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A B S T R A C T

Owing to increasing population densities and impervious surface areas, heat island effects increasingly dominate
urban environments and hinder sustainable development. The urban spatial form plays an important role in
mitigating urban heat islands. Taking Ganjingzi District, Dalian, as an example, this study considered urban
spatial form at the community scale using spatial autocorrelation and spatial regression methods to explore
2003–2018 spatial and temporal differentiation characteristics and driving factors of Land Surface Temperature
(LST). The LST of each community showed a gradually increasing trend; high values (> 30°C) were concentrated
in central and eastern areas; low values were (< 25°C) was concentrated in the south and west. LSTs were
influenced by spatial variables (e.g., land use); however, building form was only weakly related to LST. The
global autocorrelation Moran’s I value for LST exceeded 0.7, indicating strong positive correlation in terms of
spatial distribution. H-H and L-L LISA values were distributed in central and southern areas, respectively. The
spatial error model (SEM) was a better fit than the spatial lag (SLM) or ordinary least squares models (OLS) and
was used to explore these relationships. This study focuses on community surface temperature and hopes to
provide a valuable reference for community planning, resource allocation and sustainable development.

1. Introduction

The 21st century has been referred to as “the century of urbaniza-
tion”, in which the city is a complex system produced by interactions
between socioeconomics and the environment. Cities dramatically
change ecosystems, land use, biodiversity, and water, which can cause
various negative effects for people (e.g., traffic congestion, air pollu-
tion, and deteriorated ecological environments (Bolund & Hunhammar,
1999; He, 2018; KIM, 1992; Ren, Ng, & Katzschner, 2011; Tan et al.,
2010). Urban heat islands (UHI) are caused by rapid increases in po-
pulation density and impervious surfaces accompanied by reductions in
green space that result in locally elevated land surface temperatures in
urban areas (Howard, 1818; Oke, 1982; Wang, Zeng, & Karl, 1990).
Cities have two-dimensional (e.g., land use/cover and landscape) and
three-dimensional (e.g., structures and vegetation) features that change
significantly during rapid urbanization and increases rates of heat ab-
sorption; as a result, UHIs are a prominent feature of urban climates

(Stone & Rodgers, 2001; Son & Thanh, 2018; Wang, Ma, Ding, & Liang,
2018; Zullo, Fazio, Romano, Marucci, & Fiorini, 2019). In the context of
current global temperature rise, high population agglomeration and
rapid urban spread, urban heat islands have seriously affected the
quality of daily life of residents and the sustainable development of
cities. Therefore, exploring the spatial and temporal pattern of urban
thermal environments and the impact of urban spatial forms on the
thermal environment has important value for mitigating urban heat
islands, which are of widespread concern for planners and communities
(Imhoff, Zhang, Wolfe, & Bounoua, 2010; Rizwan, Dennis, & Chunho,
2008; Yang et al., 2017).

Land surface temperature (LST) refers to the temperature of the
Earth’s surface measured by its thermal radiation. Recent developments
in remote sensing technology have provided perspectives and techni-
ques for studying UHI using LST measurements (Sobrino, Li, Stoll, &
Becker, 1996; Voogt & Oke, 2003). Stewart and Oke (2012) proposed
17 climate zone types based on urban surface cover and three-
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dimensional structures (structural and vegetation heights) as an effec-
tive way to measure urban thermal environments (Cai, Ren, Xu, Lau, &
Wang, 2018; Yang, Jin et al., 2019). Simultaneously, multidisciplinary
efforts among, for example, meteorology, geography, and urban plan-
ning, have merged urban big data with machine learning and deep
learning, in order to expand and diversify the perspectives and methods
used to study urban climate (Mirzaei, 2015; Ngie, Abutaleb, Ahmed,
Darwish, & Ahmed, 2014; Yue, Liu, Fan, Ye, & Wu, 2012).

