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a b s t r a c t

Knowledge of the spatial distribution of forest types in tropical regions is important for implementation
of Reducing Emissions from Deforestation and Forest Degradation (REDD), better understanding of the
global carbon cycle, and optimal forest management. Frequent cloud cover in moist tropical regions poses
challenges for using optical images to map and monitor forests. Recently, Japan Aerospace Exploration
Agency (JAXA) released a 50 m orthorectified mosaic product from the Phased Array Type L-band Syn-
thetic Aperture Radar (PALSAR) onboard the Advanced Land Observing Satellite (ALOS). PALSAR data pro-
vides information about the land surface without cloud interference. In this study we use the fine beam
dual (FBD) polarization PALSAR 50 m mosaic imagery and a Neural Network (NN) method to produce a
land cover map in Hainan Island, China. Subsequently, forest areas are classified into evergreen and
deciduous forests and rubber plantations are mapped using vegetation and land surface water indices
derived from 250 to 500 m resolution MODIS products. The PALSAR 50 m forest cover map, MODIS-based
forest types and rubber plantation maps are fused to generate fractional maps of evergreen forest, decid-
uous forest and rubber plantation within 500 m or 250 m pixels. PALSAR data perform well for land cover
classification (overall accuracy = 89% and Kappa Coefficient = 0.79) and forest identification (both the
Producer’s Accuracy and User’s Accuracy are higher than 92%). The resulting land cover maps of forest,
cropland, water and urban lands are consistent with the National Land Cover Dataset of China in 2005
(NLCD-2005). Validation from ground truth samples indicates that the resultant rubber plantation map
is highly accurate (the overall accuracy = 85%). Overall, this study provides insight on the potential of
integrating cloud-free 50 m PALSAR and temporal MODIS data on mapping forest types and rubber plan-
tations in moist tropical regions.
� 2012 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

Tropical forests play an important role in the terrestrial carbon
cycle and reduce the amount of greenhouse gases such as carbon
dioxide (CO2), carbon monoxide (CO) and nitrogen monoxide
(NO) in the atmosphere (Lelieveld et al., 2008). Tropical forests also
provide many ecosystem services that substantially affect human
well-being (Foley et al., 2005; Pielke, 2005). Both human-induced
deforestation (primarily to convert land to agricultural uses) and
natural disturbance (e.g. fire, drought, wind blow-down) occur
extensively in tropical regions (Bond-Lamberty et al., 2007; Kum-
mer and Turner, 1994; Page et al., 2002; Sakaguchi et al., 2011).
Plantations used for production of biofuels (e.g. oil palm) and
industrial resources (e.g. rubber, Hevea brasiliensis) have expanded
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rapidly in tropical regions in the last 50 years (Fox and Vogler,
2005). This expansion has brought along a detrimental cascade of
environmental effects including increasing threats to biodiversity
and reduction in forest carbon stocks (Li et al., 2007; Ziegler
et al., 2009). Accurate information on the area and spatial distribu-
tion of natural and planted forests in tropical areas is necessary for
the implementation of Reducing Emissions from Deforestation and
Forest Degradation (REDD) (Achard et al., 2007) and for modeling
global carbon cycles (Dixon et al., 1994).

During the past few decades, optical remote sensing has been
widely utilized for forest mapping (Asner et al., 2005; Collins
et al., 2004; Thessler et al., 2008; Xiao et al., 2009, 2002). Previous
studies have explored the potential for tropical forest mapping
using imagery from the Advanced Very High Resolution Radiome-
ter (AVHRR) (Achard and Estreguil, 1995; Achard et al., 2001),
SPOT4-VEGETATION (Stibig et al., 2004; Stibig and Malingreau,
2003) and Moderate Resolution Imaging Spectroradiometer
(MODIS) (Miettinen et al., 2012). Most of these studies employed
emote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.
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unsupervised classification due to the difficulty of ground truth
sampling in tropical forest regions. Landsat Thematic Mapper
(TM) images with 30 m spatial resolution and a 16-day revisit cycle
are an important data source (Huang et al., 2009; Townshend and
Justice, 1988); however, it is often difficult to obtain cloud-free
Landsat images in tropical regions due to frequent cloud cover
and moist climate (Asner, 2001). The images from the MODIS sen-
sors have been used to map forest and detect deforestation at re-
gional and global scales (Friedl et al., 2002; Giri et al., 2005;
Morton et al., 2005; Tottrup et al., 2007; Xiao et al., 2009). Daily
image acquisition by the MODIS sensors partly reduces cloud prob-
lems as compared to Landsat, providing valuable information to
identify and map different forest types (Friedl et al., 2002; Xiao
et al., 2009, 2002). However, its relatively coarse spatial resolution
(250–1000 m) makes it difficult to accurately quantify and map
forest areas at the regional scale due to mixture of land cover types
within pixels. High spatial resolution remotely sensed imagery
(e.g. SPOT-5, IKONOS, and aerial photographs), on the order of 1–
50 m, are a very effective data source for local land use and land
cover classification (Kabir et al., 2010; Perea et al., 2010; Su
et al., 2010), but are not widely used in regional level monitoring
due to the high cost of image acquisition and intensive computa-
tion resource requirements.

Images from synthetic aperture radar (SAR) offer an alternative
data source for mapping tropical forests (Ardila et al., 2010; Simard
et al., 2000). The radar illuminates vegetation types with micro-
wave energy, recording return energy that is related to above-
ground biomass and structure. Longer radar wavelength L-band
SAR is better suited to the delineation of forest than other wave-
lengths because of its greater penetration through the canopy
Fig. 1. The workflow
(Baghdadi et al., 2009). The Phased Array Type L-band Synthetic
Aperture Radar (PALSAR) data is not subject to cloud interference,
making it a more effective data source for forest mapping at the re-
gional scale in moist tropical regions. PALSAR is onboard the Ad-
vanced Land Observing Satellite (ALOS) launched by the Japan
Aerospace Exploration Agency (JAXA) in January of 2006, and it
provides polarimetric radar images for most of the global land sur-
face. PALSAR images have been used for many applications, includ-
ing forest, crop, and ice mapping (Torbick et al., 2011; Xiao et al.,
2010; Xie et al., 2010; Yang et al., 2010). The PALSAR team has
developed two data products for the public: (1) the PALSAR 50 m
Orthorectified Mosaic Product, and (2) the PALSAR 500 m Browse
Mosaic Product. The publically released PALSAR 50 m mosaic prod-
uct covers a large portion of Asia, and has recently been evaluated
for regional forest monitoring potential in insular Southeast Asia
(Longepe et al., 2011; Miettinen and Liew, 2011) with positive re-
sults. However, further evaluation of the potential of PALSAR 50 m
mosaic product for mapping tropical forests in many regions is
needed along with the development of new methodologies to chal-
lenges in those regions with complex landscapes and land use.

Hainan Island, the most representative tropical region in China,
underwent dramatic changes in land use and land cover during the
past few decades (Liu et al., 2010; Xu et al., 2002; Zhang et al.,
2010). With the increasing demand for rubber products, rubber
plantations continue to expand in Southern China (Qiu, 2009; Zie-
gler et al., 2009). It is necessary to develop an accurate and updated
rubber distribution map for improving our understanding of land
use change and carbon and water cycles (Li and Fox, 2011, 2012).
Hainan Island is now thought to have the largest area of rubber
plantation in China (Chen et al., 2010). There is an increasing need
of this study.



