
1.  Introduction
Global estimates of gross primary production (GPP) from various data-driven models and process-based 
models have traditionally been validated using the FLUXNET 2015 data set (https://fluxnet.fluxdata.org/), 
a global network of about 500 eddy flux towers (Pastorello et al., 2020). However, this network is largely 
concentrated in North America, Europe, and East Asia, which prevents the validation of GPP estimates 
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fluorescence (SIF) data provides new opportunities to corroborate and improve global photosynthesis 
estimates. Here we report the spatiotemporal consistency between TROPOMI SIF and vegetation indices 
from the bidirectional reflectance distribution function (BRDF) adjusted (MCD43) and standard MODIS 
(MOD09) surface reflectance products, estimates of absorbed photosynthetically active radiation by 
chlorophyll (APARchl) derived from National Centers for Environmental Prediction Reanalysis-2 (NCEP2), 
MODIS MCD18, and European Reanalysis (ERA5) data, and two GPP products (GPPVPM and GPPMOD17). 
We find (a) non-adjusted VIs were more highly correlated with SIF at mid and high latitude than BRDF-
adjusted VIs, but were less correlated in the tropics, (b) negligible differences in the correlation between 
SIF and non-adjusted NIRv and EVI, but BRDF-adjusted NIRv had higher correlations with SIF at mid 
to high latitude than BRDF-adjusted EVI but lower correlations in the tropics, (c) choice of PAR data set 
likely to cause substantial differences in global and regional GPP estimates and the correlation between 
modeled GPP and SIF, (d) SIF was more highly correlated with APARchl at high to mid latitude than EVI 
but more highly correlated with EVI at lower latitudes, and (e) GPPVPM is more highly correlated with SIF 
than GPPMOD17, except in sub-Sahara Africa. Our results highlight that spaceborne photosynthesis would 
likely be improved by using a non-linear response to PAR and that the fundamental differences between 
the vegetation indices and PAR data sets are likely to yield important differences in global and regional 
estimates of photosynthesis.

Plain Language Summary  The validation of global, satellite-based estimates of terrestrial 
photosynthesis has traditionally been conducted using a network consisting of a couple of hundred 
observation towers. However, these towers are not uniformly distributed across Earth's biomes and are 
largely concentrated in North America, Europe, and East Asia. Recent advancements in the detection of 
solar-induced chlorophyll fluorescence (SIF), which is emitted from plants during photosynthesis, from 
space now affords us an opportunity to further validate satellite-based photosynthesis and investigate 
how such estimates may be improved. The recently launched TROPOspheric Monitoring Instrument 
(TROPOMI) provides daily global scans at a relatively high spatial resolution. Here, we compare at the 
global-scale TROPOMI SIF to satellite-based photosynthesis, vegetation indices, and estimates of the 
amount of sunlight absorbed by chlorophyll (APARchl), the latter two of which are used for estimating 
photosynthesis. Although we found TROPOMI SIF to be consistent with satellite-based photosynthesis, 
vegetation indices, and APARchl, we found that SIF was better correlated with APARchl at high to mid 
latitude and better correlated with EVI at lower latitudes. This discrepancy indicates that modeling GPP as 
a non-linear response to PAR would improve spaceborne estimates of photosynthesis.
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in many parts of the world. Recent scientific advancements enable us to retrieve solar-induced chloro-
phyll fluorescence (SIF) from spaceborne spectroscopic measurements (Frankenberg et al., 2011; Guanter 
et al., 2007; Joiner, Yoshida, Vasilkov, & Middleton, 2011), which is light energy emitted by plants after chlo-
rophyll absorbs sunlight. Spaceborne SIF data has been shown to be linearly correlated with GPP at coarse 
spatial and temporal scales (Lin et al., 2019; Magney, Barnes, & Yang, 2020; Magney, Bowling, et al., 2019; 
X. Yang et al., 2015). Thus, spaceborne SIF has become an accepted proxy and is a new tool for assessing 
the performance of GPP products (Sun et al., 2017; Wagle, Zhang, Jin, & Xiao, 2016; Y. Zhang et al., 2016).

Photosynthesis begins with the absorption of photosynthetically active radiation (PAR) by chlorophyll in 
the leaves of a canopy (APARchl, APARleaf, and APARcanopy). Over the past few decades, many vegetation in-
dices (VIs) have been calculated using the blue, red, and/or near-infrared spectral bands of light reflected by 
Earth's surface as observed by satellite optical sensors. The Normalized Difference Vegetation Index (NDVI) 
(Rouse, Haas, Schell, & Deering, 1974) and Enhanced Vegetation Index (EVI) (Huete, Liu, Batchily, & van 
Leeuwen, 1997) have been respectively used to estimate the fraction of PAR absorbed by the canopy (fPAR-
canopy) (Running et al., 2004) and by chlorophyll (fPARchl) (Xiao et al., 2004). fPARcanopy is substantially larger 
than fPARchl because the canopy is composed of both chlorophyll and non-photosynthetic vegetation (Q. 
Zhang et al., 2005). fPARcanopy and fPARchl are used to estimate APARcanopy and APARchl (Equations 1 and 2).

 canopy canopyAPAR fPAR PAR� (1)

 chl chlAPAR fPAR PAR� (2)

APARchl has three pathways: non-photochemical quenching (or heat; NPQ), photochemical quenching 
(chemical energy used for converting CO2 to carbohydrate; PQ), and SIF (Equation 3).

  chlAPAR NPQ PQ SIF� (3)

Light use efficiency (LUE) models estimate the daily GPP (g C/m2/day) of vegetation using APARcanopy or 
APARchl and light use efficiency (εg), or the efficiency of plants to convert light energy into carbohydrates, 
using Equations 4 and 5:

 canopyGPP APAR g� (4)

 chlGPP APAR g� (5)

Two commonly used GPP data products from the LUE models include GPPMOD17 (MOD17) from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) (Running & Zhao, 2015), which uses fPARcanopy and 
APARcanopy, and GPPVPM from the Vegetation Photosynthesis Model (VPM) (Xiao et  al.,  2004; Y. Zhang 
et al., 2017), which uses fPARchl and APARchl.

