e., the main winter wheat
dormant stage) were excluded from the analyses. Third, a continuous smooth EVI time series data
from late October to the following early July for each year over the remaining pixel was reconstructed
using a sixth-order polynomial function, which was proved to effectively preserve primary curvatures
while smoothing out noises [41,42]. Then, based on the sixth-order polynomial smooth EVI, pixels
were further removed by applying the second order difference method [43], according to the peak
(November to January)-valley-peak (April to May)-valley (May to June) patterns of winter wheat
growth (Figure S2) [44]. However, given the relatively large spatial span along the NCP, it is possible
that such winter wheat pixels with an unobvious first peak and valley could be excluded [44,45].
Therefore, for the single peak (April to May) pixels of the sixth-order polynomial smooth EVI, we also
calculated the maximum value of the 8-day interval EVI before the sixth-order polynomial fit during
November to December; as such, the pixels were selected as winter wheat cultivating zones only if
the resulting value was larger than that of late October. Finally, winter wheat cultivating zones were
identified by successive plantation pixels during the period of 2000–2015. The winter wheat cultivating
zones matched well with the statistics yearbook area in this major winter wheat province, with general
relative errors being lower than 20% (Table 1). Differences may be partly attributed to the influence of
mixed pixels of MODIS EVI at 1-km resolution, and to the challenges of clarifying winter rape and
winter wheat, although winter wheat is among the most widely grown crops in the NCP [26,28,44].
Additionally, 2000 random points were generated based on the agricultural land from the agricultural
land 2000 map masked onto the agricultural land 2015 map, located at the center of each pixel using
ArcGIS software (Figure S3). We then converted the 2000 random points to grid data with the same
spatial resolution as the winter wheat extraction data. As some historical high resolution satellite
images from Google Earth were not available in the key identification period of winter wheat over the
whole study area, we finally selected a larger sample transect across five provinces in the study area
using the available images from Google Earth for November 2014 to February 2015 to compare them
with the winter wheat extraction data in 2015 (Figure S3). After that, we checked each sample grid in
the sample transect with high resolution satellite images from Google Earth and the Landsat 8 surface
reflection data on Google Earth Engine (Figure S4), by defining winter wheat as the sample grid area
covered by ≥ 40% winter wheat through visual interpretation. Sample grids without clear land cover
information were excluded (22 grids). Finally, a total of 466 grids were generated for the validation
of resultant winter wheat extraction data, including winter wheat (290 grids) and non-winter wheat
(176 grids). A confusion matrix of the winter wheat map was calculated to evaluate the accuracy of the
results [46]. The validation indicated that the winter wheat extraction data had relative high accuracy,
i.e., 86% (Table 2).

Table 1. Comparison between the winter wheat cultivating zones from EVI and that from statistics
yearbook in major winter wheat province.

Region
Statistical Area

103 hm2
Extraction Area

103 hm2
Relative Error

%

2001 2007 2015 2001 2007 2015 2001 2007 2015

Hebei 2579.80 2412.40 2318.87 2491.90 2306.90 2595.60 −3.41 −4.37 11.93
Henan 4801.60 5213.33 5425.66 3984.20 4504.40 5029.20 −17.02 −13.60 −7.31

Shandong 3545.75 3519.08 3799.83 4098.10 3755.50 4098.40 15.58 6.72 7.86
Anhui 1742.72 2330.27 2457.00 1650.80 2065.10 2587.60 −5.27 −11.38 5.32
Jiangsu 1712.81 2039.12 2178.83 2530.20 1842.10 1938.80 47.72 −9.66 −11.02
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Table 2. Confusion matrix of land cover validation based on sample grids from high resolution satellite
images from Google Earth and from the Google Earth Engine.

