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• The RCCmax algorithm has good perfor-
mance in capturing the spatiotemporal
variation of winter wheat GUD over
the NCP.

• Considering the non-identical lag time
effects of hydrothermal factors is of im-
portance for revealing GUD response.

• Sensitivity of GUD to changing climate
could be amplified by the positive feed-
back effect from GPP variation.
⁎ Correspondence to: J. Gao, Key Laboratory of Land Su
Beijing 100101, China.
⁎⁎ Correspondence to: S. Ma, School of Surveying and La

E-mail addresses: gaojiangbo@igsnrr.ac.cn (J. Gao), ma

https://doi.org/10.1016/j.scitotenv.2020.138342
0048-9697/© 2020 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 20 October 2019
Received in revised form 17 March 2020
Accepted 29 March 2020
Available online 1 April 2020

Editor: Zhibin Sun

Keywords:
North China Plain
Winter wheat
Spring phenology
Plant productivity
Hydrothermal variation
Spring green-up date (GUD) is a sensitive indicator of climate change, and of great significance to winter wheat
production. However, our knowledge of the chain relationships among them is relatively weak. In this study,
based on 8-day Enhanced Vegetation Index (EVI) data from Moderate Resolution Imaging Spectroradiometer
(MODIS) from 2001 to 2015, we first assessed the performance of four algorithms for extracting winter wheat
GUD in the North China Plain (NCP). A multiple linear regression model was then established to quantitatively
determine the contributions of the time lag effects of hydrothermal variation on GUD. We further investigated
the interactions between GUD and gross primary production (GPP) comprehensively. Our results showed that
the rate of change in curvature algorithm (RCCmax) had better performance in capturing the spatiotemporal var-
iation of winter wheat GUD relative to the other three methods (Kmax, CRmax, and cumCRmax). Regarding the
non-identical lag time effects of hydrothermal factors, hydrothermal variations could explain winter wheat GUD
variations for 82.05% of all pixels, 36.78% higher than that without considering the time lag effects. Variation in
GUD negatively correlated with winter wheat GPP after green up in most parts of the NCP, significantly in
35.75% of all pixels with a mean rate of 1.89 g C m−2 yr−1 day−1. Meanwhile, winter wheat GPP exerted a
strongly positive feedback on GUD in N82.42% of all pixels (significant in 28.01% of all pixels), characterized by
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a humped-shape pattern along the long-term average plant productivity. This finding highlights the complex in-
teraction between spring phenology and plant productivity, and also suggests the importance of preseason cli-
mate factors on spring phenology.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Spring green-up date (GUD) refers to the periodic timing of recur-
ring biological cycles, and is considered extremely sensitive to climate
change (Schwartz et al., 2006; Cong et al., 2012). Over recent decades,
the advancement of GUD has been examined broadly across North
America, Europe and East Asia using in situ observations (Wolfe et al.,
2005; Fu et al., 2014; Ge et al., 2015), satellite data (Jeong et al., 2011;
Park et al., 2016) and phenological models (Han et al., 2018; Liu et al.,
2018a) in the context of climate change. Although the predominant
processes affecting GUD vary substantially among different regions
(Jeong et al., 2011; Piao et al., 2019), variations in GUD over the North-
ern Hemisphere could be mostly attributable to the preseason temper-
ature and precipitation (Jeong et al., 2011; Cong et al., 2013; Fu et al.,
2015). For example, a 1 °C increase in preseason daytime temperature
would advance leaf unfolding dates by 4.3–4.7 in the United States
and Europe (Piao et al., 2015), and an increase in 10 mm precipitation
may advance GUD at least 1 day in the southwestern plateau (Shen
et al., 2015). However, most of these studies focused mainly on natural
ecosystems (Jeong et al., 2011; Shen et al., 2014; Fu et al., 2015; Shen
et al., 2016). Although earlier researchers have presented several case
studies on the spatiotemporal pattern of crop GUD and diagnosed the
responses of GUD to preseason hydrothermal variations (Liu et al.,
2017; Wang et al., 2017b; Guo et al., 2019), we have not yet acquired
an explicit understanding of the combined effect of preseason tempera-
ture and precipitation variations in regulating GUD dynamics due to the
non-uniform lag time effects of these factors on GUD variation empha-
sized in recent studies (Shen et al., 2016; Rossi and Isabel, 2017; Xia
et al., 2018).

The importance of GUD shifts on annual gross primary production
(GPP) variability is evident (Piao et al., 2007; Richardson et al., 2010).
Combined with photosynthetic capacity and the end of the growing sea-
son, it successfully determined vegetationprimary production, explaining
N90% of the variation in annual GPP in most areas of North America (Xia
et al., 2015; Zhou et al., 2017). However, the relationships between GUD
and annual GPP variability were heavily dependent on locations and veg-
etation types (Zhou et al., 2016). For instance, GUDpositively contributed
to annual GPP variability for 87.9% of North America, whereas its contri-
bution was negative in most of the northern North American plains
(Zhou et al., 2017). Hence, in view of the different responses to GUD,
the possible effects of GUD on the variability of GPP across regional eco-
systems should be further investigated, which is of great significance to
systematically understand the biological mechanisms involved in how
vegetation respond to climate change. Furthermore, researchers have
suggested that any change in GPP, as the largest carbon flux, would
greatly affect the ecosystem carbon balance and thus feeds back to vege-
tation growth (Badgley et al., 2017;He et al., 2018a; Yao et al., 2018). Nev-
ertheless, to our knowledge, whether GUD-induced changes in plant
productivity can in turn feed back to GUD has not been investigated
widely.