The newly launched TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor 
satellite provides SIF data with near-daily global coverage at much finer spatial resolutions (3.5 × 7 km at 
nadir) than previous platforms (Köhler et al., 2018). The new TROPOMI SIF data have provided valuable 
contributions to the debates over the seasonality of vegetation photosynthesis at regional scale, which has 
important implications for understanding the inter- and intra-annual variability of Earth's atmospheric car-
bon dioxide concentration (Doughty et al., 2019; Turner et al., 2019; Yin et al., 2020). To date, no study has 
conducted a global-scale correlative analysis of TROPOMI SIF data with vegetation indices (proxies for es-
timating fPARchl and fPARcanopy), APARchl and APARcanopy, and GPP estimates from data-driven models (e.g., 
GPPMOD17 and GPPVPM). Here, we conducted these correlative analyses to answer five primary questions, 
which were aimed to provide insight into the relationships between SIF and fPARcanopy, fPARchl, APARcanopy, 
APARchl, GPPVPM, and GPPMOD17.

First, are bidirectional reflectance distribution function (BRDF) adjusted VIs more strongly correlated with 
SIF than non-adjusted VIs? BRDF adjustments to the MODIS surface reflectance data has been performed 
because of the sensor's sequential angular views over time can introduce slight artifacts or drifts in the data 
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(Morton et al., 2014; C. B. Schaaf et al., 2002). Thus, it has been argued that BRDF-adjusted VIs should 
be used when quantifying the changes of vegetation or estimating GPP, especially in the tropics, because 
the adjustment can help account for differences in viewing and illumination geometry between satellite 
observations (Morton et al., 2014). Others have pointed out that BRDF adjustment can have disadvantag-
es (Huete et al., 2002) and that a BRDF adjustment marginally decreases the magnitude of the seasonal 
change in vegetation indices but does not change the seasonality itself (Guan et al., 2015; Maeda, Heiska-
nen, Aragão, & Rinne, 2014; Saleska et al., 2016). Similarly, it is known that sun-sensor geometry can impact 
retrieved SIF values, with higher SIF values at lower phase angles when the satellite sensor and the sun are 
nearly aligned (Joiner et al., 2020; Köhler et al., 2018). Here, we compared vegetation indices derived from 
both the non-adjusted MODIS standard surface reflectance (MOD09) and BRDF-adjusted surface reflec-
tance (MCD43) products with SIF. We suspected that BRDF-adjusted NIRv and EVI would have a better 
relationship with SIF than non-adjusted VIs, because (a) the directionality of the escape of emitted SIF from 
the canopy has been suspected to be similar to the escape of reflected energy (P. Yang & van der Tol, 2018) 
and (b) we partially account for the effects of illumination and viewing geometry on retrieved SIF values.

Second, does the near-infrared reflectance (NIR) of terrestrial vegetation (NIRv have a higher correlation 
with TROPOMI SIF than EVI or NDVI? Recently, a study found that NIRv, the product of NDVI and the 
near-infrared band, had a stronger correlation with modeled GPP (FluxCom) than SIF (GOME-2) and sug-
gested that NIRv could be a superior index when used to model global GPP (Badgley, Field, & Berry, 2017). 
A more recent study of 10 sites across several biomes found a near perfect correlation (R2 = 0.99) between 
NIRv and EVI (Hinojo-Hinojo & Goulden, 2020). We expected a weaker correlation between SIF and NDVI 
than between SIF and EVI or NIRv because of NDVI's tendency to saturate in regions with a high leaf area 
index. More importantly, we expected to determine if there is a clear difference in the ability of EVI or NIRv 
to track changes in the vegetation canopy.

Third, how would the input of PAR data from the National Centers for Environmental Prediction Rea-
nalysis-2 (NCEP2), the European Reanalysis (ERA5), and MODIS MCD18 affect the correlation between 
APARchl and SIF? The NCEP2 data has a 6-h temporal resolution and a coarse spatial resolution of roughly 
1.9° (T62 Gaussian grid). The other two data sets have higher spatial and temporal resolutions and were very 
recently published: the ERA5 product at 1-hourly and 0.10° and the MCD18 product at 3-hourly and 0.05°. 
Here, we compared their differences out-of-the-box, computed APARchl from each data set, and compared 
APARchl with SIF.

Fourth, does SIF have a higher correlation with APARchl than VIs? We expected SIF to be better correlat-
ed with APARchl than VIs, which are proxies of fPAR, because SIF is driven by both fPAR and PAR and 
thus has a strong empirical relationship with APARchl at the leaf and canopy scales (Magney, Frankenberg, 
et al., 2019; Miao et al., 2018).

Finally, does GPPVPM, an APARchl-based model, have a stronger spatial and temporal correlation with TRO-
POMI SIF than does GPPMOD17, an APARcanopy-based model? We expected GPPVPM to be better correlated 
with TROPOMI SIF because VPM uses fPARchl and SIF energy emitted by chlorophyll after it absorbs PAR.

2.  Materials and Methods
Figure 1 illustrates a workflow and the data sets used in our study. All medians presented in the inset maps 
in the Results section below are presented together in Table S1.

2.1.  TROPOMI SIF Retrievals

The retrieval of SIF from spaceborne sensors requires a moderate to high spectral resolution spectrometer 
to detect the changes in the optical depths of Fraunhofer lines caused by the weak fluorescence emission, 
which has been satisfied by spaceborne platforms that target trace gases in the atmosphere. The first re-
trievals of SIF from spaceborne platforms were described in a series of papers starting in 2007 (Guanter 
et al., 2007) and were conducted using the Greenhouse gases Observing SATellite (GOSAT) (Frankenberg, 
O'Dell, Guanter, & McDuffie, 2012; Guanter et al., 2012) and SCanning Imaging Absorption SpectroMe-
ter for Atmospheric CHartographY (SCIAMACHY) (Joiner et al., 2012). More recently, the Global Ozone 
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Monitoring Experiment–2 (GOME-2) (Joiner et  al.,  2013) and Orbiting Carbon Observatory-2 (OCO-2) 
(Frankenberg et al., 2014) have been used to retrieve SIF. Many studies have studied the relationships be-
tween SIF and GPP (Porcar-Castell et al., 2014; Sun et al., 2018), developed SIF-GPP models for estimating 
GPP (Guan et al., 2015; Porcar-Castell et al., 2014), and used SIF data from GOME-2 and OCO-2 to evaluate 
GPP data products (Sun et al., 2017; Wagle et al., 2016; Y. Zhang et al., 2016).