To date, research on UHI has mostly focused on data sources, unit
selection, analytical methods, driving factors, mitigation measures, and
effective simulation (Chen, Yang, & Zhu, 2014; Kong et al., 2017;
Mirzaei & Haghighat, 2010; Shi, Katzschner, & Ng, 2018). Grid cells are
often used for urban thermal environment research, mainly because
surface temperature is based on remote sensing images (raster data).
However, owing to the spatial resolutions of remote sensing images, the
observed LST and the surface cover structure differ, and the relation-
ship between them is masked. Therefore, choosing the appropriate
analytic unit is important for studying the spatial characteristics of UHI
(Li et al., 2011; Yang, Wang et al., 2019). Driving factors have mostly
considered time and space, and temporal factors have focused on
changes to LST during set periods (e.g., years, seasons, days, or nights;
Mathew, Khandelwal, Kaul, & Chauhan, 2018; Peng et al., 2018; Qiao,
Tian, & Xiao, 2013). Spatial factors include urban three-dimensional or
two-dimensional spatial forms (Zhou & Chen, 2018). Multi-source re-
mote sensing data, such as TM, ETM, OLI, MODIS, and AVHRR, have
been used to invert LSTs (He, Zhao, Shen, Wang, & Li, 2019; Wang,
Liang, & Meyers, 2008; Yang, Pu, Zhao, Huang, & Wang, 2011), the
results are then combined with spatial scale and spatial regression
methods (e.g., ordinary least squares, spatial metric modeling, or geo-
graphically-weighted regression analyses) to explore UHI spatial pat-
terns and driving mechanisms (Dai, Guldmann, & Hu, 2018; Luo &
Peng, 2016).

From a geographical perspective that values regional complexities,
this study used spatial autocorrelation analysis and a spatial metric
model combined with urban spatial form factors to identify and quan-
tify the spatiotemporal patterns of UHI effects and causal factors. This
study had a threefold objective: (1) to pre-process multi-temporal
images using mono-window algorithms to invert LSTs and analyze the
characteristics of the resulting spatiotemporal patterns; (2) to use spa-
tial autocorrelation methods to explore spatial heterogeneity of surface
temperatures; and (3) to use a community-based spatial regression
method to explore the relationship between surface temperature and
driving factors.

2. Materials and methods

2.1. Study area

Dalian City, China, is located at the southern tip of the Liaodong
Peninsula on the coast of the Yellow Sea (Fig. 1). The city’s major urban
areas include Zhongshan District, Shahekou District, Xigang District,
and Ganjingzi District. The city borders the sea on three fronts, enjoys
moderate temperatures in winter and summer, and has a temperate
monsoon climate. Ganjingzi District is Dalian City’s link between the
main urban areas and new urban areas. It is an important hub for
railways, international airports, and seaports. Recent economic devel-
opments in Dalian City have led to major changes to urban spaces and
land-use types, which has caused increasingly prominent UHI effects.

In China, regulatory planning is an important part of urban plan-
ning. The community unit is the basic unit for urban construction, ra-
tional planning of land use and development, and the allocation of
public facilities. Thus, this study analyzed the spatiotemporal patterns
of urban LSTs and their driving mechanisms at the community level. It
then used those results to form recommendations for scientific decision-
making during future urban planning.

2.2. Data

2.2.1. Data sources
Data used in this study included Landsat remote sensing images and

3D building information, the digital elevation model (DEM), nighttime
lighting, roads, and land use. Landsat images were derived from the
United States Geological Survey (USGS, https://earthexplorer.usgs.
gov/) and the Geospatial Data Cloud of China (http://www.gscloud.
cn/), and were mainly used for surface temperature inversion. The
original downloaded data were resampled to 30m. DEM data were
from the Geospatial Data Cloud of China with a resolution of 30m; and
nighttime lighting image Data (Roga-1) were from Wuhan University
(http://59.175.109.173:8888/); 3D building data and land use data
were sourced from the Dalian Land Resources and Housing Bureau,
where building data include information on building footprint and
height. The data sources and their descriptions are given in Table 1.

2.2.2. Explanatory variables
Cities are complex dynamic systems influenced by social, economic,

cultural, and policy characteristics; as such, while exploring the driving
factors of UHIs many such factors should be considered (Qu, Zhu, Jia, &
Lv, 2015; Wei, Yao, Chongyu, & Weijun, 2017; Zhao, Cai, Qiao, & Xu,
2016). Based on previous studies, this study explored the relationship
between LST and driving factors from six perspectives: architectural
form, land type, a landscape index, social economy, topography, and a
remote sensing index (Azhdari, Soltani, & Alidadi, 2018; Mathew,
Khandelwal, & Kaul, 2017; Yue, Xu, Tan, & Xu, 2007; Zhang, Estoque, &
Murayama, 2017). From these six perspectives, a total of 16 influential
variables were selected (Table 2 and Fig. 2).