Compared with in situ observation, remote sensing provides a com-
pensatory and effective way to monitor large-scale changes in vegeta-
tion GUD (Cong et al., 2012; Piao et al., 2019). However, at present,
considerable uncertainties remain in GUD derived from satellite data.
First, it has been suggested that the variation in satellite-derived GUD
differs dramatically among different satellite datasets due to band-
widths, sensors and temporal resolutions (Ahl et al., 2006; Zeng et al.,
2011; Zhang et al., 2013; Shen et al., 2014; Liu et al., 2017). Furthermore,
even when using the same dataset, significant variations in estimated
GUD still occur. This discrepancy may probably relate to the filter func-
tion and extraction algorithms (White et al., 2009; Cong et al., 2013;
Shen et al., 2014). By comparing across an ensemble of 10 methods,
White et al. (2009) found that GUD estimations for individual methods
showed variation anomalies of up to±60 days. Cong et al. (2012) dem-
onstrated that across five different methods about 24% of temperate
China showed a standard deviation for GUD larger than one month.
However, whichmethod performs better in terms of specific vegetation
types remains unknown because of a lack of necessary and rigorous val-
idation (Shen et al., 2015; Liu et al., 2017). Recently, numerous studies
have indicated that Zhang's logistic method is increasingly considered
a suitable choice in regional and global phenology research (Zhang
et al., 2003; Zhu et al., 2012; Shen et al., 2014; He et al., 2018b). Never-
theless, some studies have argued that the cumulative logistic method
may be more appropriate because it can overcome the misinterpreta-
tion of non-ideal S-shaped vegetation growth (Hou et al., 2014; Wu
et al., 2016). However, these methods have yielded inconsistent results
in GUD estimation accuracy in different studies (Wu et al., 2016; Liu
et al., 2017). Thus, a comprehensive comparison of different methods
in GUD extraction is of importance to accurately quantify the response
of vegetation phenology.

Therefore, the primary objectives of this studywere to: (1) present a
comprehensive assessment of different GUD extraction algorithms for
winter wheat based on 8-day EVI data, as well as ground observed
GUD in the North China Plain (NCP); (2) quantify the combined effect
of hydrothermal variation on winter wheat GUD by considering the
non-identical lag time response of GUD to hydrothermal variables;
(3) investigate the interactions between winter wheat GUD and GPP.
The results may aid in diagnosing the responses of vegetation phenol-
ogy to regional climate factors and further understanding in the linkage
between vegetation structure and function.

2. Materials and methods

2.1. Study area

TheNCP in this study includes themunicipalities of Beijing and Tian-
jin, and provinces of Shandong, Hebei, Shanxi, Henan, Anhui and
Jiangsu, which is highly consistent with that of Liu et al. (2017)
(Fig. 1). The climate of this region is a typical temperate monsoon cli-
mate, characterized by a hot and rainy summer and a cold and dry win-
ter, with the mean annual average air temperature and mean annual
precipitation decreasing from southeast to northwest. The NCP is one
of the major winter wheat production bases in China, dominated by a
typical double cropping system of rotational winter wheat and summer
maize cultivation (Tao et al., 2015).Winter wheat in this area is sown in
late September to early October and harvested between late June and
early July of the following year, with the total life cycle of 230 to
260 days.

2.2. Datasets

The enhanced vegetation index (EVI) is less affected by soil back-
ground and atmospheric noise, while remains sensitive to change in
high canopy region where the normalized difference vegetation index
(NDVI) easily becomes saturated (Huete et al., 2002; Xiao et al., 2003).
In this study, we used EVI instead of the more widely used NDVI to



Fig. 1. Location of the North China Plain and spatial distribution of the 11 agrometeorological
stations.
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infer GUD for winter wheat. EVI dataset was obtained from the Center
for Spatial Analysis, University of Oklahoma, calculated from 8-day
MOD09A1 reflectance data (Zhang et al., 2017). In this dataset, missing
observations and low-quality data (affected by atmospheric conditions
such as clouds and aerosols) were rigorously addressed based on the
MOD09A1 quality assurance layer and the Best Index Slope Extraction
algorithm, and gaps were filled by linear interpolation and smoothed
using a Savitzky-Golay filter (Zhang et al., 2017; Chang et al., 2019).
This dataset, which has spatial resolution of 500m and temporal resolu-
tion of 8-day from 2000 to 2015, could providemore temporal informa-
tion depicting winter wheat growth.