Currently, the relationship between sun-sensor geometry and retrieved SIF is not fully understood, 
so a BRDF-like adjustment of spaceborne SIF data, from any platform, has not been conducted (Joiner 
et al., 2020; Köhler et al., 2018). Also, unlike surface reflectance data, SIF data is not strictly filtered for 
cloud cover as SIF is affected by cloud cover to a much smaller degree (Doughty et  al.,  2021; Guanter 
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Figure 1.  A diagram of the workflow undertaken in this study. Shown are the data sets (cylinders) we used and the 
figures (rectangles) we produced from those data sets. TROPOMI SIF data is in purple, and the workflows involving 
vegetation indices, photosynthetically active radiation (PAR) and absorbed photosynthetically active radiation (APAR), 
and gross primary production (GPP) are illustrated in green, orange, and blue, respectively.
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et al., 2015; Köhler et al., 2018). It is also worth noting that SIF is emitted energy, not reflected energy, and 
thus a reflectance function is inherently inappropriate for emitted energy. Thus, a BRDF-like adjustment of 
the spaceborne SIF data, if it were shown to be appropriate and necessary, could only be applied to cloud-
free observations (which would introduce clear sky bias) unless the BRDF adjustment could account for 
different fractions of cloud cover.

Nevertheless, we used two methods that partially account for the effect of sun-sensor geometry and reduces 
retrieval uncertainty. These two methods have been employed and discussed in greater detail in our previ-
ous publications (Doughty et al., 2019; Frankenberg et al., 2011; Köhler et al., 2018; Sun et al., 2018). First, 
we accounted for differences in the acquisition time and solar illumination geometry of the instantaneous 
retrieval of SIF by calculating daily average SIF. This calculation was done by multiplying the daily correc-
tion factor and instantaneous SIF as provided in the ungridded SIF data. Second, we calculated 8-day mean 
daily SIF at 0.20° spatial resolution to reduce retrieval uncertainty by n and account for differences in sensor 
viewing geometry. The rationale for using 8-day means to account for viewing geometry and the choice of 
0.20° spatial resolution is as follows.

TROPOMI has a 16-day revisit cycle, meaning that the satellite's nadir track is slightly offset from the previ-
ous day and thus the angle between TROPOMI's sensor and any given point on Earth varies day-to-day. The 
viewing geometry over an 8-day period is comparable to the viewing geometry over the subsequent 8 days, 
as demonstrated in Figure S1. This figure is an ideal scenario, but what is important is not that the viewing 
angles of each 8-day span are identical but that the distribution of the viewing angles in each 8-day span 
are relatively uniform across the range of viewing angles. We have demonstrated these distributions for two 
gridcells in Figure S2.

Coincidentally, 8-day mean SIF affords us the opportunity to compare TROPOMI SIF to 8-day MODIS-
based vegetation indices and GPP. Thus, we gridded TROPOMI SIF vector data into 8-day means starting 
on March 6, 2018, which corresponds to the temporal resolution of the 8-day MODIS-based products and 
is the earliest date for which we have TROPOMI data. Each SIF gridcell value was the area-weighted mean 
of all soundings within the gridcell over an 8-day period. We filtered the soundings with thresholds of 60° 
for viewing zenith angle, 0.8 for cloud fraction, 70° for solar zenith angles, and 120° for phase angles as de-
scribed by Köhler et al. (2018). Finer resolution grids, such as 0.05°, severely impacts the SIF/GPP correla-
tion, reduces the consistency of the 8-day data, and increases retrieval uncertainty (Figure S3). Conversely, 
coarser resolutions, such as 0.50°, have only minute differences with the 0.20° data.

2.2.  Gross Primary Production Data Products

We compared the TROPOMI SIF data set with two MODIS-derived GPP data sets: GPPVPM from the Veg-
etation Photosynthesis Model (VPM) (Y. Zhang et al., 2017) and GPPMOD17 from the MODIS MOD17A2H 
V006 product (Running & Zhao, 2015). Both GPP data sets have a spatial resolution of 500 m and a temporal 
resolution of 8 days. We aggregated both GPP data sets to 0.20° spatial resolution, which is consistent with 
TROPOMI SIF data set. Both GPPMOD17 and GPPVPM are from light use efficiency (LUE) models.

  MOD17 canopyGPP fPAR PAR g� (6)

  VPM chlGPP fPAR PAR g� (7)

where fPARcanopy is the fraction of PAR absorbed by the vegetation canopy and fPARchl is the fraction of 
PAR absorbed by chlorophyll in the canopy. Note that fPARcanopy is substantially larger than fPARchl, as 
canopy is composed of both chlorophyll and non-photosynthetic vegetation (Q. Zhang et al., 2014, 2005), 
and the rationale for using fPARchl instead of fPARcanopy is that fPARchl captures information on only the 
photosynthetically active portion of the canopy (Xiao et al., 2004). The VPM model uses EVI calculated 
from MOD09A1 V006 surface reflectance (Vermote, 2015) to estimate fPARchl. The light use efficiency (εg) 
values in LUE models are calculated by downregulating maximum light use efficiency (often noted as ε0) 
using environmental variables, such as temperature and water stress, and are different for each model. For 
detailed explanation of how LUE is calculated for the VPM and MODIS GPP data products, please see their 
respective data papers (Running et al., 2004; Y. Zhang et al., 2017).
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2.3.  MODIS Surface Reflectance Data and Vegetation Indices