At present, scholars focus on the selection of explanatory variables
in two-dimensional space, but are limited in the acquisition of urban
three-dimensional data; consequently, there are few analyses of the
relationships among three-dimensional architectural forms and surface
temperatures (Chun & Guldmann, 2014; Scarano & Mancini, 2017;
Zakšek, Oštir, & Kokalj, 2011). This study selected building density and
the sky view factor as explanatory variables. Remote sensing spectral
indices have significant correlations with LST (Chen, Zhao, Li, & Yin,
2006; Feng et al., 2019), and the normalized difference vegetation
index (NDVI), normalized difference built-up index (NDBI), and nor-
malized soil brightness index (NDSI) were selected as explanatory
variables. Different land cover types have different levels of heat ab-
sorption and heat dissipation, affecting regional surface temperature
changes (Zhao, Jensen, Weng, & Weaver, 2018); we selected three in-
dicators: construction land area percentage, forest grass land percen-
tage, and water area percentage. Surface temperature is not only related
to land cover type, but also to land cover morphological characteristics,
spatial configuration and landscape pattern characteristics (Gage &
Cooper, 2017). In this study, the patch density, aggregation index, and
largest patch index were selected. The results of the index were ob-
tained using the FRAGSTATS 4.3 software. At the same time, tem-
perature is affected by altitude and landform, and the altitude and
geomorphology affect the intensity of solar radiation, in turn affecting
the spatial pattern of LST (Li, Zhao, Miaomiao, & Wang, 2010). Two
indicators, the digital elevation model (DEM) and slope, were selected
as explanatory variables. With the expansion of urban space, socio-
economic factors have a significant impact on urban microclimate. This
study selected three indicators: road density, water distance, and
nightlight. Among them, water distance refers not only to inland rivers
but also to distance from the coastline.

There may be multiple collinearity problems in the selected vari-
ables. To avoid affecting the final regression results, we used the var-
iance expansion factor (VIF) to identify collinearity (Table 3). When the
VIF value is less than 7.5, there is no collinearity between the data. At
the same time, it is judged whether data are normally distributed ac-
cording to the standard deviation, skewness, and kurtosis of each
variable. As can be seen from Table 3, the remote sensing spectral index
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Fig. 1. Location and study area (Dalian City, China).

Table 1
Data sources.

Data source Date/time Spatial resolution (meters) Description

Landsat 5 TM 25 Aug 2003, 10:06 UTC+8 30 USGS (https://earthexplorer.usgs.gov/)
and Geospatial Data Cloud
(http://www.gscloud.cn/)

06 Aug 2008, 10:15 UTC+8 30
Landsat 8 OLI 11 Aug 2013, 10:37 UTC+8 30

09 Aug 2018, 10:34 UTC+8 30
DEM 30 Geospatial Data Cloud
Building data 2018 Dalian Land Resources and Housing Bureau
Night Lighting Image Data (Roga-1) 2018 130 http://59.175.109.173:8888/
Land use 2017 1:10000 Dalian Land Resources and Housing Bureau

Table 2
Explanatory variable description.

Type Variables (abbreviated) Formula Description

Building form Building density (BD) Abi Ai The density of building in each community (Unit: %)
Sky view factor (SVF) See note Used to measure the extent of 3D open space.

Land use Percentage of construction land (PCL) Acl Ai Percentage of land for construction in each community (Unit: %)
Percentage of water (PW) Aw Ai Percentage of water in each community (Unit: %)
Percentage of woodland and grassland (PWG) Awg Ai Proportion of forest land and grassland per community (Unit: %)

Landscape
index

Patch density (PD) —— Land use patch density per community (calculated by FRAGSTATS 4.3)
Aggregation index (AI) —— Aggregation index of land use in each community (calculated by FRAGSTATS 4.3)
Largest patch index (LPI) —— Largest patch index of land use in each community (calculated by FRAGSTATS 4.3)

Socio-
economic

Nighttime light (NL) ____ Average night light intensity per community
Road density (RD) Ar Ai Percentage of road area per community (Unit: %)
Distance to water (DisW) ____ Distance from the water (calculated by the EucDistance tool in ArcGIS 10.2) (Unit: m)

Terrain DEM ____ Average DEM value per community (Unit: m)
Slop ____ Average Slope for each community (calculated by the Slope tool in ArcGIS 10.2) (Unit: °)

Remote sensing index Normalized Difference Vegetation Index (NDVI)
+

NIR RED
NIR RED

Average of NDVI per community

Normalized Difference Build-up Index (NDBI)
+

SWIR NIR
SWIR NIR

Average of NDBI per community

Normalized Difference Soil Brightness Index
(NDSI) +

RED GREEN
RED GREEN

Average of NDSI per community

Note: Ai represents the area of each community; Abi represents the building area within each community; Acl, Aw, Awg represent the construction land, water area,
forest and grass land area in the community; Ar represents the road area of each community; ρRED, ρGREEN, ρNIR, ρSWIR represent reflectance in the red, green, near-
infrared, and mid-infrared bands. = +SVF d[cos cos sin cos( )(90 sin cos )]1