22 J. Dong et al. / ISPRS Journal of Photogrammetry and Remote Sensing 74 (2012) 20–33
to obtain accurate information on the spatial distribution and areal
extent of rubber plantations in Hainan Island.

The objective of this study was to quantify the extent and spa-
tial distribution of evergreen and deciduous forests as well as rub-
ber plantations on Hainan Island. PALSAR 50 m mosaic products
and MODIS time series data (MOD09A1 and MOD13Q1) acquired
in 2007 were used. This study was conducted through three com-
ponents (Fig. 1): (a) creating a 50 m resolution land cover map with
PALSAR mosaic data and aggregating the resultant map to produce
forest percentage maps in 250 m and 500 m resolutions; (b) sepa-
rating evergreen and deciduous forests as well as rubber planta-
tions using a phenology-based approach with a time series of
MODIS imagery; and (c) deriving area proportion distribution
maps of evergreen, deciduous forests and rubber plantation by
combining results from the previous two stages.
2. Materials and methods

2.1. A brief description of the study area

Hainan Island is located in southern China with a geographical
area of 34,000 km2, mostly located in a tropical area. The topogra-
phy of the island is complex, characterized by hilly regions in the
middle surrounded by lowlands in the coastal regions (Fig. 2).
The Wuzhi Mountain is the highest mountain with an elevation
of 1867 m above sea level. Climate on the island is characterized
as a tropical monsoon climate. Annual mean temperature is
approximately 23–25 �C and monthly temperature varies between
�16 �C in January to �30 �C in May to July. Annual precipitation is
approximately 1500 mm, and most of precipitation occurs be-
tween May and October.

There are a variety of vegetation types on the island. Historically,
most of the island was covered by natural forests (Lin and Zhang,
2001); however, human exploitation has led to significant defores-
tation, and the natural forest area decreased from 1.2 � 104 km2 in
the 1950s to 0.42 � 104 km2 in 1979 (Lin and Zhang, 2001). After
1994, extensive reforestation occurred on the island, and forest cov-
er increased to 1.84 � 104 km2 in 2004 (Hunan, 1999). Much of the
newly planted areas were cash plantations which are included in the
forest classes in the land cover classification developed in this study.
The cropland area is approximately 0.73 � 104 km2 and the agricul-
tural intensity is high. At present, cash trees and crops, such as rub-
ber, coconut, oil palm, and betel nut, are widely planted on the
Fig. 2. Spatial distribution of terrain in Hainan Island, China. The DEM data is
derived from the Shuttle Radar Topography Mission (SRTM) 90 m database.
island. Human activities played an important role in these processes
of deforestation, reforestation and land transformation. For exam-
ple, several politico-economic activities such as the ‘‘rubber planta-
tion campaign’’ in the 1950s, the ‘‘land reclamation campaign’’ in the
1960s, the ‘‘crop breeding campaign’’ in the 1970s, and the ‘‘open-
door economic reform’’ in the 1980s (Cai, 1994; Christian and Nar-
ong, 2005) affected land use and land cover. Rubber plantations in-
creased rapidly due to increasing rubber demand in recent decades,
and a significant portion of natural tropical rainforest was converted
into rubber plantations.

2.2. Data

2.2.1. PALSAR data and pre-processing
The PALSAR 50 m Orthorectified Mosaic product is provided by

JAXA and available at the ALOS Kyoto and Carbon Initiative official
website (http://www.eorc.jaxa.jp/ALOS/en/kc_mosaic/kc_mo-
saic.htm). It is created from images of the ascending path. The ori-
ginal PALSAR images with an off-nadir angle of 34.3� were
resampled into the 50 m by 50 m mosaic. The product is produced
once a year and the dates of image acquisition vary between years.
It has been geometrically rectified using 90 m digital elevation
model (DEM) and geo-referenced into geographical latitude and
longitude coordinates (Longepe et al., 2011).

In this study, we used HH and HV polarization data from the
PALSAR 50 m mosaic product acquired with Fine Beam Dual
(FBD) polarization observational mode in October 2007. We con-
verted the Digital Number (DN) values (amplitude values) into nor-
malized radar cross section in decibel (dB), based on the
conversion formula from JAXA (Rosenqvist et al., 2007) and the
parameters from the metadata file:

r0ðdBÞ ¼ 10� log10DN2 þ CF ð1Þ

where r0 is the backscattering coefficient, DN is the digital number
value of pixels in HH or HV, and CF is the absolute calibration factor.

We calculated two additional indicators using HH and HV data
(dB data): (1) the ratio of HH and HV (Ratio = HH/HV) and (2) the
difference between HH and HV (Difference = HH–HV). Both the Ra-
tio and Difference images have been used in forest and forest
change monitoring (Miettinen and Liew, 2011; Wu et al., 2011).

2.2.2. MODIS data and pre-processing
We used two MODIS products: (1) the 500 m MODIS land sur-

face reflectance product (MOD09A1), which provides data in spec-
tral ranges that most benefit the study of land surfaces and
vegetation in an 8-day composite with quality screening; and (2)
the 250 m vegetation indices product (MOD13Q1), which is de-
signed to provide consistent spatial and temporal comparisons of
vegetation conditions in 16-day intervals. Detailed information
about these products is available on the site (http://lpdaac.usgs.-
gov/products/) maintained by the NASA Land Processes Distributed
Active Archive Center (LP DAAC).

Three vegetation indexes, the Normalized Differential Vegeta-
tion Index (NDVI) (Tucker, 1979), the Enhanced Vegetation Index
(EVI) (Huete et al., 2002, 1997), and the Land Surface Water Index
(LSWI) (Xiao et al., 2004, 2005), were calculated from MOD09A1
data with the following formulas:

NDVI ¼ qNIR1 � qred

qNIR1 þ qred
ð2Þ

EVI ¼ 2:5� qNIR1 � qred

qNIR1 þ 6� qred � 7:5� qblue þ 1
ð3Þ

LSWI ¼ qNIR1 � qSWIR1

qNIR1 þ qSWIR1
ð4Þ

http://www.eorc.jaxa.jp/ALOS/en/kc_mosaic/kc_mosaic.htm
http://www.eorc.jaxa.jp/ALOS/en/kc_mosaic/kc_mosaic.htm
http://www.lpdaac.usgs.gov/products/
http://www.lpdaac.usgs.gov/products/
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where qblue, qred, qNIR1, and qSWIR1 are the reflectance values from the
blue (459–479 nm), red (620–670 nm), NIR1 (841–875 nm) and
SWIR1 (1628–1652 nm) bands, respectively. In this study we used
500 m NDVI, LSWI and EVI data in 8-day internals and 250 m NDVI
data in 16-day internals.
2.3. Land cover map based on analysis of PALSAR 50 m mosaic data

Google Earth provides geometrically rectified images with a
high horizontal accuracy and resolution (Potere, 2008), and has
been utilized in several recent land cover classification studies (Co-
hen et al., 2010; Huang et al., 2010; Potere, 2008). In this study, we
used Google Earth images over Hainan Island to collect a training
dataset for land cover classification, and most of the images in Goo-
gle Earth were acquired during 2006–2010, consistent with the
time of PALSAR data (2007). From these images we selected 52 re-
gions of interest (ROI) for forest, 54 for cropland, 12 for water, and
14 for urban land. The sizes of urban land and water ROIs were rel-
atively large, as both water and urban land are distributed in large
sizes and easy to extract. The ROI pixel numbers for four land cov-
ers were abundant.

