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Siberian carbon sink reduced by forest 
disturbances

Lei Fan    1  , Jean-Pierre Wigneron    2,3  , Philippe Ciais4, Jérome Chave    5, 
Martin Brandt    6, Stephen Sitch7, Chao Yue8, Ana Bastos    9, Xin Li    10, 
Yuanwei Qin    11, Wenping Yuan    12, Dmitry Schepaschenko    13,14,15, 
Liudmila Mukhortova    14, Xiaojun Li2,3, Xiangzhuo Liu    2,3, Mengjia Wang2, 
Frédéric Frappart    2,3, Xiangming Xiao    11, Jingming Chen16, Mingguo Ma    1, 
Jianguang Wen17, Xiuzhi Chen12, Hui Yang9, Dave van Wees    18 & 
Rasmus Fensholt    6

Siberian forests are generally thought to have acted as an important carbon 
sink over recent decades, but exposure to severe droughts and fire 
disturbances may have impacted their carbon dynamics. Limited available 
forest inventories mean the carbon balance remains uncertain. Here we 
analyse annual live and dead above-ground carbon changes derived from 
low-frequency passive microwave observations from 2010 to 2019. We find 
that during this period, the carbon balance of Siberian forests was close to 
neutral, with the forests acting as a small carbon sink of +0.02+0.03+0.01 PgC yr−1. 
Carbon storage in dead wood increased, but this was largely offset by a 
decrease in live biomass. Substantial losses of live above-ground carbon are 
attributed to fire and drought, such as the widespread fires in northern 
Siberia in 2012 and extreme drought in eastern Siberia in 2015. These live 
above-ground carbon losses contrast with ‘greening’ trends seen in leaf  
area index over the same period, a decoupling explained by faster 
post-disturbance recovery of leaf area than live above-ground carbon. Our 
study highlights the vulnerability of large forest carbon stores in Siberia to 
climate-induced disturbances, challenging the persistence of the carbon 
sink in this region of the globe.

Siberia holds about 20% of the world’s forest areas1, and the region 
has been exposed to rapid warming in recent decades2. In response 
to warmer temperatures, a longer growing season3 and widespread 
‘greening’ seen by optical remote-sensing data4,5 have been reported. 
These changes are generally interpreted as increases in above-ground 
biomass carbon (AGC)6 and CO2 uptake7,8, and the prevailing view is that 
Siberian forests have acted as a net sink for atmospheric CO2 during 
recent decades9–13.

However, the shift to a drier climate with an increasing frequency 
of wildfires14 causing forest loss and degradation may have weakened 
the carbon sink of Siberian forests15. Wildfires make up the largest 

proportion of forest loss in Siberia16,17, causing substantial carbon emis-
sions (from live biomass and dead wood)18 and already resulting in parts 
of Siberia emitting more carbon than is being captured19,20. A divergence 
between the trends of warming and greening has also been observed 
in Siberia21, with localized shifts to a negative relationship between 
temperature and greenness indices, especially in drought-affected 
areas22. Recent heatwaves and wildfire events in 2010, 2012 and 2015 
may change the carbon balance of the Siberian forest.

In the recent decade, a direct spatially explicit quantification of 
the carbon budget of the Siberian forests is still lacking, with vary-
ing estimates of carbon fluxes (+0.5 to −0.4 PgC yr−1; positive values 
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different static biomass maps; Fig. 1b). This net change represents a 
balance between regional and temporal gross gains (+0.29+0.31+0.29 PgC yr−1) 
offset by on average larger gross losses (−0.37−0.36−0.39 PgC yr−1). Western 
Siberia had a nearly neutral carbon balance, while East Siberia and the 
Far East forests showed net carbon losses (−0.03−0.03−0.03  PgC yr−1 and 
−0.05−0.05−0.05 PgC yr−1, respectively) (Supplementary Fig. 1).

Annual changes in AGClive reached maximum values (+0.74+0.77+0.72 
PgC) in 2011, mainly from East Siberia (+0.49+0.50+0.48 PgC), and decreased 
steadily afterwards (Fig. 1b and Supplementary Fig. 1). During the 
drought and heatwave of summer 2012, Hansen et al.33 reported a forest 
area loss of 3.8 × 104 km2 and record-breaking wildfires (1.2 × 105 km2) as 
monitored by the active fire data34 (Fig. 1b). This event is associated with 
a change in AGClive of −0.48−0.47−0.50 PgC that year, including −0.22−0.22−0.23 PgC 
in East Siberia and −0.26−0.26−0.26 PgC in the Far East (Supplementary Fig. 1). 
We found the largest decline in AGClive of the decade in 2015, a net change 
of −0.55−0.54−0.57  PgC, of which −0.30−0.30−0.30 PgC occurred in East Siberia  
(Supplementary Fig. 1c) and −0.22−0.21−0.22 in the Far East (Supplementary 
Fig. 1e), partly attributed to extreme hot and dry conditions, 2015 being 
the hottest year on record since 1936 (Supplementary Fig. 2a)35.

Drought conditions persisted until 2017 over East Siberia,  
indicated by negative anomalies in soil moisture and Standardized 
Precipitation Evapotranspiration Index (SPEI) values (Supplementary  
Figs. 2c and 3–5). This persistent drought was associated with continu-
ing large wildfires (6.1 × 104 km2) in 2016 and in 2017 (4.1×104 km2) that 
contributed to the continuous decrease of AGClive in East Siberia during 
2015–2017 (Supplementary Fig. 1c). During that period, a contrasting 
vegetation response emerged from optical time-series imagery, with 
positive anomalies shown by leaf area index (LAI) values (Supplemen-
tary Fig. 3–5). LAI had in fact maximum values during the dry and hot 
year of 2015 (Supplementary Fig. 6c), as documented by Bastos et al.36.

indicate net carbon increase in above-ground biomass) from forest 
inventories23, dynamic global vegetation models19,24 and atmospheric 
inversions25,26. Observational forest monitoring data are scarce, given 
the lack of systematic forest inventories in this region14,27. Green-
ing trends are observed in the Siberian forests from optical satellite 
observations5, but the use of those indices at the high latitudes is 
complex28. In particular, variations of greenness caused by sun angle29 
and shadow effects30 cause large differences between satellite prod-
ucts31, and greenness indices saturate even at moderate biomass in the 
high latitudes28. These uncertainties impede a full understanding on 
how drought and wildfire influenced the spatial patterns of loss and 
post-disturbance recovery of forest carbon.