2 0
2 2 (Yin, Yuan, Lu, Huang, & Liu, 2018).
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has a higher VIF value. In order to make the data more consistent with a
normal distribution and avoid the collinear problem, variables were
processed logarithmically in the subsequent calculation process. After
logarithmic processing, the data basically met a normal distribution and

the VIF was less than 7.5.
β and α represent the surface slope angle and surface aspect; φ and ϕ

represent the horizon angle and the azimuth direction.

Fig. 2. Spatial variations of each independent variables used to correlate with LSTs.
BD=Building density; SVF=Sky view factor; PCL=Percentage of construction land; PW=Percentage of water; PWG=Percentage of woodland and grassland;
PD=Patch density; AI=Aggregation index; LPI= Largest patch index; NL=Nighttime light; RD=Road density; and DisW=Distance to water.

Table 3
Descriptive statistics.

Type V Min Max Mean SD S K P M VIF

Building form BD 0.00 1.39 0.17 0.23 2.80 9.28 −0.03 0.36 1.33
SVF 0.94 1.00 0.99 0.01 −2.43 7.31 −0.23 0.37 1.49

Land use PCL 5.20 100 76.32 27.42 −0.94 −0.34 0.86 0.58 10.70
PWG 0.00 79.96 15.12 21.07 1.49 1.26 −0.82 0.42 16.46
PW 0.00 26.18 1.05 3.03 5.63 38.32 −0.66 0.05 1.48

Landscape
index

PD 0.48 50.15 10.83 9.28 1.61 2.88 −0.46 0.45 3.50
AI 98.26 99.97 99.51 0.38 −1.12 0.93 0.67 0.64 7.59
LPI 14.74 100.00 78.99 24.85 −0.91 −0.54 0.79 0.70 7.54

Socioeconomic NL 0.02 2.56 0.42 0.36 2.63 12.52 0.51 0.50 1.63
RD 0.00 21.68 4.36 3.30 1.63 4.42 0.45 0.32 1.49
DisW 207.10 4314.25 1881.83 1118.63 0.37 −1.01 0.54 0.70 2.36

Terrain DEM 6.94 176.91 46.43 31.62 1.43 2.28 −0.53 0.61 6.20
Slope 1.11 14.59 5.01 2.88 1.59 2.39 −0.57 0.63 7.64

Remote sensing index NDVI 0.12 0.68 0.30 0.12 1.20 1.03 −0.85 0.74 19.75
NDBI −0.33 −0.01 −0.12 0.06 −1.32 1.46 0.77 0.72 18.60
NDSI −0.18 0.03 −0.03 0.04 −1.71 2.74 0.81 0.71 19.41

Note: V= variable, SD= standard deviation, S= skewness coefficient, K= kurtosis coefficient, P=Pearson correlation coefficient, M=Moran’s I.
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2.3. Methods

This study was conducted at the community level using a mono-
window algorithm to retrieve LSTs, followed by spatial autocorrelation
and spatial statistical methods to investigate spatiotemporal char-
acteristics and the driving factors of changes in them (Fig. 3). Firstly,
through the preprocessing of Landsat remote sensing images for four
time periods, the single-window algorithm was used to invert the sur-
face temperature and analyze its temporal and spatial characteristics.
Then, from the perspectives of architectural form, land use, landscape
index, socio-economics, topography and the remote sensing spectral
indices, a total of 16 variables were selected as explanatory variables.
Finally, spatial statistical analysis methods (OLS, SLM, SEM) were used
to investigate the relationship between surface temperature and driving
factors, and the best method was selected by comparison of results.

2.3.1. LST data retrieval
Current practice for LST retrieval is based on remote sensing images

from imaging sources, such as MODIS or Landsat, and mono-window al-
gorithms, split-window methods, and atmospheric correction (Cristóbal
et al., 2018; Dwivedi & Khire, 2018; Wan & Dozier, 1996). The mono-
window algorithm is an LST retrieval algorithm proposed by Qin, Karnieli,
and Berliner (2001) in response to the presence of just one thermal in-
frared band for (TM) data (Wang et al., 2015). Recently, many empirical
analyses have been conducted using this method to achieve high levels of
retrieval accuracy; this study used it to invert LSTs for analysis.

