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Agricultural land use change substantially affects climate, water, ecosystems, biodiversity, and humanwelfare. In
recent decades, due to increasing population and food demand and the backdrop of global warming, croplands
have been expanding into higher latitude regions. One such hotspot is paddy rice expansion in northeast
China. However, there are no maps available for documenting the spatial and temporal patterns of continuous
paddy rice expansion. In this study, we developed an automated, Landsat-based paddy rice mapping (Landsat-
RICE) system that uses time series Landsat images and a phenology-based algorithmbased on the unique spectral
characteristics of paddy rice during the flooding/transplanting phase. As a pilot study, we analyzed all the
available Landsat images from 1986 to 2010 (498 scenes) in one tile (path/row 113/27) of northeast China,
which tracked paddy rice expansion in epochs with five-year increments (1986–1990, 1991–1995, 1996–2000,
2001–2005, and 2006–2010). Several maps of land cover types (barren land and built-up land; evergreen,
deciduous and sparse vegetation types; and water-related land cover types such as permanent water body,
mixed pixels of water and vegetation, spring flooded wetlands and summer flooded land) were generated as
masks. Air temperature was used to define phenology timing and crop calendar, which were then used to select
Landsat images in the phenology-based algorithms for paddy rice andmasks. The resultant maps of paddy rice in
the five epochs were evaluated using validation samples from multiple sources, and the overall accuracies and
Kappa coefficients ranged from84 to 95% and 0.6–0.9, respectively. The paddy rice area in the study area substan-
tially increased from 1986 to 2010, particularly after the 1990s. This study demonstrates the potential of the
Landsat-RICE systemand time series Landsat images for tracking agricultural landuse changes at 30-m resolution
in the temperate zone with single crop cultivation.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

As a fundamental component of global environmental change and
sustainability research (Turner, Lambin, & Reenberg, 2007), land cover
and land use change (LCLUC) greatly affects the carbon andwater cycles
(West et al., 2010), biodiversity (Gibson et al., 2011), and human
welfare (Foley et al., 2005). Many areas in the world had expansion of
crop and pastoral lands from natural ecosystems in the past decades
(Lambin &Meyfroidt, 2011; Turner et al., 2007).Maintaining agricultur-
al land area is a critical challenge for global food security (Thenkabail,
rman, OK 73019, USA. Tel.: +1
2009), particularly in China with a large and increasing population
(Tao, Yokozawa, Liu, & Zhang, 2009). In some regions of China, large
areas of cropland were either converted to built-up land due to urbani-
zation or returned to forest and grassland due to ecological restoration
projects (Liu et al., 2014). In high latitudinal areas, agricultural expan-
sion is a new trend due to climatic warming (Dong, Liu, Tao, Xu, &
Wang, 2009; Dong, Liu, Yan, Tao, & Kuang, 2011; Liu et al., 2014).
Northeast China has been undergoing an especially rapid expansion of
paddy rice in past decades that has yielded more grain production, re-
sulted in the northeastward shift of the crop production center in
China (Cheng, Wang, Guo, Zhao, & Huang, 2012), and had remarkable
impacts on the carbon cycle and water management (Wang et al.,
2010). The cropland reclamation that occurred in northeast China fea-
tured the conversion of wetland and upland cropland to paddy rice
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fields (Wang et al., 2011). High soil organic carbon, long crop seasons
and high rice biomass in northern China enhanced methane emission
in paddies (Zhang, Wang, Su, & Li, 2011). Therefore, the amount of
methane emissions from paddy rice fields needs to be quantified in
northeast China. In addition, paddy rice expansion has also raised a se-
ries of environmental problems, including water resource shortage
(Tao, Hayashi, Zhang, Sakamoto, & Yokozawa, 2008), land degradation
and biodiversity loss (Yang, Yan, & Zhu, 2011).