The feed-forward Neural Network (NN) algorithm with one hid-
den layer (Richards and Jia, 2006) and PALSAR 50 m data (HH, HV,
Ratio and Difference images) were used to map four land-cover
types (forest, water, urban and cropland) of Hainan Island. A num-
ber of parameter compositions were tried and evaluated, and final-
ly we verified and reported the parameters as following: the
activation method was set as Logistic, with parameters viz.: training
threshold contribution at 0.9, which determines the internal weights
and affects the activation level of the nodes; training rate at 0.2,
which decides the magnitude of the adjustment of the weights;
training momentum at 0.9; training RMS exit criteria at 0.1; and
training iterations number at 2500. Training data sets were essential
for the NN classifier, as every sample was taken into consideration
in the training (Kavzoglu, 2009). We applied the ROIs mentioned
above to map land cover on the island.

Finally, the resultant 50 m PALSAR-based forest map provides
more precise information for forest canopy cover than that from
MODIS data (Fig. 6a). The PALSAR 50 m spatial resolution map
was aggregated to calculate the percent forest canopy cover (%)
within each MODIS pixel from MOD13Q1 (250 m) and MOD09A1
(500 m) products. These fractional cover maps of forest were later
used together with the per-pixel binary maps of forests from
MODIS to estimate the spatial distribution and areas of evergreen
and deciduous forests.
2.4. Separating evergreen and deciduous forest with MOD09A1 data

Time series LSWI data from MODIS imagery was used for map-
ping evergreen forest based on its temporal profile characteristics
(Xiao et al., 2009). The resultant outputs were tested against other
existing global forest maps, such as the standard MODIS Land Cov-
er data product (MOD12Q1) (Friedl et al., 2002), FAO FRA 2000, and
GLC2000 (Bartholome and Belward, 2005). A MODIS pixel is as-
signed to evergreen forest if it has LSWI values larger than 0 in
all good-quality observations throughout a year (Xiao et al.,
2009); deciduous forests do not have all LSWI values above 0 for
the entire year.

The resultant evergreen forest map from MOD09A1 imagery
(Fig. 6c) was overlaid with the fractional map of forests from PAL-
SAR imagery, and the total area of evergreen forest was calculated
by summing the fractions of PALSAR-based forests within those
MODIS-based evergreen forest pixels. We then considered the
remaining forest area of the PALSAR-based forest map as deciduous
forests.
2.5. Mapping rubber plantations using phenology from MOD13Q1 data

When rubber was introduced from British Malaya in the 20th
century, Hainan Island was not a suitable environment for its cul-
tivation. Subsequent improvement in rubber germplasm allowed it
to adapt to the frequent typhoons and low winter temperatures of
Hainan Island. Rubber plants on the island remain sensitive to tem-
perature change, and have different phenological characteristics
from natural forest and other cash forests such as lichee and longan
(Chen et al., 2010). Rubber plantations have two distinct seasons in
a year: a growing season and a non-growing season. In the growing
season, rubber plantations have high NDVI values, similar to other
evergreen forests. However, low temperatures in the winter
(�10 �C) force rubber plants to defoliate, resulting in a canopy cov-
erage of 20% (or less) and a low NDVI value (Chen et al., 2010).

We extracted the time series vegetation indices (NDVI, EVI and
LSWI) from (1) one typical rubber site (Danzhou), which is the
long-term study site of the Rubber Research Institute, Chinese
Academy of Tropical Agricultural Sciences; (2) one evergreen forest
site in southwestern Hainan Island; and (3) one paddy rice site in
the Luodaixiang Town of Dongfang City (Fig. 3). The NDVI values
of rubber plantation decreases substantially in the senescence per-
iod due to cold and rubber tapping, which starts from late October
and ends in March of next year; and the lowest NDVI values appear
in January, February and March. In the growing season, NDVI in-
creases rapidly from the end of March to October (Fig. 3a). The
temporal profiles of EVI and LSWI for rubber, paddy rice cropland
and evergreen forests are different as well, but not as significant
as NDVI (Fig. 3b and c). Therefore, we applied 250 m MOD13Q1
NDVI products to identify and delineate phenology of rubber plan-
tation. In this study we only identify and map mature rubber plan-
tation, as young rubber is easily confused with bare soil or crops,
especially when rubber seedlings are intercropped with other
crops.

The workflow for mapping rubber plantation is depicted in
Fig. 1. Rubber plantation was identified with the following decision
rule:

if ð0:5 < NDVIðJan;Feb;MarÞ < 0:7 \ 0:73 < NDVIðMay;Jun;JulÞ < 0:85Þ; rubber ¼ 1;

else; rubber ¼ 0

where NDVI(Jan, Feb, Mar) and NDVI(May, Jun, Jul) are the mean NDVI in
January, February and March and the mean NDVI in May, June
and July, respectively. The monthly NDVIs were calculated with
the Maximum Value Composition (MVC) method from the 16-day
composites in a month (most months have two 16-day composite
data, but there is only one 16-day composite in November). The
selection of the thresholds was basically based on a statistical
analysis of 287 rubber plantation samples. For example, the
NDVI(May, Jun, Jul) of rubber samples had a mean value of 0.79 and a
standard deviation of 0.06, we set the thresholds as the mean value
minus and plus the standard deviation value; we further checked
the data distribution and tested the thresholds, and finally verified
0.73 and 0.85 as the thresholds of NDVI(May, Jun, Jul).

2.6. Accuracy assessment and comparison to other land cover datasets

We used both ground survey and Google Earth to evaluate the
accuracy of the land cover maps produced in this study. Firstly,
we linked the PALSAR-based land cover map with Google Earth
and randomly selected 40 polygons (31,284 pixels) as ground ref-
erence from the Google Earth images for accuracy assessment. In
order to assess the accuracy of the rubber plantation identification,
we conducted a field survey in August of 2011 with a GPS digital
camera as the main information capture tool. 87 georeferenced
field photos were acquired in the plots where rubber plantation



Fig. 3. Comparison between the temporal profiles of (a) NDVI, (b) EVI, and (c) LSWI for typical vegetation types (January 2006 to December 2008). The samples include (a) a
rubber sample in Danzhou station (19.516 N, 109.47 E), which is a typical observational site of Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences;
(b) an evergreen forest sample (18.718 N, 108.966 E) in southwestern Hainan Island; and (c) a paddy rice cropland sample (19.058 N, 108.676 E) in the Luodaixiang Town of
Dongfang City, Hainan. There are some gaps in the curves as the values with low quality (e.g. intensive cloud coverage or shadow) were removed.
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areas were larger than 500 m � 500 m. This data was also up-
loaded into an online system named the ‘‘Global Geo-Referenced
Field Photo Library’’ (http://www.eomf.ou.edu/photos/). Subse-
quently, these plantation areas were outlined in Google Earth
and used as ground truth polygons for evaluating the accuracy of
the identification of rubber plantations.