In the LST retrieval process, the thermal infrared band is first subjected
to radiometric calibration, meaning that the digital number (DN) value is
converted to the corresponding radiation intensity value Lλ (L6/L10), and
then converted to the corresponding radiation brightness temperature value
Ta (T6/T10). The L6/L10 represents the radiation intensities of Band 6 and
Band 10 in Landsat 5 TM and Landsat 8 OLI, respectively, and also applies
to T6/T10. The relevant equations (1 and 2) are as follows:

= × +L Gain DN Offset (1)

=
+( )T K

ln 1
a K

L

2
1

(2)

where Lλ represents the radiation intensity value, Ta represents the bright-
ness temperature, Gain represents the gain parameter, Offset represents the
offset parameter, and the two parameters may be obtained in the

downloaded remote sensing image MLT file. The Gain=0.055375 (Landsat
TM) and 0.0003342 (Landsat OLI). The Offset=1.18243 (Landsat TM) and
0.1 (Landsat OLI). The DN represents the thermal infrared gray level value.
For Landsat 5 TM remote sensing data, K1 = 607.76mW/(cm2 sr μm) and
K2=1260.56K. For Landsat 8 OLI remote sensing data, K1=774.89mW/
(cm2 sr μm) and K2 = 1321.08K.

The LSTs were obtained by using the Ta value from Equation 2 in Eq.
(3) as follows:

= + + +Ts a C D Ta b C D C D DTb
C

( (1 ) ( (1 ) ) ) 273.15

(3)

=C (4)

= +D (1 )[1 (1 ) ] (5)

where Ts represents the actual LST; Ta represents the radiance value (K)
from equations 1 and 2; Tb represents the atmospheric mean acting
temperature (K); C and D are intermediate variables from Eqs. (4) and
(5), respectively; and a and b are fitted coefficients based on thermal
radiation intensity. When the temperature is between 0 °C and 70 °C, a
= −67.355351 and b = 0.458606. The ε and τ are the surface emis-
sivity and atmospheric transmissivity of the thermal infrared band,
respectively (Valor & Caselles, 1996); ε represents surface emissivity
based on NDVI and vegetation coverage (Singh, Kikon, & Verma, 2017;
Sobrino, Jiménez-Muñoz, & Paolini, 2004) and τ represents atmo-
spheric transmissivity calculated based on atmospheric parameters
derived from NASA’s website (http://atmcorr.gsfc.uasa.gov/).

2.3.2. Spatial autocorrelation
Based on Tobler’s first geographic law, the closer the spatial dis-

tance is between objects, the greater the correlation between their at-
tributes’ values (i.e., the stronger the spatial dependence; (Tobler,
1970). In this study, the spatial heterogeneity of the LSTs was quanti-
tatively measured and the global spatial autocorrelation coefficient
(Moran’s I) value was used (Li, Zhou, Ouyang, Xu, & Zheng, 2012) to
assess it. Moran’s I is a widely used global spatial autocorrelation sta-
tistic, calculated as shown in Eq. (6):

= =

= =
Moran sI

n wij xi x xj x
wij xi x

( )( )
( )

i
n

j i
n

i
n

j i
n

i
n

1

1 1
2

(6)

Fig. 3. Flow chart.
L6/L10= radiation intensity value; T6/T10= radiation brightness; C6/C10 and D6/D10= intermediate variables from Eqs. (4) and (5).
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= =

=
LocalMoran sI

n xi x wij xj x
xi x

( ) ( )
( )

j
n

i
n

1

1
2 (7)

where x x is the mean observed value for all n positions (areas), wij is
the spatial weight matrix, and xi and xj represent the observed values
for spatial positions i and j, respectively. The Moran’s I index values
range from −1 to 1; values less than zero imply negative correlations,
values equal to zero indicate no correlation, and values greater than
zero show positive correlations.

The local spatial autocorrelation index is often measured by the
local Moran' I statistic (Eq. (7)), which is used to reveal the agglom-
eration and differentiation characteristics of geographic features in
spatial locations; that is, to reflect the spatial correlation between the
community and the neighboring community LST. Local Moran' I has a
value range of [−1, 1], and less than 0 indicates a negative correlation.
The smaller the value, the more the similarity of the attribute values of
the spatial unit and the adjacent unit (L-H aggregation, H-L aggrega-
tion); 0 means no correlation; greater than 0 means positive correlation,
the larger the value, the higher the similarity of the attribute values of
the unit and the adjacent unit (H-H aggregation or L-L aggregation).