Class Winter
Wheat

Non-Winter
Wheat

Classify
Total

User
Accuracy

Producer’s
Accuracy

Overall
Accuracy

Winter wheat 281 54 335 0.84 0.97 0.86
Non-winter wheat 9 122 131 0.93 0.69

Sample total 290 176 466

2.4. Estimating Winter Wheat GUD

We employed the four-parameter logistic function, which has been extensively used to determine
vegetation GUD and is considered reliable [27,47], to fit a cumulative EVI time series and to determine
the maximum curvature with which to derive the GUD. In addition, previous studies have exhibited
that GUD extraction was usually sensitive to the vegetation index curve [24,48,49]. Therefore, firstly,
we did not artificially define a yearly winter wheat EVI curve ending in July like Wang et al. [23], but
rather, we set it as the DOY of the minimum EVI occurring from May to early July. Subsequently,
we calculated the minimum EVI value before the maximum EVI value from the start of a year to July,
which was used to replace the EVI values before the minimum EVI happened, to eliminate as much as
possible the influence from summer crop EVI and spring disturbances (e.g., spring snow, dormancy
delay) on winter wheat EVI curve. The winter wheat GUD extraction steps are described below:

For each year, we first calculated the cumEVI for 8-day interval EVI using Equation (1). Then,
a four-parameter logistic function was employed to fit the cumEVI data to retrieve the winter wheat
phenology [Equation (2)]. Finally, winter wheat GUD was defined as the day when the curvature of
the fitted four-parameter logistic cumEVI curve reached its maximum [Equation (3)] (Figure 2).

cumEVIt =
t∑

i=1

EVIi (1)

cumEVIt =
c

1 + ea+bt
+ d (2)

K = −
b2cz(1− z)(1 + z)3[
(1 + z)4 + (bcz)2

]3/2
(3)

where t represents DOY for 8-day interval; cumEVIt is the cumulative EVI from 1 DOY to time t; a and
b are fitting parameters, the sum c and d is the maximum cumEVI, and d is the minimum cumEVI;
K represents the curvature, z = e(a+bT); T is DOY on a daily scale.
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2.5. Statistical Analysis

To evaluate the performances of winter wheat GUD extraction, winter wheat GUD observations
data and the corresponding average GUD from 17 × 17 pixels around the center of each ground station
for a given year were analyzed. The determination coefficient (R2), root mean square error (RMSE) and
difference between estimations and observations (Bias) were calculated. The temporal trends in winter
wheat GUD from 2001 to 2015 were estimated on pixel and regional scales using linear regression.

The time lag effects of winter wheat GUD response to climatic factors included two sections;
the first was the time lag response based on the Windowed Cross Correlation (WCC) method [50,51];
the second was the correlation between climate factors and winter wheat GUD according to the Pearson
correlation coefficient. In accordance with the studies of Wu et al. [51] and Wen et al. [52], we limited
the lagged time range to zero to three months before the month of occurrence of the multiannual mean
winter wheat GUD at the regional and pixel scales, respectively. Moreover, to investigate the time
lag effects of climatic factors on winter wheat GUD, we first calculated the first-difference time series
(i.e., the value of every year minus the value in the first year) for winter wheat GUD (∆GUD) and the
corresponding climate factors (∆Tm, ∆TP, ∆Tmin, ∆Tmax) to get rid of non-climatic influences, such as
crop management [53,54].

The WCC model is as follows:

∆GUD = kn ∗ ∆Tm(n) + ε (0 ≤ n ≤ 3) (4)

∆GUD = kn ∗ ∆TP(n) + ε (0 ≤ n ≤ 3)) (5)

∆GUD = kn ∗ ∆Tmin(n) + ε (0 ≤ n ≤ 3) (6)

∆GUD = kn ∗ ∆Tmax(n) + ε (0 ≤ n ≤ 3) (7)

Tlag = n, when R2
n = max

(
R2

0, R2
1, R2

2, R2
3

)
(0 ≤ n ≤ 3) (8)

For each climate factor, Tlag is the lagged time interval, and kn and R2
n are the regression coefficients

and highest determination coefficients of regressions for the different lagged time range, respectively.
n represents the previous months ranging from 0 to 3, marked separately for T0, T1, T2, T3. ∆Tm(n),
∆TP(n), ∆Tmin(n), ∆Tmax(n) refers to the first-difference time series of TP and average Tm, Tmin, Tmax

with pre n months, respectively. For instance, ∆Tm(2) refers to the first-difference time series of the
average Tm from the current month to the previous two months.