We also compared the PALSAR-based land cover map with the
Landsat-based National Land Cover Dataset (NLCD). The Chinese
Academy of Sciences has supported the development of NLCD in
China and developed a methodology based on visual interpreta-
tion and digitalization of Landsat imagery (Liu and Deng, 2010;
Liu et al., 2010). The NLCD vector dataset has a scale of
1:100,000 (Liu et al., 2005). Four periods (the late 1980s, the
mid-1990s, 2000, and 2005) of NLCD datasets have been com-
pleted, and they are comprehensive spatial datasets about land
cover change at the national scale. In this study, we used the
NLCD 2005 for comparison with the PALSAR-based land cover
map.

http://www.eomf.ou.edu/photos/
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3. Results

3.1. Landcover map of forest, cropland, urban and water from PALSAR
in 2007

The signatures of four land cover types were explored in the HH,
HV, Ratio image and Difference image based on the ROIs from Goo-
gle Earth. The separability of these four land cover types was high
(Fig. 4). Water has the lowest HH and HV values but higher Ratio
values than the other three land cover types and is thus easily
identified. Cropland has lower HV and HH values but higher Differ-
ence values than that of forest. Higher HV values were observed for
the forests due to their large crown canopy which depolarizes inci-
dent radiation. Urban land has higher HH and Difference values
than forest but lower Ratio values. However, urban land overlaps
with forest to a large degree in all the four indicators due to com-
plex reflectance environments in urban area, building orientations,
corner reflectance, and large forest patches in urban areas.

The map produced with NN method is shown in Fig. 5a. The
areas of the four land cover types are 2.07 � 104 km2 forest;
1.06 � 104 km2 cropland; 0.17 � 104 km2 urban land; and
0.08 � 104 km2 water body, respectively. The forests are mainly
concentrated in higher elevations of the central hilly area. The
cropland is distributed in a mosaic pattern in the lower elevations
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Fig. 4. The histogram of the four land cover types in (a) PALSAR HH polarization, (b)
difference image for all the pixels within the Region of Interest (ROIs) in Hainan Island,
surrounded by forests. This indicates that topography (Fig. 2) plays
a role in the spatial pattern of forests and cropland on the island.
The two large cities, Haikou and Sanya, account for the majority
of the urban land area. The PALSAR-based false color composite
map clearly illustrates land cover separability (Fig. 5c).

The overall accuracy of the land cover map was 89% with Kappa
Coefficient of 0.79 (Table 1). Both the Producer’s Accuracy and the
User’s Accuracy of forest and water were more than 92% (Table 1).
Cropland also had a high Producer’s Accuracy (86%); however, the
User’s Accuracy of cropland was only 62%. The low User’s Accuracy
shows that cropland area was underestimated in some places, as
different kinds of crops (e.g. fallowed cropland or different stages
of crops) have various polarization signatures. Urban land had a
Producer’s Accuracy of 56% while its User’s Accuracy was 74%, as
some trees in cities affected the pixels of urban land. In general,
the classification results had reasonably good accuracy for the four
land cover types, especially forests.

A comparison between the PALSAR-based land cover map in
2007 (PALSAR 2007) and the NLCD 2005 map was conducted
and a confusion matrix was generated to evaluate the consistency
of the two land-cover classification results. Fig. 5a shows the spa-
tial distribution of the PALSAR-based map, which is consistent
with the NLCD 2005 dataset (Fig. 5b). Forests have a relatively
high agreement; PALSAR-based forest area is 2.07 � 104 km2
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Fig. 5. A comparison between (a) PALSAR-based land cover map in 2007, (b) NLCD land cover map in 2005, and (c) PALSAR-based color composite map in 2007 (R/G/
B = polarizations HH/HV/HH–HV Difference) in Hainan Island, China.
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while the forest in NLCD is 2.17 � 104 km2. The overlapped forest
area between these two datasets is 1.63 � 104 km2 (Table 2),
which accounts for �79% of forest in the PALSAR 2007 map and
�75% of forest in the NLCD 2005 dataset. The discrepancy be-
tween these two datasets could be attributed partly to the land
use change from 2005 to 2007, and partly because the classifica-
tion systems differ slightly. The estimates of cropland area from
these two land-cover classification schemes differ somewhat
(Table 2). It is possible that cropland in the NLCD 2005 dataset in-
cluded different cropland types, such as fallowed cropland, and
the classified cropland from PALSAR might have included some
tall-grass grassland.



Fig. 6. (a) 50 m PALSAR-based per-pixel binary forest map; (b) 500 m forest area percentage map aggregated from the 50 m PALSAR-based forest map; (c) 500 m per-pixel
binary map of evergreen forest based on MODIS LSWI analysis; (d) area percentage map of evergreen forest by overlaying per-pixel binary evergreen forest map c and 500 m
forest area percentage map b; (e) area percentage map of deciduous forest by subtracting evergreen forest area percentage map d from 500 m forest area percentage map b.
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3.2. The area and spatial distribution of evergreen and deciduous
forests

The spatial distribution of forest area percentage within 500 m
pixels is shown in Fig. 6b. The loss of forest area during the aggre-
gation from 50 m spatial resolution (Fig. 6a) to 500 m and 250 m
spatial resolutions was negligible. The 500 m pixels including for-
ests covered 94% of the whole island area.

The spatial distribution of evergreen forest area percentage is
shown in Fig. 6d. The area of evergreen forest was estimated to
be approximately 0.75 � 104 km2. Those evergreen forest pixels
with high forest area percentage were concentrated in the middle



Table 2
A comparison between PALSAR land cover map in 2007 and NLCD 2005 dataset.

NLCD 2005 (km2) PALSAR total (km2)

Forest Cropland Water Urban land Others

PALSAR 2007 Forest 16,268 3215 220 257 744 20,704
Cropland 4382 5025 397 346 467 10,616
Water 138 177 341 42 117 815
Urban land 924 475 27 166 61 1654

NLCD total (km2) 21,712 8892 984 811 1389 33,789

Table 1
A comparison between PALSAR land cover map and ground truth samples.

Ground truth samples (unit: pixels) PALSAR Total (pixel) User acc. (%)

Water Forest Cropland Urban land

PALSAR land cover classification Water 5074 6 193 0 5273 96.23
Forest 0 18,839 7 1564 20,410 92.30
Cropland 113 193 1245 468 2019 61.66
Urban land 0 943 3 2636 3582 73.59

Total ground truth samples (pixel) 5187 19,981 1448 4668 31,284
Prod. acc. (%) 97.82 94.28 85.98 56.47
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and southern regions with hilly topography, whereas the decidu-
ous forests were mainly distributed in the northern parts of the is-
land (Fig. 6e).

Fig. 7 shows the frequency distributions for forest percentage
within 500 m and 250 m pixels for the evergreen forest pixels,
deciduous forest pixels and rubber plantation pixels, and the re-
gion as a whole. Most of the evergreen forest pixels have high for-
est percentages; 49% of evergreen forest pixels have forest
percentages ranging from 95% to 100%. In other words, 49% of
MODIS-based evergreen forest pixels were almost pure evergreen
forest. In addition, 70% of MODIS evergreen forest pixels have for-
est area percentages greater than 65%, which revealed that ever-
green forest distribution was concentrated to a great extent.
However, deciduous forest showed different characteristics from
evergreen forest in that its distribution was more dispersed than
that of evergreen forest. For example, 47% of 500 m deciduous for-
est pixels have forest area percentages larger than 60%, 53% of
500 m pixels have forest area percentages larger than 50%, and
the 500 m pixels with forest area proportion less than 5% accounts
for 10%.
1 According to ‘Outline of comprehensive land use planning of Hainan province
006–2020)’ by Yansui Liu et al. (2008).
3.3. The area and spatial distribution of rubber plantation in 2007

The spatial distribution of rubber plantations from analysis of
MOD13Q1 (250 m) data in 2007 is shown in Fig. 8b. According to
the ground sampling based accuracy assessment the mapping
accuracy was high. The overall accuracy for rubber plantations
was 85% with kappa of 0.83.