2.3.3. Spatial regression models
This study focused on the influences of driving factors on the spatial

characteristics of LSTs using spatial regression analysis. Spatial regression
models effectively resolve problems of spatial dependence that cannot be
handled by linear regression analysis. Common spatial regression models

include the spatial lag model (SLM) and spatial error model (SEM). SLMs
are mostly used to examine whether there is spatial diffusion or whether
there are any spillover effects of the variables (Anselin & Rey, 1991; Song,
Du, Feng, & Guo, 2014). The equation is as follows:

= + +y Wy X (8)

where y is the dependent variable; X is the matrix of explanatory variables
without an intercept term; β is the vector of the slope, reflecting the effect
of the independent variable on the dependent variable, Wy is the spatial
weight matrix. ε is a vector of random error terms. A statistically sig-
nificant spatial autoregressive coefficient ρ means that there is significant
spatial dependence between independent variables, and the magnitude of
ρ reflects the extent of interaction between individual units, such as spatial
diffusion or spatial spillover.

The SEM model formula is as follows:

= + +y X W µ (9)

where λ represents the spatial autoregressive coefficient of the error
term; Wε represents the spatial weight matrix; and μ is a vector of the
error terms. A statistically significant λ implies that some factors in the
model are causing spatial autocorrelation between error terms.

The basic unit of spatial regression in this paper is the community.
Therefore, the geographic adjacency method is used to set the weight of
adjacent observations, and the SLM and SEM are implemented by
GeoDa 1.12 software. In each regression model, the explanatory vari-
ables include 16 variables (Section 2.2.2). For verification and accuracy

Fig. 4. Spatiotemporal land surface temperature (LST) patterns in 2003, 2008, 2013, and 2018.
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of the model, determination coefficient (R2), Akaike Information Cri-
terion (AIC), Log Likelihood (LogL), and Schwarz Criterion (SC) are
often used to compare the results of the three global regression models.
These four indicators represent relative measures of statistical fit; a
better model will have higher R2 and LogL values but lower AIC and SC
values.

3. Analytical results

3.1. LST spatiotemporal characteristics

The spatial distributions of LSTs in Ganjingzi District for the four
periods were obtained using the LST retrieval algorithm described in
Section 2.3.1. Fig. 4 illustrates that, over 15 years, the LSTs of the
communities gradually increased. Communities with high LSTs were
mostly concentrated in the middle and eastern parts of the study area
where the terrain is relatively low and land use is dominated by built-up
areas. In the southwest, far from the Dalian City center, a relatively
high mostly forested terrain exists with lower LSTs.

To further explore the spatiotemporal characteristics of the urban
thermal environment, street-level spatial statistical analysis was per-
formed for LST data (Fig. 5). The maximum, minimum, and mean va-
lues of the surface temperatures of the streets gradually increased.
Among them, from the average surface temperature, high values mainly
include Xinghua Street, Zhonghua Road Street, Zhoushuizi Street, and
Paoya Cliff Street. Low values mainly include Yingchengzi Street and
Xinzhaizi Street. From 2003–2018, the increase was larger. Xinghua
Street, Zhonghua Road Street, and Paoya Cliff Street increased by
4.27 °C, 3.63 °C, and 3.62 °C, respectively. From the maximum and
minimum surface temperature, maximum surface temperature mainly
included Zhoushuizi Street, Zhonghua Road Street, and Xinghua Street;

the 2018 LST values were 34.71 °C, 34.22 °C, and 35.02 °C, respectively.
The minimum value was observed for Gezhenbao Street. The 2018 LST
values of Yingchengzi Street and Lingshui Street were 25.96 °C and
25.80 °C, respectively.

3.2. LST spatial autocorrelation

To investigate LSTs’ spatiotemporal characteristics in Ganjingzi
District, spatial autocorrelation analysis assessed spatial heterogeneity.
The Moran scatter plot represents the correlation between the LST
normalized value and its spatial lag value by a two-dimensional graph,
which in turn explains the instability of the local space. Fig. 6 shows
that the Moran’s I of LSTs in the four periods were 0.76, 0.76, 0.74, and
0.73. These consistently high values indicate significant positive spatial
correlations (i.e., strong spatial aggregation).