Finally, we developed a multiple linear regression model between the normalized ∆GUD and
∆TP(n), ∆Tmin(n), ∆Tmin(n) to determine the asymmetry temperature and precipitation variation on
winter wheat GUD variation.

s∆GUD = An ∗ s∆Tmax(n) + Bn ∗ s∆Tmin(n) + Cn ∗ s∆TP(n) + ε (9)

where s∆GUD, s∆Tmax(n), s∆Tmin(n) and s∆TP(n) refer to normalized ∆GUD, ∆TP(n), ∆Tmin(n), and
∆Tmin(n) are based on the min-max normalization method, respectively. An, Bn and Cn are the regression
coefficient values for different climate factors. The regression with the highest determination coefficient
among the different previous months was chosen as the best fit, and the corresponding regression
coefficient was considered as the impact of the corresponding climate variable on winter wheat GUD;
the larger the absolute value, the stronger the influence. Finally, all of the statistical analyses were
performed at a significance level of 0.05 and 0.10.
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3. Results

3.1. Comparison of Winter Wheat GUD Derived from MODIS Data and In-situ Data at Selected Sites

As shown in Figure 3, the satellite-derived GUD was significantly correlated with the 99 field-observed
GUD from eleven agro-meteorological stations in the period of 2001–2009, with a determination
coefficient of 0.30 (P < 0.01). The Bias and RMSE values were approximately 13 days and
12.3 days, respectively, which indicates that the satellite-derived GUD slightly overestimated the
field-observed GUD.
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3.2. Spatial-temporal Trends of Winter Wheat GUD

3.2.1. Spatial Patterns

Multiyear average winter wheat GUD displayed clear spatial variations, with the onset of multiyear
mean GUD mostly occurring in mid-February to early-March (Figure 4a). Generally, early GUD was
found in the southwest region of the NCP, whereas later arrivals of GUD occurred mainly in the
northeastern part. The regions with GUD from DOY 50 to 60 accounted for approximately 46.84%
of all pixels, which were widely distributed in the southern area of the NCP. A similar southwest to
northeast trend was also found in the standard deviations of GUD, which were generally between 6
and 9 days (63.36%), except for some lower values in the southeast parts. Additionally, a significantly
positive relationship between the multiyear average GUD and the local latitude at one-degree intervals
was detected on the regional scale, which revealed that the onset of GUD occurs 2.65 days later for
each 1◦ rise in latitude (Figure 5). Moreover, the multiyear mean GUD was shown to be significantly
related with the local elevation at 100-m steps, indicating that for every 1000 m increase in elevation,
the advent of GUD was delayed by 0.1 days.
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NCP region are shown in Figure 7. It The advance of GUD was extensively observed across more 
than 63.57 % of all pixels from 2001 to 2015, which were mainly focused on the southwest and central 
parts of NCP; however, most of them were not significant (Figure 7b), with about 8.62% of all pixels 
being statistically significant, i.e., at the P < 0.05 level. In contrast, areas towards the eastern parts of 
the NCP exhibited a notable delayed trend, accounting for 36.40 % (3.20 % was significant) of the total 
area, especially in the north part of Jiangsu Province, with GUD delayed by up to 2 days/year.  
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Figure 5. The latitudinal (a) and elevational (b) shifts in multiyear averaged GUD. The bottom and top
edges of each blue box indicate the 25th and 75th percentiles, respectively. The horizontal red line in
each blue box represents the median values. The black square in each blue box represents the mean
values. The black whiskers extend to the 1.5 times the interquartile range. Red crosses mean outliers.
The black texts in the upper corner present the slope (S) and significance (P) of the corresponding
linear regression.