In this Article, we estimate wall-to-wall annual changes in the 
above-ground biomass carbon stocks, the sum of living biomass and 
dead wood, over Siberian forests from 2010 to 2019 (Fig. 1a). We pre-
sent the following: (1) changes in regional AGC; (2) the relative contri-
butions of wildfire and other forest-loss drivers to AGC loss; and (3) the 
decoupling between AGC and greenness trends. Spatially explicit live 
above-ground biomass carbon (AGClive) at 25 km spatial resolution was 
computed using L-band vegetation optical depth (L-VOD) from passive 
microwave observations, which is sensitive to the biomass of stems, 
branches and leaves and does not saturate even in dense forests32. 
Moreover, L-VOD is not sensitive to the effects of sun illumination and 
atmosphere (aerosols, clouds), which limit the capabilities of optical 
observations at high latitudes28.

Above-ground carbon changes in the Siberian 
forests
For the years 2010–2019, we found a net AGClive change in Siberia of 
−0.08−0.08−0.08  PgC yr−1 (range from calibrations of L-VOD against six  
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Fig. 1 | Temporal variations in annual AGC and LAI over Siberian forests. a, The 
spatial distribution of AGClive in 2010 (n = 6,419). b, Annual values of AGCtot and 
AGClive stocks (n = 10) relative to those in 2010, respectively. c,e, Corresponding 
changes in AGClive (c) and LAI (e) are shown for partly burned and unburned 
regions. d, Annual values of LAI (n = 10) relative to LAI in 2010. The ranges in b and 

c, represented by shading around the line, show the minimum and maximum of 
above-ground carbon changes. The centre lines and the shading ranges in d and 
e represent the median values and one standard deviation. Annual fire-disturbed 
areas are indicated by the orange bars in b.
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It is important to note here that AGClive losses in a given year due to 
stand-replacing fires do not cause only an instantaneous CO2 emission 
to the atmosphere, but also at first an increase of the carbon stocks of 
dead wood (for example, coarse woody debris (CWD)) followed by a 
lagged CO2 emission from decaying CWD and litter pools37. Such an 
increase in CWD carbon (CWDC) stocks following stand-replacing fires 
is of particular importance for Siberian forests38, where the combus-
tion completeness of live biomass can be as low as 10% (Supplementary 
Table 5), meaning that the rest is feeding the CWDC pools. Ignoring 
fine litter changes, we estimated carbon changes from above-ground 
CWD, separating previously accumulated CWDC before the beginning 
of the L-VOD records in 2010 and the formation of new CWDC caused 
by stand-replacing fire and background mortality after 2010 (Methods 
and Supplementary Text). Then we calculated the total AGC (AGCtot) 
changes accounting for AGClive and CWDC (Fig. 1b).

During 2010–2019, AGCtot shows a net change of +0.02+0.03+0.01 PgC yr−1 
(Fig. 1b), corresponding to a nearly neutral carbon balance, so that the 
large increase in carbon stocks of CWD (+0.10+0.11+0.09 PgC yr−1) has nearly 
offset the decrease of AGClive. Comparing decadal trends of AGCtot with 
AGClive, AGCtot had a small negative trend during 2011–2015 but a rapid 
increase during 2015–2019, whereas AGClive remained flat, ~0.8 PgC 
below its value in 2010 (Fig. 1b). Differences between the net changes 
in AGCtot and AGClive were observed mainly over East Siberia (+0.02+0.02+0.02 
PgC yr−1 versus −0.03−0.03−0.03 PgC yr−1) and Far East (−0.01−0.01−0.02  PgC yr−1 

versus −0.05−0.05−0.05 PgC yr−1) (Supplementary Fig. 1). The gross carbon 
loss is lower for AGCtot (−0.33−0.33−0.35 PgC yr−1) than for AGClive (−0.37−0.36−0.39 
PgC yr−1) due to carbon remaining in CWD after mortality. Spatially, 
the region-wide increase in the accumulation in carbon stocks of CWD 
(Fig. 2c) offset 31% of AGClive loss areas (Fig. 2b), resulting in 54% of the 
study area acting as a C sink during 2010–2019 (Fig. 2a).

Carbon losses from forest loss and degradation
The AGClive decrease in Siberian forests can be due to forest area loss 
from human-induced deforestation plus stand-replacing fires and 
other severe disturbances such as windstorms and massive insect out-
breaks, and to ‘degradation’ processes that do not lead to forest area 
loss such as low-intensity fires, selective logging, fragmentation and 
edge effects, and partial mortality from moderate- and low-intensity 
disturbances such as droughts39. The contributions of forest area loss 
and degradation to AGClive losses were separated within each 25 km 
grid cell using the method of Harris et al.40 and Qin et al.41. To do so, we 
used the Landsat forest area loss data from ref. 33 at 30 m resolution, 
which means that small-scale forest area loss that is not resolved at this 
resolution is implicitly treated as degradation (Methods). Of the gross 
AGClive losses (−0.37−0.36−0.39 PgC yr−1) during 2010–2019, we attributed 
~43% (−0.16−0.14−0.18 PgC yr−1) to forest area loss and the remaining ~57% 
(−0.21−0.22−0.21 PgC yr−1) to degradation, showing that degradation brings 
an even larger contribution than forest area loss.
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Fig. 2 | Spatial patterns of net changes in AGC, CWDC and LAI. a–d, Net changes in AGCtot (a), AGClive (b), CWDC (c) and LAI (d). e,f, Yearly changes in forest loss  
(e) and burned area (f) were estimated using the Hansen33 and moderate-resolution imaging spectroradiometer datasets52, respectively. WS, West Siberia region; ES, 
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Over the forest area loss regions, we further separated the contri-
butions of clearcut (forestry) and stand-replacing wildfires to gross 
AGClive loss. Stand-replacing fires (1.6 × 105 km2) covering ~60% of the 
forest-loss area contributed 62% (−0.10−0.09−0.11  PgC yr−1) of the gross 
AGClive loss while other stand-replacing processes (for example, 
clearcutting and massive insect outbreaks) contributed only ~38% 
(−0.06−0.06−0.07 PgC yr−1).