The GPP product was the latest generation of the MOD17A2H GPP
product version 6 (https://lpdaac.usgs.gov/products/mod17a2hv006),
a cumulative 8-day composite of values with 500 m spatial resolution,
produced after significant revisions of the calibration approach relative
to previous versions (Lyapustin et al., 2014; Chen et al., 2019). Although
some potential uncertainties from various inputs still exist (Zhu et al.,
2016; Wang et al., 2017a; Wang et al., 2019), MOD17A2H GPP has
been demonstrated to agree relatively well with annual GPP derived
from flux towers in China (Zhu et al., 2016; Wang et al., 2019), and to
be most effective at estimating the dynamics of GPP at some cropland
sites in the NCP (Zhu et al., 2016) and other places (Wang et al.,
2017a). It has also been used widely in global and regional carbon
cycle estimations.

To analyze the relationships between hydrothermal variation and
winter wheat GUD, spatial meteorological data including monthly
mean maximum air temperature (Tmax), mean minimum air tempera-
ture (Tmin) and total precipitation (TP) data from 2001 to 2015 with a
resolution of 1 × 1 km, were generated from 604 meteorological sta-
tions across China using AUSPLINE software (Guo et al., 2019). The EVI
and GPP data were resampled at a spatial resolution of 1 × 1 km using
ArcGIS software, in accordance with the monthly meteorological data.

Land use maps for two periods (2000 and 2015) with a spatial reso-
lution of 1 × 1 km, and were obtained from the Resources and Environ-
ment Data Center, Chinese Academy of Sciences (http://www.igsnrr.
cas.cn). First, land use maps were resampled for consistent resolution
with the monthly meteorological data using ArcGIS software. We then
used the cropland map for 2015 to mask the cropland map for 2000
and removed any changes in cropland. After that, we applied a sixth-
order polynomial function to smooth the EVI time series for the remain-
ing cropland, and winter wheat cultivation zones with a spatial resolu-
tion of 1 × 1 km were identified, mainly by applying the second-order
differencemethod for each year from 2001 to 2015. Only the successive
winter wheat plantation region during 2001–2015 was used for further
analysis (Guo et al., 2019).

The winter wheat GUD observation data for the period of
2001–2009, recorded at the national agrometeorological stations, was
collected from the Chinese Meteorological Administration (CMA). To
obtain valid observation GUD from these raw records, we performed
the following criteria: (1) stations with winter wheat GUD records be-
fore early January or after May were excluded because it is impossible
that winter wheat greens up in the NCP (Guo et al., 2016; Wang et al.,
2017b); (2) stations located far from the winter wheat cultivation
area were dropped. Accordingly, a total of ninety nine winter wheat
GUD records from11 agrometeorological stationswere selected (Fig. 1).

2.3. Determination of GUD

In this study, four methods were employed to determine winter
wheatGUD: RCCmax, Kmax, CRmax, and cumCRmax. First,we attempted
to eliminate any residual contamination inwinterwheat EVI arising from
summer crop EVI in the double cropping system by defining the mini-
mum EVI occurrence time of May to early July as the end of winter
wheat growth for each pixel. Secondly, to remove the disturbances
(e.g., drought, snow) in EVI during the winter and spring seasons as
much as possible, the minimum EVI value before the maximum EVI
value during the winter wheat growth period was identified to replace
the original EVI values prior to it. After that, we determined winter
wheat GUD by using the following algorithms.

2.3.1. RCCmax
In this method, GUD was determined as the inflection point of a lo-

gistic fitted curve of EVI using themethod of Zhang et al. (2003). Specif-
ically, a four-parameter logistic function was first used to fit the 8-day
interval EVI data from the start of a year to the time of maximum EVI
during the winter wheat growth period. Then, GUD was defined as the
day when the rate of change in curvature (RCC) reached its first local
maximum value (Liu et al., 2017; Shen et al., 2014), as follows:

EVIt ¼ c
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where t represents day of year, EVIt is the EVI value at time t, a and b are
fitting parameters, the sum c and d is the maximum EVI, d is the mini-
mum EVI, z = e(a+bT), and T represents day of year at the daily scale.

2.3.2. Kmax
GUD in this case was calculated as follows (Guo et al., 2019; Hou

et al., 2014). First, we fitted a four-parameter logistic function to the cu-
mulative EVI (cumEVI) for the entire winter wheat growth period. Addi-
tionally, GUD was defined as the day when the curvature (K) of the
fitted four-parameter logistic cumEVI curve reached its maximum
(Eq. (4)):

cumEVIt ¼
Xt

i¼1

EVIi ð3Þ

K ¼ −
BCZ 1−Zð Þ 1þ Zð Þ3

1þ Zð Þ4 þ BCZð Þ2
h i3=2 ð4Þ

where t represents the day of year, cumEVIt is the cumulative EVI from
the start to time t at 8-day temporal interval, A and B are fitting param-
eters of the four-parameter logistic function fitted cumEVI, the sum C

https://lpdaac.usgs.gov/products/mod17a2hv006
http://www.igsnrr.cas.cn
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and D is themaximum cumEVI, D is theminimum cumEVI, Z=e(A+BT),
and T represents day of year at the daily scale.