3.2.2. Variation

At a regional scale, winter wheat GUD for NCP showed no significant temporal trend
(1.4 days/decade) during the period from 2001 to 2015, but sharply advanced after 2010, with
an overall rate of −2.82 days/year (P < 0.05) (Figure 6). Spatially, the interannual variations in mean
GUD for the NCP region are shown in Figure 7. It The advance of GUD was extensively observed
across more than 63.57% of all pixels from 2001 to 2015, which were mainly focused on the southwest
and central parts of NCP; however, most of them were not significant (Figure 7b), with about 8.62% of
all pixels being statistically significant, i.e., at the P < 0.05 level. In contrast, areas towards the eastern
parts of the NCP exhibited a notable delayed trend, accounting for 36.40% (3.20% was significant) of
the total area, especially in the north part of Jiangsu Province, with GUD delayed by up to 2 days/year.
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In contrast, the variation characteristic from 2010 to 2015 was also investigated in order to gain
a better understanding of GUD variations. As shown in Figure 8, 98.98% of all pixels showed an
advancing trend. Areas with GUD which was significantly advanced (52.03% of all pixels) mainly
occurred in the southwest to northeast parts of the NCP, and these GUD advances were greater in the
areas closer to the central and northeast parts of the NCP, at a rate of more than 3 days/year (p < 0.05).
In addition, most of the southeast region experienced a slight advance, ranging from 0 to 3 days/year,
but this was not significant (p > 0.05) (Figure 8b).
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Figure 6. Interannual variations of regional GUD for 2001–2015. The bottom and top edges of each
blue box indicate the 25th and 75th percentiles, respectively. The horizontal red line in each blue box
represents the median values. The open black square in each blue box represents mean values. The
black whiskers extend to the 1.5 times the interquartile range. Red crosses mean outliers. The black
dot line is GUD trend during the period of 2001–2015, and the black texts in the upper left corner
present the corresponding slope (S) and significance (P). The red dot line is GUD trend during the
period of 2010–2015, and the red texts in the upper left corner present the corresponding slope (S) and
significance (P).
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3.3. Time Lag Effects of Winter Wheat GUD Responses to Climatic Factors

3.3.1. Interannual Variations of Climatic Factors

Figure 9 shows that the interannual trends of preseason temperature decreased, albeit in
a statistically insignificant manner, during the period of 2001–2015, but almost significantly increased
during the period of 2010–2015 (P < 0.10). In general, during the period of 2010–2015, the preseason
Tm of T0, T1 T2 and T3 increased by 0.44 (p = 0.05), 0.44 (p = 0.06), 0.42 (p = 0.07) and 0.36 (p = 0.07) ◦C
year−1, respectively. Tmin also experienced an obvious increase in all the preseason, at P < 0.10 level,
with the greatest rate of 0.41 ◦C year−1 at T1, while Tmax displayed a larger rising slope that only reached
P < 0.10 level in T0 and T1. Moreover, for regional preseason precipitation, it slightly decreased, mostly
in the preseason during the periods of 2001–2015 and 2010–2015, but only significantly decreased by
2.08 mm year−1 (P < 0.05) in T2 from 2001 to 2015 (Figure 9).
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Figure 9. Variations of the different preseason Tm, TP, Tmax, Tmin for the winter wheat area in NCP over
the study period. (a–d) indicate T0, T1, T2, and T3, respectively. The texts in the upper right corner of
each figure present the slope (S) and significance (P) of the linear regression.

3.3.2. Time Lag Effect of Climatic Factors on Winter Wheat GUD

Table 3 shows the time lag effects of the winter wheat GUD responses to climate factors on
a regional scale. In particular, GUD gradually reached the greatest correlation with Tm in T3, which
suggests that winter wheat GUD has a 3-month lag relative to mean temperature. Similarly, there was
a consistent time lag response to Tmax and Tmin, but the relationship between GUD and Tmax was much
stronger than that of Tmin. Additionally, GUD did not exhibit a significant time lag effect with TP, but
was slightly negatively correlated to TP in T0, and positively related with TP in T1–T3, especially in
T2, indicating that the winter wheat green-up was not primarily prompted by the precipitation of the
current month, but rather, that of the previous two months.

Table 3. The time lag effects of GUD responses to climatic factors for 2001–2015 on a regional scale.