We further investigated the impacts of wildfires on AGClive losses 
by considering L-VOD pixels (25 km) that are burned by wildfires over 
the whole of Siberia, thus considering all fires and not only the 
stand-replacing ones that coincide with forest area loss in ref. 33. 
‘Unburned’ pixels were defined as those with an annual burned fraction 
lower than 1% during 2006–2019. The remaining grid cells were defined 
as partly burned regions (Methods and Supplementary Fig. 7). In those 
partly burned areas (3.1 × 106 km2) that cover ~78% of the study region, 
we found a net AGClive change of −0.06−0.06−0.07 PgC yr−1 mainly over East 
Siberia (−0.03−0.03−0.03 PgC yr−1) and the Far East (−0.04−0.04−0.04  PgC yr−1) 
whereas AGClive changes in unburned pixels were close to zero (Fig. 1c). 
Over partly burned regions, the dynamics of biomass are enhanced, 
with gross AGClive losses (−0.28−0.27−0.29 PgC yr−1) and gains (+0.21+0.22+0.21  
PgC yr−1) being four times larger than the net change (−0.06−0.06−0.07  
PgC yr−1). Overall, gross AGClive losses of partly burned pixels were 2.8 
times larger than the loss from stand-replacing fires (−0.10−0.09−0.11  
PgC yr−1). This result shows that the Landsat forest-loss data do not 
capture small-scale forest-loss patches burned by fires and/or that the 

droughts and many ground fires of low intensity lead to AGClive losses 
even though they do not cause stand replacement42.

Simultaneous biomass losses and greening trends
We addressed whether greening trends observed by LAI can be linked 
with carbon uptake over the Siberian forests. For the period 2010–2019, 
AGClive decreased significantly (P < 0.01) (Fig. 1b) while LAI increased, 
but non-significantly (P > 0.05) (Fig. 1d). The difference between these 
trends occurred mainly in wildfire-affected L-VOD pixels, where the 
LAI values were relatively constant while AGClive decreased (Fig. 1c,e).

Net AGClive changes showed a low spatial agreement with LAI 
changes at 25 km resolution: net changes were of the same sign over 
54% of the grid cells, but 37% had negative net AGClive changes and 
positive changes in LAI (Fig. 2b,d). Considering the spatial trends in 
AGClive stocks and LAI, 48% of the areas with negative AGClive trends 
(Supplementary Fig. 8b) showed an LAI-derived greening trend  
(Supplementary Fig. 8d). Specifically, 80% of the areas with a negative 
AGClive trend and an LAI greening trend matched the fire-disturbed areas  
(Fig. 2f). These results suggest that in fire-affected areas, LAI recovers 
more quickly than fire-related C losses.

To illustrate the differences between post-fire AGClive and LAI 
trajectories, we selected one L-VOD pixel (Fig. 3) that experienced 
26% of forest loss during the 2010–2019 period and 53% of burning in 
2012 (Fig. 3c). AGClive and LAI both declined sharply in 2012, and AGClive 
did not recover in subsequent years, in line with the slow recovery of 
AGClive after fires in boreal forests43,44, aggravated by the 2015–2017 
subsequent drought. As illustrated by 30 m Landsat images, the obvi-
ous forest losses in 2016 (Fig. 3e) against a dense forest (Fig. 3d) in 2011 
can be observed in the central region of the 25 km grid cell. By contrast, 
LAI showed a rapid recovery to pre-fire levels in 2018, only six years 
after the 2012 massive burning event.

We then further generalized the study of post-fire AGClive and 
LAI recovery for a larger area by calculating AGClive and LAI changes 
across all pixels that burned by more than 10% during the study period 
and burned only once, to avoid confounding effects of multiple fires 
(Method). This selection returned 184 pixels covering 0.11 million km2, 
related mainly to wildfires in 2012 (31.9%) and 2016 (17.9%), the majority 
in larch-dominated forests (76.2%) (Supplementary Fig. 9). Both AGClive 
and LAI decreased after wildfires, and the differences between pre- and 
post-fire values were significantly correlated with the burned fraction 
(P < 0.01, Fig. 4a), which can also be observed from different tree taxa 
(for example, pine (Fig. 4b) and larch (Fig. 4c)).

Both AGClive and LAI continued to decrease in the first post-fire 
year (Fig. 4d); thereafter, a quick recovery was observed for LAI while 
AGClive continued to decrease, reaching its minimum five to six years 
after the fire event. Seven years after wildfires, LAI had fully recovered 
to its pre-fire value while AGClive was ~11% below its pre-fire level. Similar 
evidence was observed from pine (Fig. 4e) and larch forests (Fig. 4f) 
under a series of burned fractions (Fig. 4g–i). These results show that 
post-fire AGClive recovery is much slower than LAI recovery, explaining 
the decoupling of LAI and AGClive trends over Siberian forests during 
the recent ten years.