To further reveal the characteristics of the variation in communities’
LSTs’ spatial autocorrelations, the LSTs’ local indicators of spatial as-
sociation (LISA) values for the four periods were calculated (Fig. 7). The
LST spatial distribution patterns of the four periods were generally
stable. High value (H-H) areas were mainly in the central region and
included the Zhonghua Road, Jiaojinshan, Zhoushuizi, Airport, and
Xinghua subdistricts. Low value (L-L) areas were mainly in the south-
west and included the Hongqi, Lingshui, and Yingchengzi subdistricts.
Low value areas surrounded primarily by high value (L-H) areas were
spatially scattered and mostly located in the central region.

3.3. Regression results and influential factors

To ascertain a preliminary forecast for the explanatory variables and
to compare with the spatial regression model, OLS was used for model
estimation. The LST values of communities in 2018 comprised the

Fig. 5. Land surface temperature (LST) values of studied streets in 2003, 2 008, 2013, and 2018.
DLW, DLW, GJZ… represents street name abbreviations; Ave, Max, and Min represent the average, maximum, and minimum values of each streets’ LST; Num
represents the number of communities in each street.
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dependent variable and 16 independent variables used as predictors in
the regression analysis. To ensure that the data were normally dis-
tributed and to avoid multicollinearity, logarithmic processing was
concurrently performed on the data on both sides of the equation before
performing the regression analysis.

Table 4 shows that the SEM model has higher R2 and Logl values,
lower AIC and SC. The R2 and LogL values were 0.871 and 354.517,
respectively; the AIC and SC values were -675.037 and -622.236, re-
spectively. By comparing the R2, AIC, SC, and LogL values of the three
models, the SEM model is better than the SLM and OLS models. Thus,
SEM was chosen as the explanatory model.

4. Discussion

4.1. Influence of urban spatial form on LST

Currently, scholars are limited to a single factor in the exploration of
surface temperature driving factors, such as population density, land use

and a landscape index, a remote sensing spectral index (NDBI, NDVI,
NDSI), or three-dimensional architecture. Correlation methods are used
to analyze the relationship between the impact factor and LST, ignoring
the influence of other elements of urban interior space on thermal en-
vironmental elements (Chen & Zhang, 2017; Yang et al., 2018). The city
is a center of human activities and a complex socio-economic-natural
ecosystem. Changes in surface temperature characteristics are influenced
by many factors in the urban two-dimensional and three-dimensional
space (Berger et al., 2017; Deilami, Kamruzzaman, & Liu, 2018). Three-
dimensional structures, land use, landscape metrics, socioeconomics,
topography, and remote sensing indices all influence LSTs. Therefore,
exploring the relationship between driving factors and surface tem-
perature through spatial statistical methods is of significance. Table 3
shows the relationships among driving factors to LST by community in
which, the correlation for building form is lower than that for social
economy, topography, landscape index, and land use type.

To further illustrate the effects of land use, landscape metrics, so-
cioeconomic characteristics, and topography on LST, we generated

Fig. 6. Moran scatter plot of land surface temperature (LST) in the Ganjingzi area for each time period (2003, 2008, 2013, and 2018).

Fig. 7. Spatial distribution/agglomeration of land surface temperatures (LSTs) in 2003, 2008, 2013, and 2018.
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boxplots for each variable (Fig. 8). Land-use types were found to be
strongly related to LST, and LST by land-use type could be sub-
categorized as built-up, agricultural, forest, grassland, bodies of water,
or other types of land. The higher the AI and LPI landscape metrics, the
higher the LST; the larger the PD value, the lower the LST value. The
larger the NL, RD, and DisW values (socioeconomic characteristics), the
steeper the LST increasing trend. The DEM had an important influence
on LST; DEM values gradually increased within 60m (Fig. 8). Along
with increases in the DEM, LST value gradually decreased. Thus, multi-
variable analysis is needed for analyzing LSTs.

4.2. Influences on urban sustainability

As urbanization has advanced, the UHI effect has become a domi-
nant feature of urban climates, which has significantly influenced re-
sidents’ quality of life (Simwanda & Murayama, 2018; Sun, Gao, Li, Li,
& Ma, 2018; Zhang et al., 2017; Zhao, He, Li, Wang, & Darko, 2017).
Consequently, identifying ways to mitigate the effects of UHIs and
promote sustainable urban development have been a continuous focus
of urban planning and management. Based on previous research, this
study examined the spatial characteristics of LSTs in Dalian City, China,
including urban communities and their driving factors from the per-
spectives of spatial form, land use, landscape metrics, socioeconomics,
topography, and remote sensing indices. These results are important for
urban planning and land-use management in terms of improving the
quality of the ecological environment and achieving sustainable de-
velopment.