2.3.3. CRmax and cumCRmax
In these methods, GUD was extracted based on the maximum

change rate (CR) of the fitted daily EVI (Shen et al., 2014). However, un-
like previous studies (Cong et al., 2012; Jeong et al., 2011), we deter-
mined GUD as the day when the change rate of the four-parameter
logistic function-fitted EVI (CRmax) and the four-parameter logistic
function-fitted cumEVI (cumCRmax) reached their direct maximum,
following Liu et al. (2017):

CR ¼ EVITþ1−EVIT
EVIT

ð5Þ

where EVIT (cumEVIT) represents the four-parameter logistic function-
fitted daily EVI (cumEVI) at day T of the year.

2.4. Statistical analysis

Considering some extreme variation in GUD due to abrupt EVI
curves, we first identified the extreme outliers of the derived GUD
using the interquartile range method (IQR) for each method (Barbato
et al., 2011); these were defined as any value greater than Q3 plus
3 × IQR or less than Q1 minus 3 × IQR of the time series GUD for each
pixel during 2001–2015. Then, the extreme outliers of GUD and the cor-
responding climate variables from 2001 to 2015 were removed in the
next analysis. We used the determination coefficient (R2), root mean
square error (RMSE), and difference between estimations and observa-
tions (Bias) to evaluate the performance of GUD extraction (mean GUD
from17×17pixels near the center of each ground station for each year)
with winter wheat GUD observations data. To explain the effects of hy-
drothermal variations on GUD, we developed a multiple linear regres-
sion model between ΔGUD and preseason ΔTmin, ΔTmax, and ΔTP at
regional and pixel scales. Here, Δ means the first-difference time series
(i.e., the difference in values from the following year to the current year)
Fig. 2. Validation of annual GUD derived from the different methods in relation to the
observed GUD for the 11 agrometeorological stations. The various red symbols represent
the 11 agrometeorological stations. The red dashed line is the 1:1 relationship.
of GUD and climate variables (Tmin, Tmax, TP), which was used to elim-
inate the non-climatic influences on GUD, such as human activity
(Lobell and Field, 2007; Zhang et al., 2016b). Furthermore, the presea-
son was determined for Tmin as the period preceding multiyear aver-
aged GUD during 2001–2015 in which ΔTmin had the largest partial
correlation coefficient (absolute value) with ΔGUD, with the preseason
ΔTmax and ΔTP set as control variables. In other words, we calculated
the partial correlation coefficients between ΔGUD and ΔTmin for previ-
ous months (ranging from 0 to 3) before the multiyear average GUD, at
1-month intervals. The candidate previousmonthwith the largest abso-
lute partial correlation coefficient was finally selected as the preseason.
The preseasons of ΔTmax and ΔTP on ΔGUD were assessed in a similar
way. The slope of the linear regression of GPP against year from 2001
to 2015was determined as the temporal trend in GPP. To further under-
stand the interannual variation in winter wheat GPP, we compared its
temporal trend for the whole GPP over the lifetime of winter wheat
(GPPW) and the cumulative GPP after GUD (GPPGUD). Furthermore, cor-
relation coefficients between ΔGUD and ΔGPPW (GPPGUD) were calcu-
lated to identify the impact of GUD on GPP, and we also determined a
correlation coefficient between ΔGPPW (GPPGUD) of the previous year
and ΔGUD to quantify the feedback of GPP on GUD. It should be noted
that the extreme outliers of GUD and the corresponding GPP from
2001 to 2015 were also removed in this correlation analysis. All of the
statistical analyses were performed at a significance level of 0.10.

3. Results

3.1. The performance of satellite-derived GUD

As illustrated in Fig. 2, all methods captured the observed winter
wheat GUD across the 11 agrometeorological stations during
2001–2009, varying in their predictive strength. In general, GUD based
on the Kmax and CRmax algorithms was obviously overestimated
when compared with that from the RCCmax and cumCRmax methods.
This was especially true for the CRmax algorithm. GUD predicted from
the cumCRmax algorithm showed the lowest RMSE (7.08 days), Bias
(−1.13 days) and R2 (0.33), whichmeans that themodel could explain
only 33% of the observed GUD. By contrast, GUD based on the RCCmax
method presented a better correlation with the observed GUD (R2 =
0.47, p b 0.01), but with a little larger RMSE (8.27 days) and Bias
(1.68 days). Additionally, Fig. 3 showed that mean GUD derived from
the RCCmax algorithm showed good performance in capturing the in-
terannual variation and spatial pattern of the mean observed GUD
over the agrometeorological stations, with both R2 values N0.60,
whereas mean GUD calculated from the cumCRmax algorithm did not
match well with the interannual variation of mean observed GUD
(R2 = 0.26). Moreover, strong relationships between GUD from the
RCCmax algorithmand the observedGUDwere found for all stations ex-
cept Liaocheng. We then use GUD derived from the RCCmax algorithm
for subsequent analysis.