Climate Factors
Determination Coefficient (R2)

T0 T1 T2 T3

Tm 0.17 0.19 0.28 0.46**
TP 0.06 0.003 0.05 0.008

Tmin 0.16 0.14 0.17 0.35*
Tmax 0.13 0.20 0.31* 0.44**

* indicates significance at the 0.05 level, ** indicates significance at the 0.01 level.

The spatial pattern of the time lag effects of winter wheat GUD responses to the four climatic
factors was shown in Figure 10. In general, the GUD for 78.57% of the total pixels showed a 3-month
time lag effect related to Tm. Furthermore, 45.26% of the total area was significant, revealing that the
GUD in most parts of the NCP was primarily influenced by Tm in previous months However, in some
parts of central and southern NCP, and especially in southern NCP (1.65% of all pixels were significant),
the GUD did not exhibit a time lag effect to Tm, and was positively related to Tm in the same month
(Figure 10a). This indicates that Tm could strongly inhibit winter wheat greening in the same month in
the relatively high temperature region, possibly because temperature increases cause drought and
promote soil moisture evaporation, thus inhibiting winter wheat growth.

With respect to TP (Figure 10b), the results revealed that approximately 37.41% of all pixels (8.21%
of all pixels were significant) did not show time lag effects, and were negatively affected by TP, which
was mainly located in the northern NCP. In the regions with relatively southern parts, the response of
the GUD to TP showed there was a time lag effect of one or two months, which accounted for 23.69%
and 26.29% of all pixels (3.74% and 5.26% of all pixels were significant, respectively), respectively.
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In addition, similar patterns to Tm were found in the time lag effects of GUD responses to Tmin and
Tmax. However, notably, most of the GUD in relatively central and northern areas of the NCP showed
the greatest response to Tmin in T1, making up 24.08% of all pixels, with more than 40% of them being
significant (Figure 10c,d). Moreover, the time lag of winter wheat in the northern region to Tmax was
approximately 2 months. This indicated the demands of winter wheat growth for temperature increase
in the relatively high latitude regions of the NCP.
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Figure 11 shows the climate contributions to winter wheat GUD by using the determination 
coefficients of the multiple linear regression models. The result illustrated that if the lag effect was 
ignored, only 39.63% of all pixels GUD could be significantly explained by the three climatic factors, 
i.e., those which were mainly located in north area (Figure 11a,b). However, considering the time lag 
effects, the explanation area increased by 41.20 % (i.e., about 55.96 % of the winter wheat region). On 
the other hand, the explanation ability of these climate factors on the GUD also improved 
substantially. For example, the explanation ratio increased by 0–15 % over 28.25 % of the pixels, by 
15–30 % over 9.18 % of the pixels, and by more than 30 % across 2.35 % of the pixels, respectively 
(Figure 11b). This indicated that consideration of winter wheat GUD time lag effects to climatic 
factors are most important for modelling predictions. 
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Figure 10. GUD time lag responses to Tm, TP, Tmin, Tmax (a–d) and its relationship (e–i), respectively.
Areas with no statistical significance (P < 0.05) are depicted in the corresponding color with 60%
transparency. The texts in the upper left corner of each left figure present the percentage of lag time (T0,
T1, T2, and T3) (P < 0.05, percentage of significant lag time in parentheses). The texts in the upper left
corner of each right figure present the percentage of positive (P) and negative (N) correlations (P < 0.05,
percentage of significant correlations in parentheses).

Figure 11 shows the climate contributions to winter wheat GUD by using the determination
coefficients of the multiple linear regression models. The result illustrated that if the lag effect was
ignored, only 39.63% of all pixels GUD could be significantly explained by the three climatic factors,
i.e., those which were mainly located in north area (Figure 11a,b). However, considering the time lag
effects, the explanation area increased by 41.20% (i.e., about 55.96% of the winter wheat region). On the
other hand, the explanation ability of these climate factors on the GUD also improved substantially.
For example, the explanation ratio increased by 0–15% over 28.25% of the pixels, by 15–30% over 9.18%
of the pixels, and by more than 30% across 2.35% of the pixels, respectively (Figure 11b). This indicated
that consideration of winter wheat GUD time lag effects to climatic factors are most important for
modelling predictions.
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and (b) its relative change compared with ignoring the time lag effects.
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3.4. Driving Factors for the Spatial-Temporal Changes of Winter Wheat GUD