We calculated the near-infrared reflectance of terrestrial vegetation (NIRv) (Badgley et al., 2017), Enhanced 
Vegetation Index (EVI) (Huete et al., 1997), and Normalized Difference Vegetation Index (NDVI) (Rouse 
et al.,  1974) from two commonly used MODIS surface reflectance data products, MOD09A1 V006 (Ver-
mote, 2015), and MCD43C4 V006 (C. Schaaf & Wang, 2015). The MOD09 data set is the standard MODIS 
surface reflectance product, and the MCD43 surface reflectance data set is adjusted for viewing geometry 
using the bidirectional reflectance distribution function (BRDF). For both surface reflectance products, we 
computed 8-day NIRv, EVI, and NDVI using the equations:


 


NIR REDNIRv NIR
NIR RED

� (8)


 

    
NIR REDEVI 2.5

NIR 6 RED 7.5 BLUE 1
� (9)





NIR REDNDVI
NIR RED

� (10)

The MOD09 EVI data that we used in this study was the same EVI data that was prepared for input into 
VPM. We derived MOD09 NIRv and NDVI using the same methods that were used to derive the MOD09 
EVI data. More specifically, poor quality data were identified, data gaps were filled, and the data was 
smoothed using the Best Index Slope Extraction algorithm, linear interpolation, and the Savitzky-Golay 
filter as detailed by (Y. Zhang et al., 2017). The native spatial resolution of these MOD09 VIs is 500 m, and 
we aggregated these VIs to 0.20° spatial resolution.

The MCD43C4 data we used to calculate VIs is a daily product, which we aggregated temporally to 8-day 
means. This data set, which is provided in 0.05° spatial resolution, is produced using 16 days of Terra and 
Aqua MODIS data, and is weighted to the ninth day of the retrieval period (C. Schaaf & Wang, 2015). After 
calculating the VIs using the original MCD43C4 data, we aggregated the VIs to 0.20°. The methods used to 
derive the MCD43 data set are intended to remove the effects of viewing angle and directional reflectances, 
so the surface reflectance in this data set approximates what the reflectance would be if it were observed at 
nadir during the local solar noon (C. Schaaf & Wang, 2015).

2.4.  Photosynthetically Active Radiation, fPAR, and APAR

For this study, we calculated 8-day mean PAR as a fraction (0.48) of the downward shortwave radiation at 
the surface estimated by three climate data sets: MODIS MCD18A2 (D. Wang, 2017), NCEP Reanalysis-2 
(Kanamitsu et al., 2002), and ERA5: Fifth generation of ECMWF atmospheric reanalysis of the global cli-
mate (Copernicus Climate Change Service, 2017). These data sets were resampled or aggregated to 0.20° 
from their native spatial resolutions (5-km, ∼1.9°, and 0.1°, respectively) and to 8-day means from their 
native temporal resolutions (6, 3, and 1-h, respectively). We calculated APARchl as fPARchl × PAR where 
fPARchl was a linear function of MOD09 EVI (fPARchl = (EVI−0.1) × 1.25) as detailed by Zhang et al. (2017).

3.  Results
3.1.  Differences Between Non-Adjusted NIRv, EVI, and NDVI and Their BRDF-Adjusted 
Counterparts and Their Correlations With TROPOMI SIF

There were very substantial latitudinal differences between non-adjusted and BRDF-adjusted vegetation 
indices that would affect estimates of fPARchl and fPARcanopy. Non-adjusted NIRv was moderately lower than 
BRDF-adjusted NIRv in the tropical and subtropical regions, and substantially higher than BRDF-adjusted 
NIRv at mid and high latitudes, except for far North Russia where non-adjusted NIRv was much lower than 
BRDF-adjusted NIRv (Figure 2a). Non-adjusted EVI was moderately lower in the tropics and substantially 
higher at mid and high latitudes compared to BRDF-adjusted EVI (Figure 2b). Non-adjusted NDVI was 
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Figure 2.  Percentage change between annual mean non-adjusted (MOD09) NIRv, EVI, and NDVI BRDF-adjusted (MCD43). Inset figures show mean 
percentage change by latitude; the dark shaded region represents the tropics (23.5°N to 23.5°S) and the light shaded region represents the subtropics (35°N and 
35°S). Maps of the annual means for each vegetation index from each platform are depicted in Figure S4. Gray shaded terrain is no data.
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substantially higher than BRDF-adjusted NDVI at high latitudes, except for far north Russia (Figure 2c). 
Despite these dramatic regional differences, we found at the global-scale that the mean percentage change 
between annual mean non-adjusted and BRDF-adjusted NIRv and EVI were rather negligible (−0.19% and 
−0.13%, respectively). For NDVI, the difference in the global annual mean was relatively large (6.94%). 
These geographic differences between non-adjusted and BRDF-adjusted vegetation indices highlights the 
need to consider the potential effect of the BRDF adjustment on GPP estimates at the pixel, regional, and 
global scales when these vegetation indices are used as proxies of fPAR.

In terms of the temporal consistency, TROPOMI SIF was strongly correlated with both non-adjusted and 
BRDF-adjusted NIRv, EVI, and NDVI throughout the year, except in the tropics where the correlation was 
often weak or not significant (Figure 3). The poor temporal correlation (R2) in the tropical regions between 
10°S and 10°N was most likely due to a weak seasonal amplitude in vegetation indices and SIF, fewer 
satellite observations, and more frequent cloud cover (Figures  S5 and  S6). However, we did notice that 
BRDF-adjusted NIRv and EVI was more likely to be significantly correlated with SIF in the Amazon and 
tropical Africa (Figures 3a–3d). We also found important differences in the temporal correlation between 
SIF and non-adjusted VIs and between SIF and their BRDF-adjusted counterparts. Non-adjusted NIRv had 
a weaker correlation with SIF than BRDF-adjusted NIRv across much of the globe (Figure 4a). The same 
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Figure 3.  Temporal correlation between SIF and non-adjusted and BRDF-adjusted and NIRv, EVI, and NDVI in 2018 at 0.2° spatial resolution and 8-day 
temporal resolution. Temporal correlation between SIF and NIRv, EVI, and NDVI from non-adjusted MOD09 (a, c, and e) and BRDF-adjusted MCD43 (b, d, 
and f) surface reflectance data products at individual gridcells during the 2018 study period using 8-day data at 0.20° spatial resolution. Red lines in and values 
above the inset histograms indicate the median. Gray shaded terrain is no data or no significant correlation (p > 0.05).
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Figure 4.  Differences in the temporal correlation (R2) between SIF and non-adjusted and BRDF-adjusted and NIRv, EVI, and NDVI in 2018. Gray shaded 
terrain is no data or no significant correlation (p > 0.05). Inset figures show the mean difference in R2 by latitude; the dark shaded region represents the tropics 
(23.5°N to 23.5°S) and the light shaded region represents the subtropics (35°N and 35°S).
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was true for non-adjusted EVI, except in the northern temperate zone where non-adjusted EVI tended to be 
better correlated with SIF (Figure 4b). Non-adjusted NDVI tended to have a stronger correlation with SIF 
than BRDF-adjusted NDVI, especially in the northern temperate zone.