3.2. Effect of hydrothermal variation on the spatiotemporal variation in
GUD

The regressionmodel demonstrated good performance in explaining
the interannual GUD variation over the NCP (Fig. 4). The GUD for 82.05%
of the total pixels could be significantly explained by the three climatic
factors, and the explanation ability ranged up to 96.93% for some re-
gions. In particular, the explanation ability in the ranges of 40–60%,
60–80% and N80% accounted for about 26.43%, 42.44%, and 13.18% of
the total pixels, respectively (Fig. 4b). Additionally, the explanation
area was approximately 36.78% greater than that without considering
the time lag effect of hydrothermal variation (Fig. S1a), and about
1.37% larger than the explanation area when the time lag effects were
considered, but the remarkable differences in lag time of hydrothermal
factors were ignored (Fig. S1b).
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3.3. Interaction effects between GUD and plant productivity

The multi-year mean GPPW generally exhibited an increasing trend
from the north area to the south area, i.e., from ≤300 g C m−2 yr−1 in
the contiguous area of Hebei and Shandong provinces to 500 g C
m−2 yr−1 in the southern region of Jiangsu and Anhui provinces, with
a regional average of about 406.06 g C m−2 yr−1 (Fig. 5a). Furthermore,
the proportion of GPPGUD also showed a large spatial variation. For ex-
ample, in the central region of the NCP, the GPPGUD accounted for
N85% of the GPPW, but it accounted for a relatively lower (about
80–85%) amount over most of the remaining area (Fig. 5b). For the
whole study area, GPPGUD accounted for approximately 84.54%.

Average GPPW and GPPGUD over the NCP revealed a significant
(p b 0.10) increase trend during the study period, with an increase
Fig. 3. Spatial relationship between multi-year mean GUD derived from the different
methods and the observed GUD (the left column) and interannual trends of regional
mean GUD derived from the different methods and the observed GUD (the right
column) for the 11 agrometeorological stations. The red dashed line is the 1:1 relationship.
rate of 6.81 and 4.05 g C m−2 yr−2, respectively (Fig. 6). Spatially,
GPPW in about 70% of all pixels increased significantly, distributed
mostly in the central and northern parts of the area. Only about 1.94%
of all pixels showed significant decreases in GPPW, scattered mainly in
the western and eastern parts of the NCP (Fig. 7a). In comparison, the
significant increase in GUDGUD pixels (54.26%) located in the northeast-
ern and southeastern parts of theNCP,was approximately 0.6 times that
for GPPw. Areas with decreased GPPGUD were up to 14.36% of all pixels,
with 3.68% of all pixels showing significant changes (Fig. 7b).

The regional averaged GUD over the NCP was slightly negatively re-
lated with GPPW (p = 0.36) and GPPGUD (p = 0.12). Spatially, wide-
spread negative correlations between GUD and GPPW across the NCP
were observed for 75.31% of the total pixels, with significantly negative
correlations characterizing 24.76% of all pixels (Fig. 8a). Comparedwith
GPPW, the impact of GUD on GPPGUD was much stronger (Fig. 8b). GUD
was negatively relatedwith GPPGUD over about 88.44% of all pixels, with
significantly negative relationship in 35.73% of all pixels, locatedmainly
in the northern and central areas of the NCP, which indicates that the
advance in GUD could strongly boost winter wheat GPP after green up.

The GUD averaged over the NCP was significantly positively corre-
lated with previous-year GPPw and GPPGUD, with correlation coeffi-
cients of about 0.56 (p b 0.05) and 0.58 (p b 0.05), respectively.
Furthermore, as exhibited in Fig. 9, GUD from 83.17% of the pixels was
positively related with previous-year GPPGUD, with about 26% of all
pixels showing significant relationships (Fig. 9b); theseweremainly lo-
cated in the northwestern and central-south areas of the NCP. In con-
trast to GPPGUD, the correlation between GUD and previous-year
GPPw appeared to have a similar spatial pattern. Significantly positive
correlations between GUD and previous-year GPPw were observed in
N28.01% of all pixels. The correlation was especially stronger in most
parts of the northwestern and central areas, but it was weaker or even
reversed in some southern parts (Fig. 9a). This suggests that the previ-
ous year's total GPP during the whole winter wheat growing time is
probably critical to GUD variation in the NCP.

To analyze the relationship between GUD and previous-year GPPW
further, we calculated correlation coefficients between GUD and
previous-year GPPW along the spatial gradient of long-term average
GPPW (Fig. 10). The correlation between GUD and previous-year GPPW
increased with increases in GPPW below 350–400 g C m−2 yr−1, and
then decreased. That is, the relationship between GUD and previous-
year GPPW weakened when GPPW fell below or exceeded 350–400 g C
m−2 yr−1, implying that winter wheat GUD is most sensitive to
previous-year GPPW when GPPW is about 350–400 g C m−2 yr−1.