As pointed out previously, the winter wheat GUD advanced rapidly from 2010 to 2015. Therefore,
in contrast to the above analysis, the major driving factors on winter wheat GUD variation during this
period and its influence was explored as follows. As illustrated in Figure 12b, more than 50.19% of all
pixels were primarily controlled by Tmax during the period of 2010–2015, with about 15.60% of all pixels
being significant (p < 0.05) and mainly distributed in northern central part of the NCP. In comparison,
Tmin controlled the areas mainly located in the south western and some north eastern parts of the
NCP, accounting for 2.84% of all pixels (p < 0.05, Figure 12b). The area with GUD variation generally
controlled by TP was sporadically scattered across the central and southern regions. Interestingly, the
impact of TP change on GUD was negative over the central region, but positive across some of the
southern part (Figure 12a).
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Figure 12. Spatial distribution of multiple regression coefficient between GUD and climatic factors (a)
and main climate-driven factors to GUD (b) during the period of 2010–2015. Percentage of positive (P)
and negative (N) correlations and corresponding significant correlations (P < 0.05, in parentheses) are
shown in Figure 12a. Percentage of different major driving factors (Tmin, Tmax, and TP) controlling area
and corresponding significant area (P < 0.05, in parentheses) are shown in Figure 12b.

4. Discussion

4.1. Winter Wheat GUD Extraction Algorithm

Our evaluation was shown to slightly overestimate the field-observed winter wheat GUD. This
difference may be caused by two factors, i.e., the differences between winter wheat GUD definitions
and the spatial resolution, as addressed in other studies [26,47,49]. On one hand, the field-observed
winter wheat GUD is defined as the date when the leaves begin to turn green after winter dormancy,
and when the length of the new leaves reaches 1–2 cm, while the satellite-derived winter wheat GUD is
calculated based upon the maximum curvature, which could be later in theory. On the other hand, the
determination coefficient (0.45) between the field-observed winter wheat GUD and the satellite-derived
winter wheat GUD of the nearest pixel, for example, was larger than that between the field-observed
winter wheat GUD and the mean satellite-derived winter wheat GUD of the near 17 × 17 pixels
(0.19) in the Xinxiang agro-meteorological station. However, the opposite was true at the Huimin
agro-meteorological station (the determination coefficients were 0.25 and 0.33, respectively); therefore,
spatial heterogeneity could also result in this discrepancy. Additionally, the results exhibited a better
relationship than that reported in previous studies [23,27], which was probably related to the fact that
we did not artificially limit the period from January to July to calculate the cumulative EVI, instead of
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the period from January to the time of minimum EVI occurring in the early summer. Of course, it could
also be partly caused by the different temporal and spatial resolution [27,48]. These findings indicated
that our algorithm was suitable to investigate the GUD variation for winter wheat over the NCP.

4.2. Interannual Variations of Winter Wheat GUD

It has been widely reported that the spring GUD generally advanced in temperate and cold
regions in the last two decades of the twentieth century [41,42,55], specifically, by 2.8 days/decade over
the Northern Hemisphere [42], 3 or 4 days/decade in Eurasia or North America [56], and 8 days/decade
across temperate zone of China [41]. However, our analyses found that winter wheat GUD over the
NCP revealed a slight advancing trend of 1.4 days/decade during the period of 2001–2015 (P = 0.61).
The discrepancy may be related to the global warming slowdown in the 2000s [57–59] which was
associated with the weakened spring GUD advance signals [23,41]. Another possible reason was that
global warming comes with a loss of chilling, which may counteract the advance of leaf unfolding
in response to warming [60,61]. Recently, Liu et al. [27] showed that winter wheat GUD of NCP
was delayed by 4.3 (P = 0.15) or 6 (P = 0.08) days/decade from 1999–2013 based GIMMS NDVI and
SPOT–VGT NDVI, which seemed slightly out of accordance with our result. However, the difference
was partly related to the study period; if we focused on the period of 2001–2013, our estimate of
winter wheat GUD variation (2.2 days delay per decade, P = 0.53) was a little bit lower than that of
Liu et al. [27]. Additionally, this discrepancy could also be attributed to the comparison between winter
wheat GUD trends with and without calibration of land use changes, and was likely caused by the
spectral signal from vegetation type turnover in the time series. Therefore, careful calibration of land
use and cover change impacts is necessary to reasonably estimate vegetation phenology variations.