Implications for boreal carbon balance
Boreal forests of Siberia were estimated to be a carbon sink over the past 
decades from inventory data analysis and short-wave microwave data, 
which are prone to saturate with biomass6,13,37. Our observations for the 
recent decade show that the carbon balance of this region is close to 
neutral. Comparison of our estimates (2010–2019) with the synthesis 
of forest inventory data (1990–2007)37 suggests that the relative con-
tribution of live biomass and dead wood to the net C sink has changed 
in the recent decade. Both live biomass (+0.07 PgC yr−1) and dead wood 
(+0.10 PgC yr−1) were inferred to be C sinks during 2000–2007 in ref. 37,  
but our results for 2010–2019 revealed that the live biomass pool 
decreases (−0.08 PgC yr−1). On the contrary, carbon stocks in CWD 
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Fig. 3 | Interannual variation of AGClive, LAI and hydrological indices for a 
single 25 km grid cell. a–c, AGClive and LAI (a), soil moisture anomalies and 
SPEI (b) and forest loss and burn area fraction (c) of the 25 km grid cell (central 
latitude, 58.7° N; longitude, 96.4° W). d,e, Landsat/Copernicus images (at a 
spatial resolution of 30 m) acquired in 2011 (d) and 2016 (e) within the 25 km grid 
cell (L-VOD pixel).
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made a major contribution to the total C sink (+0.10 PgC yr−1), in line 
with ref. 37 (+0.10 PgC yr−1 for 2000–2007).

We attributed the widespread AGClive losses to drought and wildfire 
events, supporting previous findings that heatwaves together with 
wildfire events have affected the AGC balance of Siberian forests27. Net 
negative AGClive changes revealed by L-VOD are confirmed by another 
high-frequency VOD product (Methods and Supplementary Figs. 10 
and 11) and are supported by a recent carbon estimate using optical 
datasets and high-frequency VOD45 (Supplementary Fig. 12). Our results 
are also consistent with simulations of vegetation models that pro-
jected net changes in AGClive of −0.05−0.05−0.05 PgC yr−1 for different green-
house gas emission scenarios between 2000 and 2025 (ref. 46). Note 
that our estimated carbon sources are larger than those of Xu et al.45 
over the whole study region (−0.08 versus −0.03 PgC yr−1 for ref. 45): 
West Siberia (+0.01 versus +0.01 PgC yr−1 for ref. 45), East Siberia (−0.03 

versus +0.005 PgC yr−1), Far East (−0.05 versus −0.04 PgC yr−1). This 
difference was observed mainly over the fire-disturbed regions of East 
Siberia, where Xu et al.45 found a carbon sink in contrast to our results 
of carbon losses. This could be attributed partly to the fact that  
the optical data used in the estimates of Xu et al.45 could not detect the 
carbon losses over fire-disturbed regions, supported by our results 
showing that no simple relationship exists between greening as meas-
ured from optical vegetation indices and changes in AGClive.

Boreal greening expresses an increase in vegetation productivity 
and an associated gross land carbon uptake as inferred from satellite 
records6,8 and forest inventories37. Our results highlight the lagged 
recovery of AGClive compared with photosynthetic activity47,48 in Sibe-
rian forests due to their different responses to wildfire events, imply-
ing that AGClive losses induced by wildfire events can be synchronous 
with post-fire greening. This complex recovery pathway of Siberian 

Burned area fraction (%) Burned area fraction (%) Burned area fraction (%)

[10
, 2

5)

[25
, 4

0)

[4
0, 5

5)

[55, 7
0)

[70
, 8

5)

[85, 10
0]

0

10

20

30

40

50

Lo
ss

 (%
)

AGClive
LAI

a

[10
, 2

5)

[25
, 4

0)

[4
0, 5

5]
0

10

20

30

40

50

Lo
ss

 (%
)

AGClive
LAI

b

[10
, 2

5)

[25
, 4

0)

[4
0, 5

5)

[55, 7
0)

[70
, 8

5)

[85, 10
0]

0

10

20

30

40

50

Lo
ss

 (%
)

AGClive
LAI

c

–1 0 1 2 3 4 5 6 7

Year relative to fire year

70

80

90

100

110

Re
co

ve
ry

 (%
)

Year relative to fire year

60

70

80

90

100

110
Re

co
ve

ry
 (%

)

Year relative to fire year

60

70

80

90

100

110

Re
co

ve
ry

 (%
)

d e f

AGClive
LAI

AGClive
LAI

AGClive

LAI

–1 0 1 2 3 4 5 6 7 –1 0 1 2 3 4 5 6 7

Year relative to fire year

60

70

80

90

100

110

Re
co

ve
ry

 (%
)

Year relative to fire year

60

70

80

90

100

110

Re
co

ve
ry

 (%
)

Year relative to fire year

60

70

80

90

100

110

Re
co

ve
ry

 (%
)

g h i

AGClive
LAI

AGClive
LAI

AGClive
LAI

–1 0 1 2 3 4 5 6 7 –1 0 1 2 3 4 5 6 7 –1 0 1 2 3 4 5 6 7

Fig. 4 | The responses of AGClive and LAI to wildfire. a–c, The AGClive and LAI 
losses (%) caused by fire relative to pre-fire AGClive and LAI for the whole of Siberia 
(n = 184) (a), pine (n = 14) (b) and larch (n = 144) (c). Error bars are one standard 
deviation from the mean. d–f, The AGClive and LAI recoveries (%) for the whole 

of Siberia (d), pine (e) and larch (f). g–i, Recovery of AGClive and LAI in response 
to wildfire for the pixels with a burned fraction of [10%, 40%) (n = 154) (g), [40%, 
70%) (n = 28) (h) and [70%, 100%] (n = 2) (i). The centre lines and the shading 
ranges represent the mean values and one standard deviation, respectively.
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forests exemplifies that caution should be taken when interpreting  
greening trends as carbon sinks without the use of in situ data to cor-
roborate conclusions.