4. Discussion

4.1. Comparison of different methods in GUD identification

Accurately extracting crop spring phenology has been considered to
be of profound significance to our understanding of responses of vege-
tation phenology to climate change and crop production (Cong et al.,
2012; Liu et al., 2018b). The cumulative vegetation index (CVI) can ef-
fectively overcome the interference of environmental factors (Hou
et al., 2014), and GUD extraction based on CVI has been shown to per-
form better (Wu et al., 2016; Wang et al., 2017b). However, compared
with the observed 99 GUD from the 11 agrometeorological stations,
our result indicates the Kmax and cumCRmax method performed a
smaller R2 among the four algorithms. The difference may be caused
by two possible reasons. The first reason might be that natural vegeta-
tion focused by the previous studies is usually controlled by environ-
mental stresses (e.g., droughts, diseases) and often follows a non-ideal
S-shaped temporal profile (Cao et al., 2015), whereas agricultural man-
agementsmakewinterwheat growth different fromnatural ecosystems
(Fang et al., 2018). In addition, to make a well-defined S-shaped logistic
temporal profile, we removed the possible winter-spring disturbances
in EVI by using the minimum EVI value before the maximum EVI



Fig. 4. Spatial distribution of the determination coefficient (R2) of the multiple linear regression model between GUD and the preseason climatic factors by considering the non-identical
lag time effects of climate variables for the period 2001–2015 (a) and the levels of significance (b). The inset at the upper-left in (b) shows the frequency distribution of the determination
coefficient corresponding to the significant pixels indicated by the map legend in (a).
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value to replace the original values before this minimum (Guo et al.,
2019). This result provides strong evidence that the merits of a specific
method are dependent on the types of ecosystem.Meanwhile, we found
that the cumCRmaxmethod did best in estimating the spatial pattern of
winter wheat GUD (R2 = 0.70, RMSE = 2.96, and Bias = −1.13), but
was not a good method to capture the interannual variation of winter
wheat GUD. This is probably related with the cumulative EVI curve.
First, GUD estimated from the cumCRmax method was usually earlier
than those with other methods, and relatively close to the average ob-
served GUD. Second, the cumulative EVI generally had a spatial pattern
from south toward north in the NCP due to the unique hydrothermal
condition. In addition, the cumCRmax method may be problematic in
identifying GUD which should occur at later time since the change
rate tended to be smaller because of the larger cumulative EVI value at
later time.

Our result found that GUD derived from the RCCmax algorithm not
only captured the spatial distribution of winter wheat GUD, but also
matched well with its interannual variation. Moreover, GUD derived
from the RCCmax algorithm showed a stronger correlation with
Fig. 5. Spatial distribution of the mean GPPW (a) and the percentage of GPPGUD (b) over the NC
mean GPPW. The inset in upper-left in (b) denotes the frequency distribution of the GPPGUD pr
observations compared with the previous study (Liu et al., 2017). This
improvement may mainly be caused by the finer temporal resolution
of EVI data and thewell-defined S-shaped logistic temporal profile con-
structed by the data preprocessing (Guo et al., 2019). On one hand, sat-
ellite temporal resolution plays an important role in the GUD
estimations (Liu et al., 2017), the more points available in the time se-
ries, the more accurate information of vegetation growth (Ahl et al.,
2006). On the other hand, the effectiveness of the RCCmax algorithm
is hugely dependent on the S-shaped temporal profile of vegetation in-
dices (Cao et al., 2015). These findings indicate that the RCCmax algo-
rithm based on 8 day MODIS EVI is suitable for the analysis of spatial
and temporal variations in winter wheat GUD over the NCP. However,
it should be noted that the RCCmax algorithm slightly overestimated
the observed winter wheat GUD. The discrepancy can be expected be-
cause of the different definition of GUD and the classical point vs. pixel
comparison errors in remote sensing assessments (White et al., 2009),
which highlights the ground observation network with an explicit pur-
pose of satellite GUD assessment should be established to improve the
satellite estimation.
P during 2001–2015. The inset at upper-left in (a) indicates the frequency distribution of
oportion corresponding to values indicated by the map legend.



Fig. 6. Interannual variation in GPP over the NCP during 2001–2015.
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Additionally, in areaswithmissing groundmeasurements, an ensem-
ble approach using multiple methods has been suggested to be more
powerful for GUD estimation than using single method alone (Shen
et al., 2015;Wanget al., 2015), because satellite-derivedGUDdiffers dra-
matically among differentmethods (Cong et al., 2012; Shen et al., 2014).
Interestingly, our results showed GUD inferred from the cumCRmax
method presented a significant correlation with that from the Kmax al-
gorithm (R2 = 0.98), and GUD based on the RCCmax algorithm signifi-
cantly correlated with that from the CRmax algorithm (R2 = 0.87)
over the 11 agrometeorological stations from 2001 to 2009 (Fig. S2).
This argues that when an ensemble approach in the spring vegetation
green-up onset estimation is performed, reconstructing distinct satellite
derived vegetation curve is extremely necessary.