The NDVI-based rubber plantation map has 1.04 � 105 pixels of
rubber plantations; it was overlaid with the PALSAR-based 250 m
forest area percentage map in 2007 (Fig. 8a); and the resultant
map is assumed to be the map of rubber plantation in 2007
(Fig. 8c). Approximately 43% of rubber plantation pixels (from
MOD13Q1, 250 m resolution) have a rubber plantation area per-
centage of more than 95%, and 85% of rubber plantation pixels have
rubber plantation area percentages larger than 50% (Fig. 7d). The
total area of rubber plantations was calculated by summing forest
area percentage over those rubber plantation pixels from the
MOD13Q1 map (Fig. 8c), and it is estimated that there was a total
of 5149 km2 of rubber plantations on Hainan Island in 2007, which
is about 7% larger than the area estimate (4800 km2 in 2010) from
the official statistical report (The Yearbook of Hainan Province in
2011).
4. Discussion

This study evaluated the application potential of PALSAR 50 m
mosaic and MODIS data for delineation and mapping of forests in
the tropical zone. The results were evaluated with ground truth
data and compared to the Landsat-based NLCD 2005 map gener-
ated through visual interpretation. Our study revealed the advan-
tages of PALSAR mosaic product as compared to Landsat images.
The PALSAR-based forest area estimate (2.07 � 104 km2) is closer
to the land survey result (2.02 � 104 km2) from the China Land Re-
source Bureau1 than the Landsat-based NLCD-2005 data
(2.17 � 104 km2). In addition to the potential land cover changes
that have taken place 2005–2007, these differences may be largely
due to methodological differences and image data. Note that the
NLCD-2005 land cover map was generated by visual interpretation
based on color composition maps; forest and some crops could have
similar optical (color) characteristics and are difficult to separate
them in human-aid interpretation on a false color composite map.
With comparison in some selected regions by zooming in the map,
we found that the PALSAR 2007 dataset has a higher accuracy than
the NLCD-2005 dataset. The maximum ability for human vision to
distinguish land cover from Landsat images is about 3 pixels (about
100 m). Therefore, when compared to automated digital image clas-
sification, the visual interpretation method omits some information
sometimes. The PALSAR 2007 forest map shows more spatial heter-
ogeneity and has more specific details in the land parcels.

Before PALSAR, single HH polarization data from JERS-1 was
widely used for forest mapping (e.g. clear-cut or biomass intensity)
(Luckman et al., 1998; Simard et al., 2002). However, this single
polarization-based algorithm has some shortcomings in forest
delineation (Santoro et al., 2010). Multiple frequency, multiple
polarization and time series of SAR data improves classification
accuracy evidently (Ranson and Sun, 1994; Townsend, 2002). Sev-
(2



Fig. 7. Frequency histograms of forest area proportion in (a) the entire Hainan Island, (b) evergreen forest pixels, (c) deciduous forest pixels, and (d) rubber plantation pixels.
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eral studies have evaluated the potential of PALSAR 50 m mosaic
data in forest identification and forest classification (Miettinen
and Liew, 2011; Thiel et al., 2009). In this study, we used not only
HH and HV polarizations of PALSAR data, but also two new gener-



Fig. 8. (a) 250 m forest area percentage map aggregated from the 50 m PALSAR-based forest map; (b) 250 m per-pixel binary map of rubber plantation based on MODIS NDVI
data; (c) area percentage map of rubber plantation by combining the forest area percentage map a and the 250 m rubber plantation per-pixel binary map b.
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ated images (Ratio and Difference of HH and HV) that were proved
effective. However, more complicated forest type classification
methods are less robust than a simple forest/non-forest classifica-
tion (Walker et al., 2010).

Phenology of forests (deciduous and evergreen forests) in the
tropical zone is affected by the seasonality of precipitation (dry
season and wet season). Hainan Island has a typical tropical mon-
soon climate. Deciduous trees lose their leaves to conserve water
and avoid transpiration in the dry season (winter) and are so-called
tropical seasonal forest in this region. Evergreen trees grow all year
but suffer greater water loss during the dry season, and they have
different photosynthetic rates and nutrient-use efficiency than
deciduous trees (Delucia and Schlesinger, 1995).

The pattern of forest composition (evergreen and deciduous for-
ests) plays an important role in ecological processes and forest car-
bon cycling. However, due to lack of time series of PALSAR 50 m
mosaic data throughout a year, we were not able to map deciduous
and evergreen forests from the PALSAR 50 m data. Instead, we used
time series MODIS data to generate an evergreen forest map (per-
pixel map) and combined that map with the PALSAR-based forest
fractional map to estimate evergreen and deciduous forests on Hai-
nan Island. Note that time series imagery from optical sensors (e.g.,
SPOT-VGT, AVHRR, MODIS) are widely used to generate regional
and global maps of evergreen and deciduous forests (DeFries
et al., 1995; Liang, 2001; Roderick et al., 1999). The leaf loss of
deciduous trees is an important biophysical event to separate ever-
green and deciduous forests. Time series data of LSWI were used to
separate evergreen and deciduous plants (Xiao et al., 2002), and to
map evergreen forests in the pan-tropical zone (Xiao et al., 2009). A
comparison between the PALSAR-based forest map and MODIS-
based forest map will help evaluate the accuracy of the forest
map derived from MODIS imagery. The comparison between the
PALSAR-based forest map and the MODIS-based evergreen forest
map in the Hainan Island showed that the LSWI-based approach
for mapping evergreen forest is robust.

Plantations, or cash forests, are an important land use type and
economic activity. Miettinen and Liew (2011) found that the PAL-
SAR 50 m mosaic product can be used to separate rubber, wattles
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and palms (oil palm and coconut combined) in known closed can-
opy plantation areas. PALSAR 50 m mosaic data were used to iden-
tify palm plantations in insular Southeast Asia with a method using
threshold values (Miettinen et al., 2012). For Hainan Island, two re-
cent studies have used a remote sensing approach to estimate the
area of rubber plantations (Zhang et al., 2010; Chen et al., 2010).
One study used four Landsat TM images (acquired in May and June
2008) and a supervised classification method to map rubber plan-
tations on the island (Zhang et al., 2010); they estimated a total
area of rubber plantations to be 4167.6 km2, which is about 8%
lower than the estimate from the annual official statistical report
in 2008. The other study using maximum monthly NDVI compos-
ites derived from the MODIS 16-day vegetation indices product
(MOD13Q1) estimated a total area of rubber plantation to be
4664 km2 on Hainan Island in 2009 (Chen et al., 2010).

Together with all the above mentioned studies, our study shows
the capabilities of remote sensing methods in forest monitoring
and mapping of economically valuable cash plantations. It also
highlights the benefits that can be achieved by combining several
different types of remotely sensed data. Based on our findings dur-
ing this study, we believe that the mapping of rubber plantations
on Hainan Island could be further improved by combining or fusing
the time series of Landsat images and PALSAR 50 m mosaic imag-
ery (Hong et al., 2009).