As a coastal city, Dalian City enjoys moderate temperatures in
winter and summer and is a desirable residential location. However,
recently, impervious land surfaces and high-rise buildings have gra-
dually increased in Ganjingzi District while green space has decreased,
somewhat degrading the ecological environment. For example, summer
temperatures are slowly rising, which seriously affects quality of life.
Rational planning for green space, transit, and land use is important for
promoting the city’s sustainable urban development.

4.3. Limitations

This paper explores the spatial and temporal differentiation char-
acteristics and driving factors of LST at the community level through
spatial statistical methods combined with many driving factors, which
is of great significance to urban planning. However, this study has

several limitations. Firstly, the study explored only the spatial char-
acteristics of surface temperature in summer using LST spatiotemporal
features; it did not consider the influence of seasonal and diurnal dif-
ferences on LST spatial characteristics. Secondly, the study did not
consider the influence of spatial scale on surface temperature and ig-
nored the relationship between thermal environmental characteristics
and driving factors at different scales. Finally, limited by data acqui-
sition, the spatial measurement method was only used to explore the
relationship between LST and driving factors over a single time period,
and the relationship between driving factors and LST in each time
period was not compared. Therefore, examining the differences in
surface temperature at different scales, seasons, and times of day using
panel data to explore the relationship between LST and many driving
factors will be the focus of follow-up research.

5. Conclusions

This study used a mono-window algorithm to invert LST at the
community level, followed by spatial autocorrelation and a spatial re-
gression model to examine spatiotemporal LST patterns and their
driving factors in terms of spatial form, land use, landscape metrics,
socioeconomics, topography, and remote sensing indices. The main
conclusions derived from the analytical results are as follows.

1 Between 2003 and 2018, LSTs in the studied communities gradually
increased. Communities with high LSTs were concentrated in the
middle of the study area, where the dominant land use type is built-
up. Southern and western areas were influenced by factors such as
topography and proximity to the sea, and consequently had lower
LSTs.

2 From the perspective of global and local LST autocorrelations, the
LSTs of the four periods had relatively high Moran’s I values, in-
dicating significantly positive spatial correlations. Among them, H-
H and L-L values were concentrated in the central and southwestern
areas of the study area, respectively.

3 LSTs’ spatial characteristics were driven by many factors, and the
land-use type, landscape metrics, and remote sensing indices had
the strongest correlations, followed by nighttime light and socio-
economic characteristics; spatial form was weakly correlated. SEM
was used to analyze the influences of the driving factors on LST
because, where the spatial metric model was used, SEM offered the
best fit to the data.

Table 4
Comparative results among the OLS, SEM, and SLM regression analyses.

Type Variable OLS SLM SEM

Intercept 11.571 11.391 13.587
Building form LnBD −0.003 (−0.834) −0.003 (−1.219) −0.000 (−0.192)

LnSVF 0.412 (1.886) 0.419 (1.549) 0.521 (1.996)
Land use LnPCL 0.020 (2.613) 0.021 (2.448) 0.033 (3.847)

LnPWG −0.007 (−3.306) −0.008 (−3.056) −0.008 (−2.971)
LnPW −0.007 (−2.550) −0.006 (−2.612) −0.007 (−3.131)

Landscape index LnPD −0.004 (−0.834) −0.004 (−0.979) −0.001 (−0.291)
LnAI −1.844 (−1.185) −1.777 (−1.140) −2.295 (−1.488)
LnLPI 0.020 (1.830) 0.020 (1.626) 0.012 (0.987)

Socioeconomic LnNL 0.012 (2.835) 0.012 (2.667) 0.008 (1.711)
LnRD 0.007 (2.024) 0.007 (1.854) 0.007 (1.924)
LnDisW 0.008 (1.873) 0.009 (1.860) 0.012 (2.486)

Terrain LnDEM −0.006 (−0.818) −0.007 (−0.901) −0.011 (−1.395)
LnSlope 0.016 (1.718) 0.017 (1.655) 0.021 (1.994)

Remote sensing index LnNDVI −0.091 (−4.883) −0.094 (−5.151) −0.093 (−1.395)
LnNDBI −0.001 (−0.126) −0.001 (−0.049) −0.000 (−0.036)
LnNDSI −0.002 (0.600) −0.002 (−0.611) −0.004 (−1.342)

Test coefficient R2 0.8647 0.8649 0.871
AIC −664.319 −669.266 −675.037
SC −618.203 −613.359 −622.236
LogL 352.502 352.633 354.517

Note: (The data in parentheses is the statistical value of t).
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