Our estimates of gross loss of AGClive (−0.16−0.14−0.18 PgC yr−1) resulting 
from forest loss for 2010–2019 are higher than the 20 yr (2000–2019) 
average gross loss of −0.09 PgC yr−1 reported by Harris et al.49, suggest-
ing that the flux from gross forest loss increased in the recent ten years. 
This can be attributed mainly to the 111% increase of forest loss in 
2010–2019 (2.7 × 105 km2) compared with 2000–2009 (1.3 × 105 km2) 
as detected by the dataset of Hansen et al.33, albeit with some caution 
when comparing the forest-loss dataset of ref. 33 between different 
periods. For the 2010 decade, we estimated a live gross carbon loss 
four times higher than that estimated by Harris et al.49 over 2000–2019 
(−0.37−0.36−0.39 PgC yr−1 versus −0.09 PgC yr−1). The estimates of Harris 
et al.49 do not distinguish areas of complete canopy removal from 
partial disturbances and may thus neglect the degradation-induced 
carbon losses (for example, from selective logging, mortality associ-
ated with droughts, insect outbreaks or understory fires). Similarly, 
gross AGClive gains as estimated by L-VOD for the 2010 decade were 
higher than those estimated by Harris et al.49 (+0.29+0.31+0.29 PgC yr−1 versus 
+0.24 PgC yr−1). Harris et al.49 reported forest gains only as transition 
probabilities from non-forest to forest across the period. Notably, 
AGClive gains reported by Harris et al.49 do not include the 
post-disturbance AGClive recovery and AGClive gains resulting  
from vegetation dynamics (for example, the encroachment of  
trees and shrubs into grasslands or increases in tree density in  
undisturbed forests).

Considering that full AGClive recovery during post-disturbance 
succession may require several decades as found at site scale50, at a 
regional scale51 and at a continental scale from our results, attention 
should be paid to preventing disturbances and enhancing the potential 
for boreal forest restoration and reforestation. Implementing timely 
management strategies with a strong focus on preventing natural 
disturbance and enhancing forest resilience is thus pivotal as a means 
to preserve the boreal regions as a durable carbon sink.

Online content
Any methods, additional references, Nature Portfolio reporting  
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author  
contributions and competing interests; and statements of data 
and code availability are available at https://doi.org/10.1038/
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Methods
Siberian forest regions
Our study region was located in the Siberian forest regions, consist-
ing of West Siberia (49.67°–66.14° N, 59.38°–89.82° E), East Siberia 
(49.08°–67.12° N, 79.09°–121.82° E) and Far East (43.13°–69.66° N, 
105.74°–179.89° E) regions (the three geographic regions refer to  
ref. 53). To identify tree cover and canopy height, we used the MOD44B 
v.6 Vegetation Continuous Fields yearly product in 2010 (ref. 54) and 
the Geoscience Laser Altimeter System forest canopy height product 
in 2005 (ref. 55), respectively, which were aggregated to 25 km spatial 
resolution to match the spatial resolution of the Soil Moisture and 
Ocean Salinity (SMOS) data by averaging pixels. To identify land cover, 
we also used the 500 m moderate-resolution imaging spectroradi-
ometer (MODIS) land-cover map provided by Broxton et al.56, which 
was aggregated to 25 km resolution by dominant class within each 
25 km grid cell. ‘Dominant’ refers to the class that has the largest num-
ber of 500 m native-resolution pixels within each 25 km grid cell. The 
forest regions (Fig. 1a) were defined as tree cover > 15% and canopy 
height > 5 m using the aggregated 25 km Vegetation Continuous Fields 
and forest canopy height products, respectively. We masked non-forest 
SMOS pixels dominated by ‘closed shrublands’, ‘open shrublands’, 
‘woody savannahs’, ‘savannahs’, ‘urban and built-up’, ‘snow and ice’, 
‘water’, ‘grasslands’ and ‘barren or sparsely vegetated’ using the aggre-
gated 25 km MODIS land-cover map. Pixels dominated by the ‘wetland’ 
land cover were also masked as L-VOD is underestimated when the 
observation footprint contains substantial open water bodies. Further, 
accounting for the availability of AGClive derived from L-VOD, our study 
area in Siberia covers ~4.0 × 106 km2 (Fig. 1a). Our analysis focused on 
AGClive and CWD and did not assess changes in other carbon stocks (for 
example, litter or soil organic matter).

Benchmark maps of AGClive density
Fan et al.32 used four pantropical static AGClive benchmark maps for 
calibrating the L-VOD/AGClive relationship. In this Article, we used 
three of the most recent global static AGClive benchmark maps (Sup-
plementary Fig. 13a–c) to calibrate L-VOD (Supplementary Fig. 13d), 
including the global maps provided by Saatchi et al.57, http://cci.esa.
int/biomass and Santoro et al.58, hereafter referred to as the ‘Saatchi’, 
‘CCI’ and ‘GlobBiomass’ maps, respectively. The Saatchi map used in 
the present study is an updated version that represents AGClive circa 
2015 (ref. 59). The CCI and GlobBiomass maps used in the present study 
correspond to the years 2017 and 2010, respectively. The original units 
of above-ground biomass density (Mg ha−1) were converted to AGClive 
density (MgC ha−1) by multiplying the original values by a factor of 0.5 
(ref. 60). All AGClive maps were aggregated to 25 km spatial resolution 
to match the spatial resolution of the SMOS data by averaging AGClive 
pixels within the SMOS grid cells.

SMOS-IC soil moisture and L-VOD
Several studies have combined datasets from both forest inven-
tory plots and remote sensing to generate spatial maps of forest 
above-ground biomass estimates at multi-year time frames57,61,62 based 
on canopy height estimates from the Geoscience Laser Altimeter Sys-
tem lidar (light detection and ranging) sampling strips and vegetation 
indices from optical images (MODIS). However, these global maps are 
generally static (available for one or a few years only). The recently 
developed L-VOD AGClive dataset is one of the major satellite-based 
data sources for adding a temporal dynamic to these maps that allows 
monitoring interannual changes of AGClive at the global scale.