Finally, we would like to highlight the usability of online photo
archives for ground truth purposes. Evaluation (or validation) of
land cover maps is a major challenge in the community of remote
sensing and land use and land cover change, as it often requires a
large number of ground truth data of individual land cover types.
In this study, we used ground truth references data from both
geo-referenced field photos acquired during field surveys and
high-resolution images available in Google Earth. The Global
Geo-Referenced Field Photos Library at the University of Oklahoma
(http://www.eomf.ou.edu/photos/) allows users to share and ar-
chive geo-referenced field photos; those field photos and associ-
ated land cover database are downloaded in ‘kml’ or ESRI shape
files online. As of January 2012, there are more than 35,000 high
quality geo-referenced field photos in the database, which provides
valuable validation references for global land cover classification.
In this study we also highlighted the Google Earth based validation
workflow. Google Earth’s High-Resolution Imagery Archive have
high horizontal positional accuracy (Potere, 2008), especially in ur-
ban areas, and is convenient for land cover validation in some re-
gions. This method has been used in validation for land cover
classification (Benedek and Sziranyi, 2009; Cohen et al., 2010;
Gemmell et al., 2009; Montesano et al., 2009). A specific tool that
integrates Google Earth with image processing software synchro-
nously could improve the convenience greatly in future.

5. Conclusion

A regional map of tropical forest distributions (e.g. evergreen or
deciduous) is imperative for ecological modeling and forest man-
agement in pan-tropical regions (Achard et al., 2002). Mapping of
the rubber plantation and its spatial distribution is also necessary
for not only rubber industry but also regional development and
decision making (Li and Fox, 2011). Considering the cloud limita-
tion from traditional optical remote sensing in pan-tropical re-
gions, an integrating approach combining PALSAR 50 m and
MODIS imagery was found to be alternative method for mapping
forest and rubber plantation in the region, as this method incorpo-
rates both cloud-free forest information from PALSAR and phenol-
ogy information from MODIS. Evergreen and deciduous forests
were separated and rubber plantations identified using phenology
information based on MODIS temporal profile analysis. We found
that the PALSAR 50 m Orthorectified Mosaic Product can be used
effectively to delineate forest, cropland, water body and urban
land. The sensitivity of rubber plants in Hainan Island to climate
makes the rubber separable from other types of forests. This study
demonstrated that an integrated strategy combining PALSAR and
MODIS data could be more reliable in tropical forest classification
and cash forest (e.g. rubber plantation) identification.
Acknowledgements

This study was supported by the NASA Land Use and Land Cover
Change Program (NNX09AC39G), the US National Science
Foundation (NSF) EPSCoR Program (NSF-0919466), and the
Chinese National Key Program for Developing Basic Science
(2010CB950900). We thank journal editor Dr. Daniel L. Civco and
three reviewers for their valuable suggestions and comments on
earlier version of the manuscript.
Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.isprsjprs.
2012.07.004. These data include Google maps of the most impor-
tant areas described in this article.
References

Achard, F., Estreguil, C., 1995. Forest classification of Southeast Asia using NOAA
AVHRR data. Remote Sensing of Environment 54 (3), 198–208.

Achard, F., Eva, H., Mayaux, P., 2001. Tropical forest mapping from coarse spatial
resolution satellite data: production and accuracy assessment issues.
International Journal of Remote Sensing 22 (14), 2741–2762.

Achard, F., Eva, H.D., Stibig, H.J., Mayaux, P., Gallego, J., Richards, T., Malingreau, J.P.,
2002. Determination of deforestation rates of the world’s humid tropical
forests. Science 297 (5583), 999–1002.

Achard, F., DeFries, R., Eva, H., Hansen, M., Mayaux, P., Stibig, H.J., 2007. Pan-tropical
monitoring of deforestation. Environmental Research Letters 2 (4), 045022.

Ardila, J.P., Tolpekin, V., Bijker, W., 2010. Angular backscatter variation in L-band
ALOS ScanSAR images of tropical forest areas. IEEE Transactions on Geoscience
and Remote Sensing 7 (4), 821–825.

Asner, G.P., 2001. Cloud cover in Landsat observations of the Brazilian Amazon.
International Journal of Remote Sensing 22 (18), 3855–3862.

Asner, G.P., Knapp, D.E., Broadbent, E.N., Oliveira, P.J.C., Keller, M., Silva, J.N., 2005.
Selective logging in the Brazilian Amazon. Science 310 (5747), 480–482.

Baghdadi, N., Boyer, N., Todoroff, P., El Hajj, M., Begue, A., 2009. Potential of SAR
sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for monitoring sugarcane
crops on Reunion Island. Remote Sensing of Environment 113 (8), 1724–1738.

Bartholome, E., Belward, A.S., 2005. GLC2000: a new approach to global land cover
mapping from Earth observation data. International Journal of Remote Sensing
26 (9), 1959–1977.

Benedek, C., Sziranyi, T., 2009. Change detection in optical aerial images by a
multilayer conditional mixed Markov model. IEEE Transactions on Geoscience
and Remote Sensing 47 (10), 3416–3430.

Bond-Lamberty, B., Peckham, S.D., Ahl, D.E., Gower, S.T., 2007. Fire as the dominant
driver of central Canadian boreal forest carbon balance. Nature 450 (7166), 89–
92.

Cai, Y., 1994. Factor analysis and development stratege of land resource use in
Hainan Island. Natural Resources (2), 1–7.

Chen, H., Chen, X., Chen, Z., Zhu, N., Tao, Z., 2010. A primary study on rubber acreage
estimation from MODIS-based information in Hainan. Chinese Journal of
Tropical Crops 31 (07), 1181–1185.

Christian, H., Narong, C., 2005. Effects of Land Use Changes on Soil Chemical
Properties of Sandy Soils from Tropical Hainan, China, Management of Tropical
Sandy Soils for Sustainable Agriculture, Khon Kaen, Thailand.

Cohen, W.B., Yang, Z.G., Kennedy, R., 2010. Detecting trends in forest disturbance
and recovery using yearly Landsat time series: 2. TimeSync – Tools for
calibration and validation. Remote Sensing of Environment 114 (12), 2911–
2924.

Collins, M.J., Dymond, C., Johnson, E.A., 2004. Mapping subalpine forest types using
networks of nearest neighbour classifiers. International Journal of Remote
Sensing 25 (9), 1701–1721.

DeFries, R., Hansen, M., Townshend, J., 1995. Global discrimination of land cover
types from metrics derived from AVHRR pathfinder data. Remote Sensing of
Environment 54 (3), 209–222.

Delucia, E.H., Schlesinger, W.H., 1995. Photosynthetic rates and nutrient-use
efficiency among evergreen and deciduous shrubs in Okefenokee Swamp.
International Journal of Plant Sciences 156 (1), 19–28.

http://www.eomf.ou.edu/photos/
http://dx.doi.org/10.1016/j.isprsjprs.2012.07.004
http://dx.doi.org/10.1016/j.isprsjprs.2012.07.004


32 J. Dong et al. / ISPRS Journal of Photogrammetry and Remote Sensing 74 (2012) 20–33
Dixon, R.K., Brown, S., Houghton, R.A., Solomon, A.M., Trexler, M.C., Wisniewski, J.,
1994. Carbon pools and flux of global forest ecosystems. Science 263 (5144),
185–190.

Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S.,
Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A.,
Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N., Snyder, P.K.,
2005. Global consequences of land use. Science 309 (5734), 570–574.

Fox, J., Vogler, J.B., 2005. Land-use and land-cover change in montane mainland
southeast Asia. Environmental Management 36 (3), 394–403.

Friedl, M.A., McIver, D.K., Hodges, J.C.F., Zhang, X.Y., Muchoney, D., Strahler, A.H.,
Woodcock, C.E., Gopal, S., Schneider, A., Cooper, A., Baccini, A., Gao, F., Schaaf, C.,
2002. Global land cover mapping from MODIS: algorithms and early results.
Remote Sensing of Environment 83 (1–2), 287–302.