3.2.  Differences in the Correlations of Non-Adjusted and BRDF-Adjusted NIRv, EVI, and NDVI 
With TROPOMI SIF

To investigate which vegetation index was most temporally consistent with TROPOMI SIF for both 
BRDF-adjusted and non-adjusted vegetation indices, we computed the difference between their coefficients 
of determination (R2) (Figure 5). The difference in the temporal correlation of non-adjusted NIRv and EVI 
with TROPOMI SIF was rather negligible (Figure 5a), with the most noticeable difference being that EVI 
was more consistent with TROPOMI SIF than NIRv in southwestern Africa and most of Australia. The cor-
relation between TROPOMI SIF and BRDF-adjusted NIRv was substantially higher than for BRDF-adjusted 
EVI in portions of the northern temperate zone (Figure 5b). The temporal consistency between SIF and 
NDVI was much weaker than for NIRv and EVI for both BRDF-adjusted and non-adjusted surface reflec-
tances (Figures 5c–5f). Interestingly, for both BRDF-adjusted and non-adjusted vegetation indices, NDVI 
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Figure 5.  Differences in the temporal correlation (R2) between 8-day TROPOMI SIF and non-adjusted and BRDF-adjusted NIRv, EVI, and NDVI. (a, c, and e) 
Differences in the temporal correlation (R2) between TROPOMI SIF and non-adjusted (MOD09) NIRv, EVI, and NDVI. (b, d, and f) The same for TROPOMI 
SIF and BRDF-adjusted (MCD43) indices. These difference maps were computed using the R2 maps in Figure 3. Gray shaded terrain is no data or no significant 
correlation (p > 0.05). Inset figures show the mean difference in R2 by latitude; the dark shaded region represents the tropics (23.5°N to 23.5°S) and the light 
shaded region represents the subtropics (35°N and 35°S).
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had a higher temporal consistency with SIF in southwest Africa and Australia's interior than either NIRv or 
EVI. The same was true in western Asia, except for BRDF-adjusted NIRv (Figure 5d).

3.3.  Differences Between MCD18, ERA5, and NCEP2 PAR Products

The quality of PAR data affects the estimates of APARchl and APARcanopy and may also affect the spatial and 
temporal consistency between TROPOMI SIF and APARchl and APARcanopy. When we compared the NCEP2, 
ERA5, and MCD18 PAR data, we found annual mean PAR (Figures 6a, 6c and 6e) to be very similar for 
MCD18 and ERA5 (Figure 6b), although MCD18 had lower estimates across most of the globe. However, 
there were stark differences between NCEP2 and the other two data sets (Figures 6d and 6f). The NCEP2 
data had higher PAR estimates in North America, much of South America, tropical Africa, and Asia, and 
lower PAR estimates in Central America, northern South America, non-tropical Africa, much of southern 
Europe and the Middle East, and Australia.

3.4.  Correlations of APAR With TROPOMI SIF and Their Differences

We used 8-day, non-adjusted EVI as a proxy of fPARchl, as is done in the VPM model, and the three PAR data 
sets to calculate three different estimates of APARchl during the study period for temporal comparisons with 
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Figure 6.  Annual mean PAR from NCEP-2, MCD18, and ERA5 and their differences. (a, c, and e) Annual mean PAR for the 2018 study period. (b, d, and f) 
Differences in annual mean PAR for the three data sets. Red lines in and values above the inset histograms indicate the median.
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TROPOMI SIF. We found only minor differences among these three APARchl data sets at the global-scale, 
with median global R2 values between 0.73 and 0.74 (Figures 7a–7c). Geographically, there were relatively 
minor differences in the temporal correlation between SIF and APARchl calculated from MCD18 and ERA5, 
with APARchl from MCD18 having a weaker correlation with SIF in South America, tropical Africa, and Eu-
rope, but a stronger correlation in India, the Himalayan Region, and Indochina (Figure 7b). However, there 
were some stark differences in the temporal correlation between SIF and APARchl calculated from NCEP2 
and the other two PAR data sets (Figures 7d and 7f). Relative to APARchl calculated using NCEP2 data, 
APARchl calculated from MCD18 and ERA5 had much lower temporal correlations with SIF in northcentral 
and southcentral United States, tropical South America, subtropical Africa, India, the Himalayan Region, 
Indochina, southern and eastern China, but had stronger correlations in much of the boreal zone of Europe 
and Asia, southern Africa, and most of the Australian coast.