The L-VOD AGClive data were derived using the L-VOD product, 
which is developed using the SMOS INRA-CESBIO (SMOS-IC) algorithm 
in version 2 (refs. 63,64) designed by the Institut National de la Recherche 
Agronomique (INRAE) and Centre d’Etudes Spatiales de la Biosphère 
(CESBIO) on the basis of the SMOS satellite images. As in ref. 32, the 
root mean square error (RMSE) between the measured and simulated 

brightness temperatures (referred to as RMSE-TB) associated with 
the SMOS-IC product was used to filter out observations affected by 
radio frequency interference, which perturbs the natural microwave 
emission from Earth’s surface measured by passive microwave sys-
tems. We excluded daily observations, influenced by radio frequency 
interference effects, for which RMSE-TB was larger than 6 K. Monthly 
L-VOD and soil moisture from June to September were produced as the 
medians of all high-quality ascending and descending L-VOD retrievals 
with more than four valid observations per month. Robust estimates 
of annual L-VOD and soil moisture were then obtained as the averages 
of the monthly products ( June–September); pixels that have at least 
one missing month within one year ( June–September) were filtered 
out in this study. The annual changes in precipitation and SMOS soil 
moisture are quite consistent over the West Siberia, East Siberia and 
Far East regions (Supplementary Fig. 2), adding confidence in the 
quality of the simultaneous retrievals of SM and L-VOD from the SMOS 
observations over Siberia.

L-VOD-retrieved AGClive

The method used here to compute annual AGClive from yearly L-VOD is 
the same as the one used in ref. 32, where it is described in detail. AGClive 
was computed from L-VOD on the basis of an empirical calibration func-
tion (equation (1)) using gridded reference AGClive datasets:

AGClive = a × VODb (1)

where a and b are two best-fit parameters (Supplementary Table 1) and 
VOD is the yearly L-VOD data. As in ref. 32, we used the year 2011 for cali-
brating equation (1) (the year used for calibration proved to have very 
little impact on the calibrated curves). An illustration of the calibrated 
relationships between L-VOD and AGClive based on the GlobBiomass, 
Saatchi and CCI maps is given in Supplementary Fig. 14. We converted 
the yearly L-VOD map into maps of yearly AGClive density (MgC ha−1) for 
2010–2019 using equation (1). Regional AGClive stocks were obtained 
by multiplying the L-VOD-derived AGClive density by the area of the 
corresponding L-VOD pixels.

The AGClive benchmark maps contain uncertainties and biases, 
and no single map can be considered fully reliable65,66. The L-VOD map 
matched different benchmark maps of above-ground living carbon 
in the study region (Supplementary Fig. 14). We used all the different 
maps to fit equation (1) for the global scale and for Siberia separately 
(Supplementary Fig. 14). Six calibrations of equation (1) were thereby 
obtained (Supplementary Table 1). Note that the calibrated relation-
ships between L-VOD and the benchmark maps were consistent both at 
the global scale and for Siberia alone (Supplementary Fig. 14), showing 
that the statistical relationship between L-VOD and vegetation carbon 
stocks is robust over different regions of interest. Moreover, the general 
relationship between the reference map and the annual L-VOD map was 
stable between individual years. In addition, the net AGClive changes 
from 2010 to 2019 estimated by the relationship calibrated on the basis 
of the live AGC benchmark maps and annual L-VOD were very similar 
between individual years (Supplementary Fig. 15).

We used all the six calibrations to create six maps of AGClive stocks. 
We used the median of these six maps to calculate yearly AGClive maps 
during 2010–2019. The minima and maxima were also reported as they 
provide estimates of the uncertainty associated with the retrieved 
AGClive estimates used in this study and that relates to systematic errors 
in the reference biomass maps32.

Fan et al.32 have done an extensive analysis of the uncertainties 
associated with AGClive and AGClive changes, including (1) internal 
uncertainties associated with the L-VOD derived AGClive estimates and 
(2) external uncertainties associated with the errors in the reference 
biomass maps used to calibrate L-VOD from equation (1). Fan et al.32 
showed that external uncertainties were strongly dominant over the 
internal uncertainties and that combining both of them, the total 
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relative uncertainties associated with AGClive and the AGClive changes 
are on the order of 20–30%.

At large scale (global and Siberia regions), the cross-validation 
results showed high correlation (r) values and low RMSE values in 
the AGClive estimates by comparing the six AGClive estimates with the 
respective reference maps (Supplementary Table 2). This suggests 
that there is no obvious regional bias between the reference data-
sets and the AGClive estimates for the three continents. Moreover, the 
95% bootstrap confidence interval of the AGCtot estimates retrieved  
using each set of calibrated parameters is small, indicating that  
the internal uncertainties caused by sampling errors are small  
(Supplementary Table 2).

AGCtot

Here, ignoring soil, branch and fine litter changes, AGCtot is defined as 
the sum of AGClive estimated by L-VOD and dead AGC (for example, total 
CWDC (CWDCtot)), accounting for the net change of live and dead AGC 
in terrestrial ecosystems at temporal and spatial scales:

AGCtot = AGClive + CWDCtot (2)

Over Siberian forests, CWDCtot is driven mainly by the background 
mortality and forest disturbances (for example, wildfire, wind storm 
and drought). The carbon loss from CWDCtot was determined using 
decomposition and consumption by fires14. This decomposition rate 
is low because of the low temperature and short growing season67 
relative to tropical forests. Stand-replacing fire is the main cause of 
natural tree die-off in Siberia16,68, increasing the carbon stock of CWD 
(including dead standing and fallen trees) but meanwhile consuming 
CWDC. More specifically, the carbon loss from CWDCtot was assumed 
to be induced by decomposition and combustion by stand-replacing 
fire. Here, the CWDCtot fuels were from (1) mortality of trees caused by 
stand-replacing fire (CWDstand-replacing), (2) the initial accumulation for 
years before 2010 (CWDinitial) and (3) the mortality of trees caused by 
annual background mortality (CWDbackgroundmortality).