Gemmell, A.L., Smith, G.C., Haines, K., Blower, J.D., 2009. Validation of ocean model
syntheses against hydrography using a new web application. Journal of
Operational Oceanography 2 (2), 29–41.

Giri, C., Zhu, Z.L., Reed, B., 2005. A comparative analysis of the Global Land Cover
2000 and MODIS land cover data sets. Remote Sensing of Environment 94 (1),
123–132.

Hong, G., Zhang, Y., Mercer, B., 2009. A wavelet and IHS integration method to fuse
high resolution SAR with moderate resolution multispectral images.
Photogrammetric Engineering & Remote Sensing 75 (10), 1213–1223.

Huang, C.Q., Goward, S.N., Schleeweis, K., Thomas, N., Masek, J.G., Zhu, Z.L., 2009.
Dynamics of national forests assessed using the Landsat record: case studies in
eastern United States. Remote Sensing of Environment 113 (7), 1430–1442.

Huang, C., Goward, S.N., Masek, J.G., Thomas, N., Zhu, Z., Vogelmann, J.E., 2010. An
automated approach for reconstructing recent forest disturbance history using
dense Landsat time series stacks. Remote Sensing of Environment 114 (1), 183–
198.

Huete, A.R., Liu, H.Q., Batchily, K., vanLeeuwen, W., 1997. A comparison of
vegetation indices over a global set of TM images for EOS-MODIS. Remote
Sensing of Environment 59 (3), 440–451.

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview
of the radiometric and biophysical performance of the MODIS vegetation
indices. Remote Sensing of Environment 83 (1–2), 195–213.

Hunan, S.O., 1999. The Past 50 years of Hainan (1949–1999). China Statistics Press.
Kabir, S., He, D.C., Sanusi, M.A., Hussin, W.M.A.W., 2010. Texture analysis of IKONOS

satellite imagery for urban land use and land cover classification. Imaging
Science Journal 58 (3), 163–170.

Kavzoglu, T., 2009. Increasing the accuracy of neural network classification using
refined training data. Environmental Modelling & Software 24 (7), 850–858.

Kummer, D.M., Turner, B.L., 1994. The human causes of deforestation in Southeast-
Asia. Bioscience 44 (5), 323–328.

Lelieveld, J., Butler, T.M., Crowley, J.N., Dillon, T.J., Fischer, H., Ganzeveld, L., Harder,
H., Lawrence, M.G., Martinez, M., Taraborrelli, D., Williams, J., 2008.
Atmospheric oxidation capacity sustained by a tropical forest. Nature 452
(7188), 737–740.

Li, Z., Fox, J.M., 2011. Integrating Mahalanobis typicalities with a neural network for
rubber distribution mapping. Remote Sensing Letters 2 (2), 157–166.

Li, Z., Fox, J.M., 2012. Mapping rubber tree growth in mainland Southeast Asia using
time-series MODIS 250 m NDVI and statistical data. Applied Geography 32 (2),
420–432.

Li, H.M., Aide, T.M., Ma, Y.X., Liu, W.J., Cao, M., 2007. Demand for rubber is causing
the loss of high diversity rain forest in SW China. Biodiversity and Conservation
16 (6), 1731–1745.

Liang, S., 2001. Land-cover classification methods for multi-year AVHRR data.
International Journal of Remote Sensing 22 (8), 1479–1493.

Lin, M., Zhang, Y., 2001. Dynamic change of tropical forest in Hainan Island.
Geographical Research 20 (06), 703–712.

Liu, J.Y., Deng, X.Z., 2010. Progress of the research methodologies on the temporal
and spatial process of LUCC. Chinese Science Bulletin 55 (14), 1354–1362.

Liu, J.Y., Liu, M.L., Tian, H.Q., Zhuang, D.F., Zhang, Z.X., Zhang, W., Tang, X.M., Deng,
X.Z., 2005. Spatial and temporal patterns of China’s cropland during 1990–
2000: an analysis based on Landsat TM data. Remote Sensing of Environment 98
(4), 442–456.

Liu, J.Y., Zhang, Z.X., Xu, X.L., Kuang, W.H., Zhou, W.C., Zhang, S.W., Li, R.D., Yan, C.Z.,
Yu, D.S., Wu, S.X., Nan, J., 2010. Spatial patterns and driving forces of land use
change in China during the early 21st century. Journal of Geographical Sciences
20 (4), 483–494.

Longepe, N., Rakwatin, P., Isoguchi, O., Shimada, M., Uryu, Y., Yulianto, K., 2011.
Assessment of ALOS PALSAR 50 m orthorectified FBD data for regional land
cover classification by support vector machines. IEEE Transactions on
Geoscience and Remote Sensing 49 (6), 2135–2150.

Luckman, A., Baker, J., Honzak, M., Lucas, R., 1998. Tropical forest biomass density
estimation using JERS-1 SAR: seasonal variation, confidence limits, and
application to image mosaics. Remote Sensing of Environment 63 (2), 126–
139.

Miettinen, J., Liew, S.C., 2011. Separability of insular Southeast Asian woody
plantation species in the 50 m resolution ALOS PALSAR mosaic product. Remote
Sensing Letters 2 (4), 299–307.

Miettinen, J., Shi, C., Tan, W.J., Chinliew, S., 2012. 2010 land cover map of insular
Southeast Asia in 250-m spatial resolution. Remote Sensing Letters 3 (1), 11–20.

Montesano, P.M., Nelson, R., Sun, G., Margolis, H., Kerber, A., Ranson, K.J., 2009.
MODIS tree cover validation for the circumpolar taiga–tundra transition zone.
Remote Sensing of Environment 113 (10), 2130–2141.
Morton, D.C., DeFries, R.S., Shimabukuro, Y.E., Anderson, L.O., Espirito-Santo, F.D.B.,
Hansen, M., Carroll, M., 2005. Rapid assessment of annual deforestation in the
Brazilian Amazon using MODIS data. Earth Interactions 9 (8), 1–22.

Page, S.E., Siegert, F., Rieley, J.O., Boehm, H.D.V., Jaya, A., Limin, S., 2002. The amount
of carbon released from peat and forest fires in Indonesia during 1997. Nature
420 (6911), 61–65.

Perea, A.J., Merono, J.E., Aguilera, M.J., de la Cruz, J.L., 2010. Land-cover classification
with an expert classification algorithm using digital aerial photographs. South
African Journal of Science 106 (5–6), 82–87.

Pielke, R.A., 2005. Land use and climate change. Science 310 (5754), 1625–1626.
Potere, D., 2008. Horizontal positional accuracy of Google earth’s high-resolution

imagery archive. Sensors 8 (12), 7973–7981.
Qiu, J., 2009. Where the rubber meets the garden. Nature 457 (7227), 246–247.
Ranson, K.J., Sun, G.Q., 1994. Northern forest classification using temporal

multifrequency and multipolarimetric Sar images. Remote Sensing of
Environment 47 (2), 142–153.

Richards, J.A., Jia, X., 2006. Remote Sensing Digital Image Analysis: An Introduction,
fourth ed. Springer, Berlin.

Roderick, M.L., Noble, I.R., Cridland, S.W., 1999. Estimating woody and herbaceous
vegetation cover from time series satellite observations. Global Ecology and
Biogeography 8 (6), 501–508.