4.2. Contributions of GUD to GPP variation

Generally agreeing with the mean of nine TRENDY models (Yao
et al., 2018), we found that the winter wheat GPP showed a descending
gradient from south tonorth. This can be attributed to the colder climate
and shorter growing season in the northern region. The climate of the
southern region is relatively humid, with good thermal conditions
Fig. 7. Spatial pattern of the temporal trends inmean GPPW (a) and GPPGUD (b) from 2001 to 20
pixels (blue). The inset at upper-right shows the corresponding frequency level of significance.
positive, not significantly positive changes, respectively.
appropriate for vegetation growth. In addition, our analyses found a
strong and extensive increasing trend for annual winter wheat GPP
over the NCP during 2001–2015, with almost 70% of all pixels
experiencing a significant increase. This is generally consistent with
the results of previous studies (Ichii et al., 2017; Mo et al., 2018; Yao
et al., 2018). However, large uncertainties in the corresponding magni-
tude existed between our results and those of previous studies, which
could be related to the differences in GPP calculation model structure
and parameterization (Zhu et al., 2014; Sitch et al., 2015), the period
of investigation (Piao et al., 2007), or the precision of input data
(Wang et al., 2017a). Moreover, it probably resulted from the typical ro-
tational winter wheat and summer maize cultivation method, within
which only winter wheat was the focus in our study.

Numerous studies have documented that GPP can be consider-
ably enhanced by the prolonged vegetation growing season induced
by climatic factors (Piao et al., 2007; Richardson et al., 2010; Xia
et al., 2015). For instance, Zhou et al. (2016) found that the starting
date of the growing season was related strongly to annual GPP in-
crease, with a correlation coefficient of about 0.72 ± 0.20. Variation
in growing season onset could account for approximately 13.8 ±
13.70% of annual GPP in some regions (Zhou et al., 2017). Similarly,
our result showed that GUD variation was strongly and negatively
related to winter wheat gross primary production after greening
up, accounting for 88.44% of the total pixels (significant for 35.73%
of the total pixels). The following reasons may be responsible for
this finding. First, advanced GUD may potentially lead to larger
display of leaf area, thereby enhancing canopy interception of solar
radiation (Luyssaert et al., 2007; Richardson et al., 2009). The in-
crease in GPP could be also related to the photosynthetic capacity
of single leaves in the leaf expansion period. It has been suggested
that leaf photosynthetic capacity exhibits a dramatic increase from
spring to early summer, exerting a remarkable influence on GPP
(Muraoka et al., 2010). In addition, an alternative explanation is
that, earlier GUD usually associates with higher temperatures,
which may stimulate microbial activity and accelerate nitrogen min-
eralization, then enhance photosynthesis for the remainder of the
growing season (Richardson et al., 2010). In addition, we found a
weak positive correlations between GUD and total GPP during the
whole life cycle in some southern parts of the NCP, which could be
related to increased winter wheat growth during the overwinter
time due to climate warming, suggesting that more attention should
15. The inset at upper-left indicates pixels significant at p b 0.10 (red), and non-significant
NS, NNS, PS and NPS indicate significantly negative, not significantly negative, significantly



Fig. 8. Spatial pattern of the interannual correlations of GUDwith GPPW (a), and GPPGUD (b). Insets at upper-left indicate pixels significant at p b 0.10 (red), and thosewith non-significant
relations (blue). Insets at upper-right show the corresponding frequency. NS, NNS, PS, and NPS indicate significantly negative, not significantly negative, significantly positive, not
significantly positive relationships, respectively.
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be given to the precise response of GPP to climatic factors for the
overwinter crop.

4.3. Role of hydrothermal variation and GPP on GUD

Recently, an increasing number of studies have indicated that the re-
sponses of GUD to climate have a certain time lag (Cong et al., 2013;
Shen et al., 2014; Wang et al., 2017b; Guo et al., 2019). In general,
GUD has been shown to be most significantly related to the preseason
temperature and total precipitation at 2–3 months before the mean
GUD (Cong et al., 2013), but it exhibits a strong site and climatic param-
eter dependence (Liu et al., 2017). In our study, when time lag impacts
were considered, the three climatic factors explained GUD variation for
82.05% of all pixels; this area could be about 1.37% larger than thatwhen
considering only the identical lag time of different climate factors and
approximately 36.78% higher than when ignoring the time lag effect al-
together. This result confirmed the significant role of the time lag effect
Fig. 9. Spatial pattern of the interannual correlations between GUD and previous-year GPPW (a
those that were not significant (blue). Insets at upper-right show the corresponding frequency.
positive, not significantly positive relationships, respectively.
of climate factors in influencing GUD variation, providing us with im-
portant information for understanding climate-vegetation interaction,
and it also indicated that other factors may also play important roles
in GUD. Previous studies have suggested the spring growth initiation
of plants could be related to other biological and environmental factors,
such as photoperiod (Zohner et al., 2016), chilling requirement (Fu
et al., 2015; Cong et al., 2017), and nutrient availability (Estiarte and
Penuelas, 2015). Further experimental studies are therefore needed to
explore the physiological mechanisms underlying the impacts of these
factors on winter wheat green up date.