We further investigated whether there were differences in the temporal correlation of SIF with APARchl and 
SIF with EVI, a proxy of fPARchl. Here, we again computed APARchl from NCEP2, MCD18, and ERA5 PAR, 
but using both non-adjusted and BRDF-adjusted EVI as proxies of fPARchl. We found that the differences 
in the spatial distributions of the temporal correlation (R2) between SIF/APARchl and SIF/EVI to be very 
similar, regardless of the PAR product or EVI used to compute the difference (Figure 8). In each case, we 
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Figure 7.  Temporal correlation between 8-day SIF and APAR for each of the three PAR data sets and their differences. (a, c, and e) Correlation between 
8-day mean SIF and APARchl calculated using PAR from NCEP2, MCD18, and ERA5 for the 2018 study period. (b, d, and f) Differences in the coefficients of 
determination (R2) of SIF and APARchl as calculated using the three PAR data sets. EVIMOD09 was used to estimate APARchl. Red lines in and values above the 
inset histograms indicate the median. Gray shaded terrain is no significant correlation (p > 0.05).
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generally found APARchl to be more consistent with SIF in the temperate zones and EVI to be more con-
sistent with SIF in the tropics and subtropics. However, there were some regional differences that did not 
follow this general trend, such as in East Asia where SIF tended to be more strongly correlated with EVI 
than APARchl.

3.5.  Differences and Correlations Between TROPOMI SIF, GPPVPM, and GPPMOD17

In terms of the spatial consistency between TROPOMI SIF, GPPVPM, and GPPMOD17 in 2018, the spatial 
distributions of annual mean GPPVPM and GPPMOD17 were highly consistent with annual mean SIF (Fig-
ures 9a, 9c and 9e; Figure S7). Relative to SIF, GPPVPM was higher in the easternmost states of Brazil, Africa, 
and lower in Southeast Asia (Figure 9b), and GPPMOD17 was higher in Amazonia and was substantially lower 
in Sub-Saharan Africa and the cropland region of the Midwestern United States (Figure 9d). GPPMOD17 was 
lower than GPPVPM in most of gridcells (Figure 9f).

In terms of temporal consistency at the gridcell level, 8-day GPPVPM and SIF in 2018 were highly correlated 
(Figure  10a), except for the tropical regions where the seasonality of photosynthesis is relatively weak, 
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Figure 8.  Differences in the temporal correlation of TROPOMI SIF with APARchl calculated with NCEP2, MCD18, and ERA5 PAR data and non-adjusted and 
BRDF-adjusted EVI. (a, c, and e) Differences in the coefficients of determination (R2) of SIF with APARchl as computed from NCEP2, MCD18, and ERA PAR 
data and non-adjusted MOD09 EVI and (b, d, and f) BRDF-adjusted MCD43 EVI. The APAR values in each plot were calculated using the same EVI to which 
they are compared as a proxy of fPAR. Red lines in and values above the inset histograms indicate the median. Gray shaded terrain is no significant correlation 
(p > 0.05).
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clouds are most persistent, and the number of good-quality satellite observations are low (Figures S5 and 6). 
Similarly, for GPPMOD17 there was a strong relationship with SIF at mid to high latitudes and weak or no 
relationships with SIF in the tropical regions (Figure 10b). However, there were also weak relationships 
in South America and in subtropical Africa. The difference between the 8-day consistency of GPPVPM and 
GPPMOD17 with SIF was rather stark, with GPPVPM having a stronger correlation with SIF across much of the 
globe, except in Sub-Saharan Africa (Figure 10c). Most notably, GPPVPM had substantially stronger corre-
lations with SIF in the South Central United States, South America, South Africa, India, and the provinces 
of South China. We also found that GPPVPM had a significant relationship with SIF in ∼8% more gridcells 
(20,813) than did GPPMOD17.

4.  Discussion
4.1.  Potential Impacts of BRDF-Adjusted VIs on GPP Estimates

At the global-scale, we found mean annual non-adjusted NIRv and EVI to be slightly lower than BRDF-ad-
justed NIRv and EVI by 0.19% and 0.13%, respectively. However, non-adjusted NIRv and EVI had substan-
tially higher values at high latitudes and substantially lower values in the tropics than BRDF-adjusted NIRv 
and EVI (Figure 2). These findings indicated that global annual mean GPP is likely to be higher when using 
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Figure 9.  Mean annual TROPOMI SIF, GPPVPM, and GPPMOD17 and their differences. (a, c, and e) Mean values for the 2018 study period. (b and d) Differences 
between normalized GPP and SIF. (f) Difference between GPPVPM and GPPMOD17. Red lines in and values above the inset histograms indicate the median. Gray 
shaded terrain is no data.
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Figure 10.  Temporal correlation between 8-day GPPVPM and SIF, GPPMOD and TROPOMI SIF, and their differences. (a and b) Temporal correlation between 
GPP and SIF at the gridcell level using 8-day data in 2018. (c) Difference between GPPVPM temporal correlation with SIF and GPPMOD17 temporal correlation 
with SIF. Gray shaded terrain is no data or p > 0.05.
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BRDF-adjusted NIRv or EVI as a proxy of fPAR, and that the use of BRDF-adjusted NIRv or EVI could re-
sult in substantially lower GPP at high latitudes and substantially higher GPP in the tropics relative to GPP 
estimates that use non-adjusted NIRv or EVI.

As for NDVI, the BRDF adjustment yielded substantially lower NDVI at the global-scale by nearly 7%, and 
there were substantially lower values at mid to high latitudes (Figure 2). Thus, the use of BRDF-adjusted 
NDVI as a proxy of fPAR to estimate GPP rather than non-adjusted NDVI would yield substantially lower 
estimates of GPP at mid and high latitudes, which would drive much lower estimates of global annual mean 
GPP at the global-scale.

BRDF-adjusted and NIRv and EVI were slightly more correlated with TROPOMI SIF at the global-scale 
than non-adjusted NIRv and EVI, with median R2 higher by 0.02 and <0.01, respectively (Figure 3). How-
ever, BRDF-adjusted NIRv and EVI tended to be less correlated with SIF at mid to high latitude and more 
correlated with SIF in the Amazon and tropical Africa, as indicated by the white areas in northern South 
America and central Africa in Figures 3b and 3d. Thus, the use of BRDF-adjusted NIRv or EVI as a proxy 
of fPAR in modeling GPP would likely lead to stronger correlations between GPP and SIF in the tropics, but 
lower correlations at mid to high latitude. Globally, BRDF-adjusted NDVI had a lower correlation with SIF 
than non-adjusted NDVI, especially at mid to high latitude, but slightly higher correlations in most of South 
American and Africa.