Furthermore, our results also provided more details of winter wheat GUD changes from the recent
global surface warming slowdown to the record heat in the extreme El Nino year [62]. From 2010 to
2015, a significantly widespread advance trend in winter wheat GUD appeared over most of the NCP,
with a mean rate of about 4 times that of temperate zone in China in the period of 1982–1999 [41]. The
dramatical GUD change highlighted the necessity for improving our mechanical understanding of the
interactions between phenology and food production to ensure regional food security and to cope
with climate change, because a change in spring phenology could not only influence the structure and
function of the ecosystem, but could also feedback on the atmosphere [17,18].

4.3. Major Driving Factors on Winter Wheat GUD

Temperature has been widely recognized as a major climatic factor of spring vegetation GUD in
temperate and boreal regions [31–33]. An increase in accumulation temperature during the preseason
may result in an advance of vegetation emergence [42]. Our results confirmed the importance of
temperature in influencing winter wheat GUD. Firstly, in our study, the latitudinal shift in winter
wheat GUD was a 2.65-day advance for each 1◦ latitudinal decrease, which was similar to the previous
findings for China [26] and North America [63], where the onset of GUD exhibited a shift of 2.59 days
and 2.17 per latitude degree. Secondly, accompanying an obvious increase in preseason temperature,
winter wheat GUD demonstrated significant advance, i.e.,at a rate of −2.82 days/year during the period
of 2010–2015. Furthermore, temperature (both Tmin and Tmax) was the major driving factor of winter
wheat GUD, accounting for 69.86% of all pixels, with about 18.44% of all pixels being significant.
However, interestingly, the asymmetric impacts of Tmin and Tmax on winter wheat GUD was obvious
in the NCP; this may be associated with the efficient heat requirement of growing degree days, the
photoperiod and the confounding effects of water availability [31,32]. Further experimental studies are
needed to identify the physiological mechanisms underlying the asymmetric impacts of Tmin and Tmax

on winter wheat GUD.
In contrast to temperature, our results also indicated that about 4.85% of winter wheat GUD

was significantly dominated by preseason precipitation, but that its impact differed among regions.
For instance, the onset of winter wheat GUD over the southern area was postponed by an increase
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of precipitation, whereas such precipitation appeared to cause an advanced trend for parts of the
northern region. These contradictory patterns may be related to the local environment [24,27,41].
Compared with southern area in the NCP, the northern part mainly appeared under conditions of
low precipitation, in which the intensity and frequency of droughts in spring and winter were the
main limits for winter wheat growth [64]. On the other hand, increasing precipitation in the southern
area with relatively abundant rainfall was usually accompanied by an increase in clouds, and thus,
a reduction in incoming solar radiation and temperature [41]. Furthermore, it should be noted that
winter wheat GUD in some areas was neither mainly determined by mean maximum or minimum
temperatures nor by total precipitation, revealing that variations in winter wheat phenology are
possibly driven by other environmental or agronomic factors, such as solar radiation [14], crop type,
planting, and irrigation [13,15].

4.4. Diverse Time Lag Effects of Winter Wheat GUD Response

The time lag response of vegetation growth to climate change has been widely reported in
terrestrial ecosystem studies [65–67]. Based on NDVI data, Wu et al. [51] found that the average
explanation of climatic factors to vegetation growth will increase from 52.8% to 63.52% globally when
time lag effects are considered. If the cumulative climate effect is considered, the explanatory power
would be approximately 3.35% higher [52]. Similarly, our results indicated that not only the explanation
ability of the three climate factors on winter wheat GUD can be relatively improved by 0–77%, but also
that the explanation area could increase by 41.20% when the preseason climate effect was considered,
which suggests that vegetation phenology response studies should be improved by taking into account
of the time lag effects of climatic factors on vegetation.