Thus, CWDCtot was calculated as:

CWDCtot = CWDstand−replacing + CWDinitial + CWDbackgroundmortality (3)

The detailed calculation of CWDCtot is given in Supplementary 
Text.

Vegetation and climate variables
Annual burned fraction. The MOD14A2 active fire product (MODIS/
Terra Thermal Anomalies and Fire 8-Day L3 Global 1 km v.006) is an 
eight-day composite containing the maximum value of the individual 
pixel classes that are in each 1 km grid cell over the eight-day period34 
(the newer 6.1 version is available now). Each MOD14A2 file consists 
of two layers (a fire mask and associated quality information). We 
first identified the good-quality observations (nominal and high con-
fidence) of MOD14A2 active fire, then we generated annual active fire 
maps including all pixels where active fire occurred in a year (each 
1 km pixel was assumed to be completely burned) during 2010–2019. 
Annual burned fraction was calculated at the resolution of SMOS as the 
proportion of the summed areas of active fire (assuming that each 1 km 
pixel was completely burned) within each 25 km grid cell.

MODIS LAI product. We used the MODIS LAI product (the MCD15A2H, 
v.6, level 4), which is an eight-day composite dataset with 500 m pixel 
size52. High-quality LAI data from June to September during 2010–2019 
were aggregated to an annual composite at 25 km spatial resolution 
by averaging from their original resolution to match the SMOS grid.

Forest loss. We used the ‘yearloss’ forest area loss map33 to calcu-
late forest-loss rates. Forest loss was defined as a stand-replacement 

disturbance or a change from a forest to a non-forest state. Each 30 m 
pixel in the yearloss Landsat data was labelled with a loss year represent-
ing the loss of forest (defined as tree higher than 5 m) cover detected 
primarily during 2000–2019. Here, forest percentage loss rates during 
the study period 2010–2019 were calculated at the resolution of SMOS 
grid as the proportion of the summed areas of forest loss (detected 
by the yearloss map) within each SMOS grid cell (~25 km). Note that 
forest-loss product33 represents temporal or permanent loss of tree 
cover after disturbances (wildfire or clearcutting).

Stand-replacing wildfires product. This product from van Wees 
et al.69 estimates areas where forest loss overlaps with fire detection 
(burn area or active fires) at a spatial resolution of 500 m. Its defini-
tion of wildfire-related forest loss includes any sequence between 
fire and forest loss, including simultaneous occurrence of fire and 
forest loss (for example, wildfire), fire followed by forest loss (for 
example, tree mortality after fire damage) and forest loss followed 
by fire (for example, burning of slash after felling, which mostly hap-
pens in the same year as the felling). Here, annual stand-replacing 
fire fraction was calculated at the resolution of SMOS as the propor-
tion of the summed areas of stand-replacing fire within each SMOS  
grid cell (~25 km).

SPEI-12. SPEI-12 refers to the droughts at a 12-month timescale, pro-
vided from the global SPEI database (https://spei.csic.es/)70. SPEI is a 
multi-scalar index frequently used to quantify drought and is based 
on a climate–water balance. As opposed to some existing indices of 
climatological drought, SPEI incorporates multiple climatological 
factors, including precipitation and temperature, which is imperative 
for assessing the influence of climate change on drought.

Tree species map. Tree species map71 has a spatial resolution of 200 m. 
The product was aggregated to 25 km resolution by dominant species 
within each SMOS grid cell. The dominant species is the species that 
has the largest number of 200 m native-resolution pixels within each 
SMOS grid cell. The tree species over the study region included pine 
(14%), spruce (2%), fir (2%), larch (63%), juniper (6%), oak (1%), birch 
(11%) and maple (1%). In addition, the tree species used for the calcula-
tion of AGClive/LAI recovery are birch, maple, larch, spruce and pine 
(Supplementary Fig. 9).

VODLPDR. VODLPDR at a high-frequency band (X-band) is provided by the 
global land parameter data record (LPDR)72, which is sensitive to the 
canopy biomass water content and saturates in densely vegetated areas 
faster than low-frequency L-VOD but much less than optical indices73. 
High-quality VODLPDR from June to September during 2010–2019 was 
used to calculate the yearly VODLPDR.

Greening trend
Greening trend was evaluated on the basis of the Theil–Sen test, which 
is used to determine the trend direction, while the Mann–Kendall test 
was used to assess the statistical significance of the trends, regarding 
trends as significant when P < 0.05.

Net gains/losses in AGC
Net changes in AGC were calculated as the difference in AGC between 
two years. For example, net changes in AGC during 2010–2019 were 
calculated as the AGC in 2019 minus that in 2010. A positive net AGC 
change indicates net gain (sink) in AGC, while a negative net AGC change 
indicates net carbon losses (source).

Gross gains/losses in AGClive

Gross changes in AGClive were calculated by cumulating positive/
negative changes in AGClive for consecutive years from 2010 to 2019, 
respectively.

http://www.nature.com/naturegeoscience
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Gross AGClive loss caused by forest loss and forest degradation
The gross AGClive loss (Gross AGC loss) in a grid cell is controlled by 
forest area loss (Gross AGC lossforest loss), forest degradation (Gross 
AGC lossdegradation) and other mechanisms (Gross AGC lossothers) such as 
non-forest biomass decreases (equation (4)). We conducted a simple 
estimate of forest loss versus degradation within each SMOS grid cell 
using the method proposed by Harris et al.40 and Qin et al.41. First we 
calculated the gross AGClive loss in each 25 km grid cell. Second, we 
multiplied the gross forest area loss (Gross forest area loss, calculated 
using Hansen et al.33) during 2011–2019 by the AGClive density in 2010 to 
estimate separately the contribution from forest loss to gross AGClive 
loss (equation (5)). The difference between gross AGClive loss and this 
forest loss (Gross AGC lossforest loss) contribution is attributed to degra-
dation (equation (6))