Therefore, global mean annual GPP estimates and the correlation between SIF and GPP at the global-scale 
would likely not be substantially different when using non-adjusted NIRv or EVI as a proxy of fPAR. How-
ever, BRDF-adjusted NIRv and EVI would yield lower GPP estimates and lower correlations between SIF 
and GPP at high latitudes, and higher GPP estimates and higher correlations between SIF and GPP in the 
tropics relative to non-adjusted NIRv and EVI. These findings indicate that there is not a unidirectional ben-
efit to using either BRDF-adjusted or non-adjusted NIRv and EVI as proxies of fPAR when estimating GPP, 
but rather there is a trade-off. For NDVI, there also appears to be a trade-off in that BRDF-adjusted NDVI 
has higher correlations with SIF in most of the tropics, but lower correlations at high latitude. However, the 
use of BRDF-adjusted NDVI would lead to substantially lower estimates of mean annual GPP, driven mostly 
by substantially lower estimates at mid to high latitudes.

4.2.  Biophysical Performance of NIRv and EVI

Numerous vegetation indices have been proposed and calculated from the surface reflectance, and NDVI 
and EVI are two of the most used vegetation indices. NDVI is related to leaf area index and has been used 
to estimate fPARcanopy (Rouse et al., 1974; Running et al., 2004), but NDVI saturates when leaf area index is 
high (>3 m2 m−2) (Hinojo-Hinojo & Goulden, 2020). EVI was developed to account for the effect of the soil 
background and atmosphere on surface reflectance (Huete et al., 1997), and is used to estimate fPARchl (Xiao 
et al., 2004). Over the last two decades, NDVI and EVI have been used as proxies of fPARcanopy and fPARchl, 
respectively, in LUE models to estimate GPP at the global-scale.

Recent studies reported that NIRv, which is a product of NDVI and NIR surface reflectance (Badgley 
et al., 2017; Dechant et al., 2019), addresses the NDVI-saturation issue over canopies with high LAI be-
cause NIR surface reflectance usually does not saturate. Badgley et al. (2017) reported a strong correlation 
between NIRv and GPP at eddy flux tower sites and also a stronger correlation between NIRv and GPP than 
between NIRv and GOME-2 SIF at 0.5° spatial resolution. These findings led the authors to advocate the 
use of NIRv for estimating global GPP. Similarly, we found a strong correlation between 8-day TROPOMI 
SIF and both BRDF-adjusted and non-adjusted NIRv at 0.2° spatial resolution. However, these correlations 
between TROPOMI SIF and non-adjusted NIRv were not substantially different than between TROPOMI 
SIF and non-adjusted EVI (Figure 5a). For BRDF-adjusted NIRv and EVI, NIRv was more highly correlated 
with SIF at high latitudes but EVI was more correlated with SIF in the tropics and subtropics (Figure 5b). 
Thus, we find that there is no clear advantage to using NIRv rather than EVI as a proxy of fPARchl.

Other studies have also found little difference in the ability of NIRv and EVI to track GPP or SIF. An analysis 
of GPP at six eddy covariance sites in Australia by Wang et al. (2019) found that OCO-2 SIF better captured 
the seasonal cycle (starting and ending dates) of GPP than NIRv because SIF values are not contaminated by 
background soil and different plant species contribute to the SIF signal additively. Likewise, Li et al. (2018) 
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found that OCO-2 SIF had a stronger relationship with GPP than NIRv using 64 eddy flux sites across the 
globe, and that NIRv and EVI performed very similarly. A study in the circumpolar region reported a closer 
agreement between SIF and GPP estimates than NIRv, EVI, and NDVI (Walther et al., 2018), and another 
study found NIRv, NDVI, and two-band EVI to perform relatively poorly in estimating the start and end of 
the growing season for tundra and grassland ecosystems (W. Yang et al., 2019).

Most recently, a study compared GPP estimates from 10 eddy towers across different vegetation types in 
California, United States, with BRDF-adjusted NIRv and EVI and found them to have nearly identical cor-
relations with GPP both within and across sites (Hinojo-Hinojo & Goulden, 2020). These authors also con-
ducted a global sensitivity analysis of NIRv and EVI to plant traits using the PROSAIL model and found 
that NIRv was slightly more sensitive to leaf chlorophyll content while EVI was slightly more sensitive to 
leaf area index. Both indices were nearly perfectly correlated linearly (R2 = 0.99), and were nearly equally 
sensitive to leaf water content, leaf mass per area, leaf structure, mean leaf angle, and soil background.

As for NDVI, the propensity of NDVI to saturate where leaf area index is high caused NDVI to have rela-
tively low correlations with SIF, particularly in the tropics. Our results, and the few studies that compare 
NIRv, EVI, SIF, and GPP, suggest that NIRv does not have a clear advantage over EVI in capturing the 
temporal dynamics if the vegetation canopy. However, because NIRv uses only the NIR and red portions of 
the spectrum, and EVI uses the blue, NIR, and red bands, NIRv is advantageous when the blue band is not 
available. NIRv is also thus more computationally inexpensive than EVI. It is also important to note that the 
use of the blue band in EVI can cause it to be sensitive to changes in canopy leaf carotenoid content, which 
are pigments that play a number of roles in photosynthesis (Frank & Cogdell, 1996). Nevertheless, further 
study is needed to understand how to incorporate NIRv and biophysically justify its use as a proxy of fPARchl 
before it can be utilized to estimate GPP in the framework of LUE models.

4.3.  GPP Estimates and PAR Input Data

APARchl derived from the NCEP2, MCD18, and ERA5 PAR data are likely to yield different estimates of GPP 
at both spatial and temporal scales (GPP = APARchl × εg). Our use of fPARchl derived from non-adjusted 
EVI in calculating APARchl for each data set (APARchl = fPARchl × PAR) allowed us to investigate how the 
PAR data itself can yield differences in the correlation between APARchl and TROPOMI SIF (Figure 7), and 
thus infer how these differences will affect the consistency between spaceborne GPP and SIF over space 
and time. Understanding what is driving the differences in the magnitude and timing of modeled GPP and 
spaceborne SIF is critical to improving the models and better understanding the role of photosynthesis in 
annual and seasonal fluxes of atmospheric carbon dioxide.