Rosenqvist, A., Shimada, M., Ito, N., Watanabe, M., 2007. ALOS PALSAR: a pathfinder
mission for global-scale monitoring of the environment. IEEE Transactions on
Geoscience and Remote Sensing 45 (11), 3307–3316.

Sakaguchi, K., Zeng, X.B., Christoffersen, B.J., Restrepo-Coupe, N., Saleska, S.R.,
Brando, P.M., 2011. Natural and drought scenarios in an east central Amazon
forest: fidelity of the Community Land Model 3.5 with three biogeochemical
models. Journal of Geophysical Research 116, G01029.

Santoro, M., Fransson, J.E.S., Eriksson, L.E.B., Ulander, L.M.H., 2010. Clear-cut
detection in Swedish boreal forest using multi-temporal ALOS PALSAR
backscatter data. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 3 (4), 618–631.

Simard, M., Saatchi, S.S., De Grandi, G., 2000. The use of decision tree and multiscale
texture for classification of JERS-1 SAR data over tropical forest. IEEE
Transactions on Geoscience and Remote Sensing 38 (5), 2310–2321.

Simard, M., De Grandi, G., Saatchi, S., Mayaux, P., 2002. Mapping tropical coastal
vegetation using JERS-1 and ERS-1 radar data with a decision tree classifier.
International Journal of Remote Sensing 23 (7), 1461–1474.

Stibig, H.J., Malingreau, J.P., 2003. Forest cover of insular southeast Asia mapped
from recent satellite images of coarse spatial resolution. Ambio 32 (7), 469–475.

Stibig, H.J., Achard, F., Fritz, S., 2004. A new forest cover map of continental
southeast Asia derived from SPOT-VEGETATION satellite imagery. Applied
Vegetation Science 7 (2), 153–162.

Su, W., Zhang, C., Yang, J.Y., Wu, H.G., Chen, M.J., Yue, A.Z., Zhang, Y.N., Sun, C., 2010.
Knowledge-based object oriented land cover classification using SPOT5 imagery
in forest-agriculture ecotones. Sensor Letters 8 (1), 22–31.

Thessler, S., Sesnie, S., Bendana, Z.S.R., Ruokolainen, K., Tomppo, E., Finegan, B., 2008.
Using k-nn and discriminant analyses to classify rain forest types in a Landsat
TM image over northern Costa Rica. Remote Sensing of Environment 112 (5),
2485–2494.

Thiel, C.J., Thiel, C., Schmullius, C.C., 2009. Operational large-area forest monitoring
in Siberia using ALOS PALSAR summer intensities and winter coherence. IEEE
Transactions on Geoscience and Remote Sensing 47 (12), 3993–4000.

Torbick, N., Salas, W.A., Hagen, S., Xiao, X.M., 2011. Monitoring rice agriculture in
the Sacramento Valley, USA with multitemporal PALSAR and MODIS imagery.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 4 (2), 451–457.

Tottrup, C., Rasmussen, M.S., Eklundh, L., Jonsson, P., 2007. Mapping fractional forest
cover across the highlands of mainland Southeast Asia using MODIS data and
regression tree modelling. International Journal of Remote Sensing 28 (1–2),
23–46.

Townsend, P.A., 2002. Estimating forest structure in wetlands using multitemporal
SAR. Remote Sensing of Environment 79 (2–3), 288–304.

Townshend, J.R.G., Justice, C.O., 1988. Selecting the spatial-resolution of satellite
sensors required for global monitoring of land transformations. International
Journal of Remote Sensing 9 (2), 187–236.

Tucker, C.J., 1979. Red and photographic infrared linear combinations for
monitoring vegetation. Remote Sensing of Environment 8 (2), 127–150.

Walker, W.S., Stickler, C.M., Kellndorfer, J.M., Kirsch, K.M., Nepstad, D.C., 2010.
Large-area classification and mapping of forest and land cover in the Brazilian
Amazon: a comparative analysis of ALOS/PALSAR and Landsat data sources. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing 3
(4), 594–604.

Wu, F., Wang, C., Zhang, H., Zhang, B., Tang, Y.X., 2011. Rice crop monitoring in
South China with RADARSAT-2 quad-polarization SAR data. IEEE Transactions
on Geoscience and Remote Sensing 8 (2), 196–200.

Xiao, X.M., Boles, S., Liu, J.Y., Zhuang, D.F., Liu, M.L., 2002. Characterization of forest
types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor
data. Remote Sensing of Environment 82 (2–3), 335–348.

Xiao, X.M., Hollinger, D., Aber, J., Goltz, M., Davidson, E.A., Zhang, Q.Y., Moore, B.,
2004. Satellite-based modeling of gross primary production in an evergreen
needleleaf forest. Remote Sensing of Environment 89 (4), 519–534.

Xiao, X.M., Zhang, Q.Y., Hollinger, D., Aber, J., Moore, B., 2005. Modeling gross
primary production of an evergreen needleleaf forest using modis and climate
data. Ecological Applications 15 (3), 954–969.



J. Dong et al. / ISPRS Journal of Photogrammetry and Remote Sensing 74 (2012) 20–33 33
Xiao, X., Biradar, C., Czarnecki, C., Alabi, T., Keller, M., 2009. A simple algorithm for
large-scale mapping of evergreen forests in tropical America, Africa and Asia.
Remote Sensing 1 (3), 355–374.

Xiao, W., Wang, X., Ling, F., 2010. The application of ALOS PALSAR data on mangrove
forest extraction. Remote Sensing Technology and Application 25 (01), 91–96.

Xie, C., Li, Z., Li, X., 2010. A study of deformation in permafrost regions of Qinghai-
Tibet Plateau based on ALOS/PALSAR D-InSAR interferometry. Remote Sensing
for Land & Resources 30 (01), 53–56.

Xu, X.L., Zeng, L., Zhuang, D.F., 2002. Analysis on land-use change and socio-
economic driving factors in Hainan Island during 50 years from 1950 to 1999.
Chinese Geographical Science 12 (3), 193–198.
Yang, Y., Li, Z., Chen, e., Ling, F., 2010. Recognition of forest cover based on multi-
temporal dual polarization ALOS PALSAR data. Journal of Anhui Agricultural
Sciences 38 (18), 9840–9844.

Zhang, J., Tao, Z., Liu, S., Cai, D., Tian, G., Xie, R., Xu, X., 2010. Rubber planting acreage
calculation in Hainan Island based on TM image. Chinese Journal of Tropical
Crops 31 (04), 661–665.

Ziegler, A.D., Fox, J.M., Xu, J.C., 2009. The rubber juggernaut. Science 324 (5930),
1024–1025.


	Mapping tropical forests and rubber plantations in complex landscapes  by integrating PALSAR and MODIS imagery
	1 Introduction
	2 Materials and methods
	2.1 A brief description of the study area
	2.2 Data
	2.2.1 PALSAR data and pre-processing
	2.2.2 MODIS data and pre-processing

	2.3 Land cover map based on analysis of PALSAR 50m mosaic data
	2.4 Separating evergreen and deciduous forest with MOD09A1 data
	2.5 Mapping rubber plantations using phenology from MOD13Q1 data
	2.6 Accuracy assessment and comparison to other land cover datasets

	3 Results
	3.1 Landcover map of forest, cropland, urban and water from PALSAR in 2007
	3.2 The area and spatial distribution of evergreen and deciduous forests
	3.3 The area and spatial distribution of rubber plantation in 2007

	4 Discussion
	5 Conclusion
	Acknowledgements
	Appendix A Supplementary material
	References