GrossAGC lossforest loss ≅ ∑(Gross forest area loss) × AGCdensity (5)

GrossAGC lossdegradation ≅ GrossAGC loss − GrossAGC lossforest loss (6)

The gross AGClive loss by forest area loss (Gross AGC lossforest loss) was 
further separated into contributions of stand-replacing wildfires (Gross 
AGC lossstand-replacing fire) and other factors (for example, clearcutting and 
severe drought that suppress forests) to AGClive losses. Stand-replacing 
fire areas during the study period 2011–2019 were calculated as the pro-
portion of the areas of stand-replacing fire within each SMOS grid cell 
(~25 km). Second, we multiplied the AGClive loss from stand-replacing 
fires leading to forest loss:

GrossAGC lossstand − replacing fire ≅

∑(Gross areasstand−replacing fire) × AGCdensity
(7)

Losses of AGClive and LAI resulting from the immediate effect 
of fire in selected pixels
Wildfire-related losses of AGClive and LAI were investigated over 
selected burned pixels. Fire recurrence affects community devel-
opment and landscape diversity. Post-wildfire dynamics depend 
on the interval of wildfire recurrence, and forests affected by 
recurrent wildfires in a short period will have a different behav-
iour from those affected by a single wildfire74. In this study, 
we focused on selected burned pixels that were burned only 
once. Selected pixels were determined from two conditions: (1) 
burned only once during 2010–2019 with the burned area frac-
tion larger than 10% in the fire year and (2) burned area fraction 
less than 1% in the unburned years during 2006–2019 using the  
MOD14A2 product.

Taking AGClive as an example, forest AGClive losses (%) were  
calculated by the maximum pre- and post-fire AGClive difference  
(year before fire minus fire year or fire year plus 1), relative to  
pre-fire AGClive (see equation (8)). The timing of the fire influenced 
which year was selected: fires early in the season had the largest  
impact in the year of the fire, whereas late-season fires had  
the largest impact during the following year. One hundred  
eighty-four pixels were selected following the defined selection  
criteria as:

AGCloss (%) =
max (AGCprefire − AGCfire,AGCprefire − AGCfire+1)

AGCprefire
(8)

where AGCloss is the live AGC losses resulting from the immediate effect 
of fire. AGCprefire, AGCfire and AGCfire+1 are the AGClive stocks in the one 
year before wildfire, the wildfire year and the one year after wildfire, 
respectively. LAI forest losses were also computed from equation (8) 
by substituting ‘AGC’ with ‘LAI’.

AGClive and LAI recovery in the post-wildfire period
Post-fire AGClive and LAI recovery in the Siberian forests were studied 
by analysing the selected burned pixels. The AGClive time series of 
these selected pixels were first shifted to align the fire years of all 
fires considered (Supplementary Fig. 16). ‘Relative year zero’ is the 
fire year, negative values are pre-fire years (for example, ‘−1’ year 
means one year before fire) and positive values are post-fire years 
(for example, ‘2’ year means the second year after fire). Then, at the 
ith year after fire, the recovery ratio (Recoveryi (%)) is calculated from 
pre-fire live AGC (AGC−1) and live AGC at ith year in the post-fire period 
(AGCi) using equation (9). Thus, the recovery ratio for each year was 
plotted in Fig. 4 in the main text as the AGClive recovery trajectory. 
Forest recovery trajectory was also estimated from LAI following the  
same method.

Recoveryi =
AGCi
AGC−1

× 100%,−1 ≤ i ≤ 9 (9)

Uncertainties associated with the vegetation indices
The pixels with a burned fraction larger than 10% were selected to cal-
culate the AGClive/LAI response to wildfire events. Although our results 
suggested that wildfire is the main reason for the divergent response 
between AGClive and LAI during 2010–2019, the heatwave events that 
cause wildfires in the Siberian ecosystem also cause degradations due 
to water stress and mortality. So the AGClive/LAI changes that we com-
puted within the selected pixels could be attributed to both climate 
(drought and heatwave) and fires. It is difficult to identify and separate 
the relative contributions of climate and fire in the AGClive/LAI changes 
due to the coarse spatial resolution (~25 km) of the L-VOD-derived 
AGClive. Similarly, due to this coarse spatial resolution, we failed to 
separate pixel-scale carbon gains and losses due to deforestation, 
regeneration, livestock pressure, conservation, fires and other events73. 
A detailed description of the uncertainties associated with the AGClive 
product was summarized in ref. 32.

LAI uncertainties include the limitations of data availability caused 
by the low temporal sampling frequency (a few days to a few weeks) 
of the MODIS data, which also introduces temporal scale-dependent 
effects that may be magnified in Arctic systems.

For example, if, due to cloud or aerosol effects, most MODIS  
observations over one pixel are available in June for year Y and in 
September for year Y + 1, it is difficult to interpret the changes in 
LAI between years Y and Y + 1. Are these changes due to greening or  
disturbances or to natural phenological effects? In addition,  
the greening/browning trends of LAI can vary owing to a suite of intrin-
sic (for example, sensor design or quality flagging algorithms), extrinsic 
(for example, atmospheric conditions, sun angle or snow cover) and 
biological factors28.

Data availability
L-VOD and soil moisture data from this study are freely available from 
the SMOS-IC website (https://ib.remote-sensing.inrae.fr/). AGCtot, 
AGClive and CWDC products are freely available from https://doi.org/ 
10.11888/Terre.tpdc.272842. The Saatchi biomass map is available upon 
request from Dr. S. Saatchi (sasan.s.saatchi@jpl.nasa.gov). Tree species 
maps are available upon request from D. Schepaschenko (schepd@
iiasa.ac.at) or from http://webarchive.iiasa.ac.at/Research/FOR/for-
est_cdrom/english/for_prod_en.html. Additional data used in the paper 
are publicly available, with their locations provided in the respective 
references.
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