Several global land cover products include a layer of croplands in
China, for example, the MCD12Q1 from the Moderate-resolution
Imaging Spectroradiometer (MODIS) (Friedl et al., 2002, 2010), the
GlobCover from the MEdium Resolution Imaging Spectrometer
(MERIS) (Arino et al., 2008), and the Finer Resolution Observation and
Monitoring-Global Land Cover (FROM-GLC) from Landsat (Gong et al.,
2013). All of these efforts were based on the spectral features of land
cover types in certain phases using supervised or unsupervised classifi-
cation approaches. Due to different data resolutions, classification
schemes, algorithms, research aims, and validation intensities, these
products differ to various degrees (Dong et al., 2012; Fritz, See, &
Rembold, 2010; Waser & Schwarz, 2006). The algorithms of these
land cover datasets rely on image statistics, training sample collection
and/or human visual interpretation. The image statistics are image-
dependent, therefore, the repeatability of these algorithms is low. In
these land cover datasets, cropland was typically considered as one
land cover category that contains different crop species, and there
were large discrepancies of cropland distribution among the various
datasets (Wu, Shibasaki, Yang, Zhou, & Tang, 2008). More specific
information on crop type, e.g., paddy rice, is still limited in these existing
land cover products.

The phenology-based approach, based on a time series of spectral
reflectance or vegetation indices at individual pixels, is an alternate way
to identify and map land cover types. Several studies adopted
phenological metrics (e.g., starting date, ending date) to map land cover
types including soybean and corn (Zhong, Gong, & Biging, 2014). Spectral
matching techniques (SMT) have also been used to map land cover and
irrigated areas (Thenkabail et al., 2009; Thenkaball, GangadharaRao,
Biggs, Krishna, & Turral, 2007). Other studies evaluated spectral proper-
ties of various phenological phases, carefully selected one or two unique
phases and associated it with spectral signature to identify and map
land cover types (Dong et al., 2013; Xiao et al., 2005, 2006). Specifically,
a phenology-based approach was used to develop an automated paddy
rice mapping algorithm (Xiao et al., 2002), as paddy rice fields have a
phase offlooding and open-canopy (after rice transplanting)when amix-
ture of surface water and rice crops exists. This phenology feature has
been used for mapping paddy rice in Southern China and Southeast Asia
with MODIS data (Xiao, Boles, et al., 2005; Xiao et al., 2006).

The freely available Landsat archive data that have existed for the past
forty years (1972 to present) offer unprecedented opportunities to docu-
ment historical land cover changewith a longer range than that ofMODIS.
The Landsat Thematic Mapper (TM) sensor, Enhanced Thematic Mapper
Plus (ETM+) sensor, and Operational Land Imager (OLI) have the same
spatial resolution and continuous temporal coverage. Several regional
scale studies have used 30-m Landsat imagery to quantify changes in for-
est areas. For example, Hansen et al. (2013) mapped global forest extent
and annual loss and gain from 2000 to 2012, and another study reported
forest disturbance trends in the United States using Landsat time series
data and the Vegetation Change Tracker (VCT) algorithm (Huang et al.,
2010; Masek et al., 2013). Based on the visual interpretation and digitali-
zation of individual Landsat images, multi-temporal land cover maps in
China from the 1980s to 2010 with 5-year intervals have been generated
in the China National Land Cover Datasets (NLCD China), including two
categories of cropland: paddy cropland (mainly paddy rice) and upland
cropland (Liu et al., 2005, 2014). However, the NLCD work was time-
consuming and labor-intensive, and the accuracy was largely dependent
on the experiences of interpreters and image selection (e.g., rice and
wheat could have similar spectral features in some periods).
The application of time series Landsat images to quantifying long-
term agricultural land use change at the regional scale is very challeng-
ing due to the variability and complexity of the spectral and texture
signatures from different crop types. Our goal is to develop an auto-
mated time series Landsat- and phenology-based system and use it to
map paddy rice fields for the last three decades. We plan to use all the
Landsat images available in the U.S. Geological Survey Center for
Earth Resources Observation and Science (USGS EROS) archive for one
path/row. This process requires practical approaches for atmospheric
correction and the identification and exclusion of bad-quality observa-
tions including clouds, cloud shadows, snow, and missing data in
ETM+ due to scan line corrector off (SLC-off). The Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS) (Masek et al.,
2006) has been widely used for the time series Landsat image process-
ing (Huang et al., 2009; Thomas et al., 2011). Previous studies indicated
that cloud cover and their shadows have non-ignorable effects (Asner,
2001; Lindquist, Hansen, Roy, & Justice, 2008) and several algorithms
have been developed to detect them (Goodwin, Collett, Denham,
Flood, & Tindall, 2013; Simpson, Jin, & Stitt, 2000; Zhu & Woodcock,
2012). For example, Zhu and Woodcock (2012) developed an opera-
tional routine Fmask to detect clouds and cloud shadows. The snow
detection algorithm has been developed and widely applied
(Hall, Riggs, & Salomonson, 1995). SLC-off gaps can be acquired from
the metadata. It will be valuable to build the time series datasets with
all of the good-quality observations and evaluate its potential to map
paddy rice, which would contribute to improving land cover mapping
and change detection capability.