Moreover, our results revealed that the time lag response of winter wheat GUD to climate factors
was site. and climatic parameters-dependent. In most of the NCP, winter wheat GUD was negatively
determined by the mean temperature in the previous 3 months, which was consistent with previous
findings [41,42,68]. However, winter wheat GUD in the middle of southern parts was mainly positively
restricted by the mean temperature in the same month. Meanwhile, as illustrated in Figure 10b,f, the
total precipitation had a remarkable zero-month lag effect on winter wheat GUD in the northern region,
whereas a two-month lag dominated in the southern area. This situation may be the result of differences
in the respective growth environments. For example, in the northern region with low precipitation
and low temperatures, temperature increases in the preseason could prompt heat accumulation to
trigger spring leaf onset and enhance activities of photosynthetic enzymes, thus advancing the onset
dates of vegetation green-up [32,69], but its related water stress may inhibit vegetation growth to
some extent [70]. This is a possible reason why winter wheat GUD was highly positively correlated
with precipitation in this region. By contrast, the relatively weaker precipitation in the previous two
months (Figure S5) could reduce soil water content, which would partly or totally offset the advancing
effects of temperature on the GUD in the southern area (Figure 10b,f). Additionally, further analyses
showed that the time lag effects of winter wheat GUD response to maximum temperatures occurs one
month earlier than that of minimum temperatures in some parts of northern NCP; this could be partly
attributed to maximum rather than minimum temperatures more efficiently fulfilling the growing
degree days requirement, which triggers leaf onset in early spring, when minimum temperatures are
still below the threshold [32]. This result may provide valuable information that could be used to
improve the performance of the current global carbon cycle models.

However, the relationship between vegetation and climate is extremely complicated owing to the
non-linear responses of vegetation to climate change and their spatial heterogeneity [71–73]. Therefore,
applying other approaches instead of linear regression to identify the relative contributions of climate
factors on winter wheat GUD should be undertaken in the future.
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5. Conclusions

In summary, we analyzed the time lag effects of winter wheat GUD responses to climatic factors
using MODIS EVI 8-day data and monthly climate data from 2001 to 2015 across the North China
Plain. Our results showed that no significant trend in the green-up date averaged over NCP for the
period of 2001–2015, but, interestingly, we found a strongly significant advance during the period
of 2010–2015, at a rate of −2.82 days/year (P < 0.05), with a widespread advancing trend across
the southwest to northeast part of the NCP (52.03% of all pixels). The time lag response of winter
wheat GUD to climate factors was site- and climatic parameters-dependent. In general, winter wheat
GUD negatively responded to temperature with a time lag of about 3 months in most parts of NCP,
whereas in some of southern parts, it showed a zero-month lagged response. Meanwhile, total
precipitation had a remarkable zero-month lag effect on winter wheat GUD in the north region, but
two lagged months dominated in the southern area. When the time lag effects of climatic factors
were considered, their explanation ability significantly increased by 0–77%, and the explanation
region rose by approximately 41.20%, indicating that considering time lag effects could provide
a better understanding of the interactions between GUD and climatic factors. Additionally, our results
confirmed the importance of temperature on winter wheat GUD, although the Tmax and Tmin effect
showed marked spatial heterogeneity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/13/1593/s1,
Figure S1. The workflow for winter wheat area identification. Figure S2. A sample of winter wheat EVI time series
during growth cycle in NCP and its sixth-order polynomial smooth. Figure S3. Random points and validation
sample transect for winter wheat extraction in this study. Figure S4. The true color synthesis map over the sample
transect during December 2014 to January 2015 based on Landsat 8 imagery and goolge earth engine platform.
Figure S5. Spatial distribution of TP trend (a) and its significance (b) for the preseason T2 during 2001–2015.
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