Additionally, our result indicated that GUD over the NCP was posi-
tively correlated with previous-year GPPw and GPPGUD for N80% of all
pixels, especially with GPPw, suggesting that previous-year GPP during
thewhole life cycle is probably critical to GUD variation in the NCP. One
possible reason for this finding is that higher GPP in the previous year
resulted in increased biomass, which subsequently provided greater or-
ganic matter input and thereby enhanced vegetation growth in next
) and GPPGUD (b). Insets at upper-left indicate pixels with significant at p b 0.10 (red), and
NS, NNS, PS, and NPS indicate significantly negative, not significantly negative, significantly



Fig. 10. Variation in correlation coefficient between GUD and previous-year GPPW along
the spatial gradient of long-term average GPPW. The bottom and top edges of each blue
box indicate the 25th and 75th percentiles, respectively. The horizontal red line in each
blue box represents the median value. The black square in each blue box represents the
mean value. The black whiskers extend to 1.5 times the interquartile range. Red crosses
indicate outliers. The inset at the right bottom shows the frequency distributions of
corresponding long-term average GPPW.
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year. As is known, winter wheat-summer maize cropping is one of the
most popular cropping systems in the NCP. In this system, winter
wheat straw is often returned to the soil by residue and no-tillage man-
agement (Zhao et al., 2015; Zhang et al., 2016a, 2016b; Zhang et al.,
2018), which could effectively alter concentrations of soil organic mat-
ter and soil nitrogen (Zhang et al., 2016a, 2016b), soil aggregate struc-
ture (Zhang et al., 2018), and microbial community (Hu et al., 2018),
effectively improving soil fertility and vegetation growth (Zhao et al.,
2019). In addition, our results showed that GUD was most sensitive to
GPPwhen thewholeGPPwas about 350–400g Cm−2 yr−1. This pattern
could be explained by the effect of soil organicmatter derived fromGPP.
For example, the lower GPP is, the lower the organicmatter contentwill
be (Yang et al., 2017); the lower decomposition rate (Piao et al., 2008) in
the cold northernparts of theNCP resulted in only slight increases in soil
fertility, which had a limited effect on vegetation growth. However, as
GPP increases, greater organic matter content and decomposed organic
matter potentially lead to a greater effect on GUD. Above the aforemen-
tioned threshold, the relationship between GPP and GUD weakened,
probably due to interactions between soil organic carbon and other en-
vironment factors. For instance, Oldfield et al. (2019) found that in-
creases in crop yields with higher concentrations of soil organic
carbon could level off at a certain threshold, and highlighted the interac-
tion between soil organic carbon and nitrogen inputs in agricultural
systems.

4.4. The chain relationship among hydrothermal variation, GUD and GPP

As a critical link between climate change and vegetation productiv-
ity, changes in GUD and its impacts have been amajor scientific issue of
general concern to the scientific community (Xia and Wan, 2013; Piao
et al., 2015; Xia et al., 2019). So far, a great number of studies have re-
ported the spatiotemporal variation of GUD and its responses to hydro-
thermal changes at various scales (Jeong et al., 2011; Shen et al., 2015).
Several other studies suggested that climate induced shifts in GUDmay
considerably influence ecosystem functions. However, the knowledge
of the chain relationship of climate change, phenological processes,
and ecosystem functions is relatively weak. Based on a comprehensive
assessment of the ability of GUD extraction methods, our analyses not
only reduced uncertainty in estimating GUD for winter wheat in the
NCP, but also provided innovative insights in the chain reaction
among hydrothermal variation, GUD and GPP. We found that precipita-
tion and temperature jointly determined the GUD variation for N82.05%
of thewinterwheat area in theNCP,with an average explanation (R2) of
66.84%. Furthermore, climate induced changes in GUD presented a neg-
atively linear relation with GPPGUD in 88.44% of the winter wheat area
(with a mean explanation (R2) of 19.77%), significantly in 35.75% of
the total pixels with a mean slope of 1.89 g C m−2 yr−1 day−1. At the
last link of the chain, GPP in previous year had positive feedback effects
on GUD for about 82.42% of the total pixels, and approximately 28.01%
of the total pixels showed significantly positive feedback effects
(mean linear slope of 0.15), suggesting that 1 g C m−2 yr−1 increase in
previous-year GPP tends to advanceGUDby 0.15 day. These findings in-
dicate that sensitivity of GUD to changing climate could be amplified by
the positive feedback effect from GPP variation, which is essential for
better understanding the interactions between climate change and
ecosystems.

5. Conclusion

Based on 8-day temporal resolution MODIS EVI data during
2001–2015, we found that GUD derived from the maximum curvature
of the fitted four-parameter logistic cumulative EVI did not exhibit the
desired performance for winter wheat in the NCP, whereas the RCCmax
algorithm was more appropriate for monitoring spatiotemporal pat-
terns of GUD variation. Consideration of the non-identical lag time ef-
fects of hydrothermal factors was very important for accurately
revealing the response of GUD to hydrothermal variation. The advance
of GUD could trigger winter wheat GPP after green up in northern and
central areas of the NCP, but diminish total GPP over the whole winter
wheat life cycle in some of the southern part of the NCP, suggesting
that more attention should be given to the complex response of GPP
to climate factors for the overwinter crop. In addition, previous-year
GPP presented strong positive feedback effects to GUD variations for
most parts of the NCP, characterized by a humped-shape pattern
along the long-term average plant productivity. It provides useful infor-
mation that can be used to improve our understanding of the interac-
tions between ecosystem and climate change.
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