The objective of this study is three-fold: (1) to develop a Landsat-
and phenology-based paddy rice mapping system (Landsat-RICE) to
process time series Landsat data including vegetation index calculation,
exclusion of bad-quality observations (cloud, cloud shadow, snow, and
SLC-off gaps), subsetting and stacking of time series data, and
phenology-based paddy rice mapping; (2) to improve and evaluate
the feasibility and accuracy of pixel- and phenology-based algorithms
in mapping paddy rice using all of the available Landsat images and
air temperature-based phenology timing definitions; and (3) to provide
satellite-based evidence for documenting paddy rice expansion in
northeast China over the past three decades at such five-year intervals
as the late 1980s (1986–1990), early 1990s (1991–1995), late 1990s
(1996–2000), early 2000s (2001–2005), and late 2000s (2006–2010).

2. Materials and methods

In this study, we developed a Landsat data processing system
for mapping paddy rice over decades, which is composed of two
modules: (1) the image data preprocessing module (see Section 2.2
for details) and (2) pixel- and phenology-based paddy rice mapping
module (Section 2.3). Fig. S1 shows the schematic diagram of the
Landsat- and phenology-based paddy rice mapping system (Landsat-
RICE). As a pilot and methodological study, we selected one Landsat
scene (path/row 113/27) in northeast China as the study area. Using
the resultant paddy rice maps over decades, we quantified the paddy
rice expansion pattern and process from 1986 to 2010.

2.1. Study area

Our study area covers the border area of China and Russia between
133.153–136.125° E and 46.530–48.371° N, which is part of the Sanjiang
Plain. Thewesternpart of the study area is largelyflat and is dominatedby
paddy rice (Fig. 1). The climate of the study area is the middle temperate
and humid zone with monsoons. The annual mean temperature is ap-
proximately 2.5 °C, with the lowest temperature occurring in January at
around−20 °C, and the highest temperature in July at 22 °C. The annual
accumulated temperature above 10 °C is over 2400 °C · day. The annual
precipitation is approximately 500 mm. There are several large rivers in
the study area, including the Heilongjiang River, Wusuli River, and Naoli



Fig. 1. The location of study area in China. The Digital Elevation Model (DEM), main rivers, and meteorological sites are shown in the figure, and the county boundary and Landsat scene
extent (path/row 113/27) are highlighted.
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River, which provide richwater resources for paddy rice planting. The soil
is suitable for cropping with high fertility, e.g., Aquepts soil and Cryalfs
soil.

The Chinese portion of the study area includes two counties (Fuyuan
and Raohe), and both have large areas of croplands, such as paddy rice,
corn, and soybean fields (Fig. 1). The cropland area per capita in the
study area is much higher than the national average level. The planting
areas of paddy rice and corn increased rapidly, which led to a loss in
wetlands (Liu, Zhang, Li, Lu, & Yang, 2004; Wang et al., 2011; Zhang
et al., 2009). Liu et al. (2004) found that 73.6% of the wetlands in the
northeastern part of Heilongjiang Province were lost due to agricultural
development from 1950 to 2000, while Wang et al. (2011) also found
that the wetlands in the Sanjiang Plain have decreased by 77% from
1954 to 2005. At the same time, cropland was found to have increased
dramatically (Zhang et al., 2009).

2.2. Time series Landsat image preprocessing

We developed the Landsat data preprocessing protocol to process
hundreds of Landsat images over time including atmospheric correc-
tion, bad-quality observation detection of clouds, cloud shadows,
snow and SLC-off pixels, data quality labeling, image co-registration,
and data subsetting and stacking (clipping data to a common geograph-
ic range and assembling them into a time series stack) (Fig. 2). All of
these preprocessing procedures made use of the multiple-core and
Linux-based servers.