Compared to MCD18 and ERA5, NCEP2 has higher estimates of mean annual PAR in many of the most 
productive regions of the world, including North America, much of South America, tropical Africa, and 
nearly all of Asia (Figures 6d and 6f). This difference is important to note because the use of MCD18 or 
ERA5 PAR in estimating APARchl would likely diminish the overall contribution of terrestrial photosynthe-
sis to the global carbon flux. Regionally, NCEP2 PAR may yield lower annual GPP estimates in far northern 
South America, Central America, southern Africa, and Australia, where NCEP has relatively lower annual 
PAR estimates than MCD18 and ERA5. The use of PAR from MCD18 to derive APARchl would likely yield 
lower annual GPP estimates than APARchl derived from ERA5, as annual PAR from ERA5 is higher across 
the globe, particularly in the Tibetan Plateau and the Pacific Northwest of North America (Figure 6f).

The temporal consistency between SIF and modeled GPP is also strongly driven by which PAR data set is 
chosen. Most notably, APARchl derived from NCEP2 PAR is much more temporally consistent with SIF in 
many of the most productive regions in the world, including India, the Himalayan region, Indochina, Chi-
na, and much of North and South America (Figures 7d and 7f). Thus, use of NCEP2 PAR to derive APARchl 
would yield GPP estimates that are more strongly correlated with SIF in these regions than if MCD18 or 
ERA5 were used. However, APARchl derived from MCD18 and ERA5 tended to be more highly correlated 
with SIF in Central America, southern Africa, Australia, and the boreal region of Europe and Asia. Further 
research is needed to understand how the differences in the PAR data may affect the estimated timing of 
peak annual global photosynthesis, which has broader implications on understanding land-atmosphere 
carbon fluxes.
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4.4.  APARchl and LUE Models

We expected SIF to be more highly correlated with APARchl than EVI alone, because SIF is a function of both 
fPARchl and the amount of incoming light energy (Magney, Frankenberg, et al., 2019; K. Yang et al., 2018). 
Instead, we found that SIF was generally more highly correlated with APARchl at high to mid latitude and 
more highly correlated with EVI in the tropics (Figure 8), which helps explain why the correlation between 
SIF and GPPVPM (Figure 10a) was likewise lower where EVI was better correlated with SIF than APARchl 
(Figure 8a), as the VPM model is driven by APARchl. This finding suggests that these areas are likely light 
saturated, particularly in the tropics, in that changes in canopy chlorophyll drive changes in SIF rather than 
incoming sunlight at the top of the canopy. We observed this phenomenon in our previous study of the 
Amazon, where we found spaceborne SIF and eddy covariance tower GPP to mimic increased EVI despite 
decreased incoming PAR (Doughty et al., 2019).

However, the current models for the GPPVPM and GPPMOD17 data products estimate daily GPP as a linear 
function of PAR (GPP  =  fPAR  ×  PAR  ×  εg), whereas the empirical response of GPP to light at the 
minute to hourly scale is logarithmic (Monteith, 1965; Smith, 1936). The response of SIF to light is also 
logarithmic at these coarse spatial and temporal scales (Magney, Barnes, & Yang, 2020; Porcar-Castell 
et al., 2014).

5.  Conclusion
Here, we conducted a correlative analysis between TROPOMI SIF and (a) non-adjusted and BRDF-adjusted 
NIRv, EVI, and NDVI, (b) APARchl as derived from non-adjusted and BRDF-adjusted EVI and PAR data 
from NCEP2, MODIS MCD43, and ERA5, and (c) GPP from two LUE models, VPM and MODIS GPP. We 
had five main findings. First, the correlation between SIF and non-adjusted NIRv and EVI were not sub-
stantially different, but there was a trade-off between BRDF-adjusted NIRv and EVI in that NIRv had higher 
correlations with SIF at mid to high latitude but lower correlations in the tropics. Second, BRDF-adjusted 
VIs had lower correlations with SIF at mid and high latitudes than non-adjusted VIs but had higher correla-
tions in the tropics. Third, the choice of PAR data set could lead to substantial differences in GPP estimates 
at the global and regional scales, and to large differences in the correlation between SIF and modeled GPP. 
Fourth, SIF was more highly correlated with APARchl than EVI at mid to high latitudes, but more highly 
correlated with EVI in the tropics. Finally, GPPVPM had higher correlations with SIF than GPPMOD17, except 
in sub-Saharan Africa.

Overall, we found that the choice of vegetation index as a proxy of fPAR and whether the index is 
BRDF-adjusted or not to come with trade-offs, in that no one option would greatly improve the cor-
relation between modeled GPP and SIF at the global-scale. We found the same for the choice and PAR 
data set, as there are stark regional differences in the correlation between APARchl computed from these 
data sets and SIF. However, substantial improvements in the correlation between modeled GPP and SIF 
are likely, particularly in the tropics, if LUE models were to model the response of GPP to PAR as being 
non-linear.

Data Availability Statement
The analysis and results were generated using publicly available data sets. TROPOMI SIF data is available 
at ftp://fluo.gps.caltech.edu/data/tropomi/, and aside from this FTP address there is no alternative method 
to access the data. The GPPVPM data is available at https://doi.org/10.1594/PANGAEA.879560. MOD17A2H 
data is available at https://e4ftl01.cr.usgs.gov/MOLT/MOD17A2H.006/. MCD18A2 data is available at 
https://e4ftl01.cr.usgs.gov/MOTA/MCD18A2.006/. ERA5 data is available at https://cds.climate.coperni-
cus.eu/. NCEP Reanalysis II data is available at https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.
gaussian.html. MCD43C4 data is available at https://e4ftl01.cr.usgs.gov/MOTA/MCD43C4.006/. MOD09A1 
data is available at https://e4ftl01.cr.usgs.gov/MOLT/MOD09A1.006/.
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