2.2.1. Image data acquisition
The free accessibility of the U.S. Geological Survey Center for Earth

Resources Observation and Science (USGS/EROS) enabled usage of all
of the available Landsat archive data for temporal and phenology analy-
sis. We downloaded all the available Landsat TM and ETM+ images
(path/row 113/27) from 1986 to 2010 from the USGS/EROS, including
the standard Level 1 Terrain-corrected (L1T) images and other images
with different processing levels. Finally, we had a total of 498 images
for the scene (path/row 113/27), which provided good temporal cover-
age (Fig. 3) with an average of 1.66 images per month from 1986 to
2010 (Fig. S2). Fig. 3 shows that the period with the most Landsat im-
ages were from 2000 to 2004 with Landsat 5 TM and ETM+. The early
1990s' epoch had the fewest images. The seasonal distribution of the
Landsat images showed that the Landsat data in the four seasons were
generally even, with slightly larger amounts in the summer and au-
tumn. Landsat images in the winter season had snow cover in most
pixels.

There are three categories of Landsat products: the L1T, Level 1 Sys-
tematically Corrected (L1G), and Systematically Terrain Corrected
(L1Gt) (NASAGoddard Space Flight Center, 2011). All of the radiometric
and geometric corrections have been conducted in all of the three cate-
gories of products. While the overall geometric fidelity has also been
fitted using ground control points and a digital elevation model for
L1T; a Digital ElevationModel (DEM) is employed for topographic accu-
racy of L1Gt; no terrain correction is applied in L1G products, and the
geometric accuracy of the systematically corrected product should be
within 250 m (1 sigma) for low-relief areas at sea level (NASA
Goddard Space Flight Center, 2011). We did not conduct further terrain
correction on the L1G data as it was beyond the aims of this study, but
we excluded seven mis-registration Landsat 5 TM images (1986100,
1986276, 1987279, 1988250, 1988282, 1990127, and 1990303), by
using the imagematching verification function in the Automated Regis-
tration and Orthorectification Package (AROP) (Gao, Masek, & Wolfe,
2009), which is a registration and orthorectification package for pro-
cessing Landsat and Landsat-like data.
2.2.2. Atmospheric correction
Atmospheric correction was conducted to generate surface reflec-

tance by using the LEDAPS software (Masek et al., 2006), which uses
theMODIS 6S radiative transfer approach to retrieve surface reflectance
(Masek et al., 2006; Vermote et al., 1997). The LEDAPS includes
the calibration from at-sensor radiance (digital number, DN) to top-
of-atmosphere (TOA) reflectance and the atmospheric correction from
TOA reflectance to surface reflectance using ancillary National Centers
for Environmental Prediction (NCEP) water vapor data and Total
Ozone Mapping Spectrometer (TOMS) ozone data.



Fig. 2. Data preprocessing procedures (left), including atmospheric correction, snow, cloud, shadow and SLC-off detection, vegetation index (VI) and flooding signal calculation, effective
observation extractions, and image subsetting and stacking. Time series VI products were prepared forfive epochs (the late 1980s: 1986–1990, early 1990s: 1991–1995, late 1990s: 1996–
2000, early 2000s: 2001–2005, and late 2000s: 2006–2010) using the 498 scenes of Landsat TMandETM+ images. Thedata preprocessingprocedures are shown takingoneflooding layer
generation as an example (right): a) the false color composite (R/G/B= Band 5/4/3) of original surface reflectance data after atmospheric correction; b) the bad observation identification
including clouds, cloud shadows, snow, and gaps; c) the flooding signal observations; d) the combined flooding data by overlaying bad-quality observation flags b) and flooding layer c);
and e) the subsetted flooding layers by using the communal extent of the images in the same epoch. The image used in this case is from the path/row 113/27, Landsat ETM+, acquired on
the 105th day of 2008. The sequence numbers (a–e) in the left diagram are corresponding with that of the right figures.
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2.2.3. Calculation of vegetation indices
We calculated three vegetation indices: Normalized Difference

Vegetation Index (NDVI) (Tucker, 1979), Enhanced Vegetation Index
(EVI) (Huete, Liu, Batchily, & vanLeeuwen, 1997; Huete et al., 2002),
and Land Surface Water Index (LSWI) (Xiao, Zhang, Hollinger, Aber, &
Moore, 2005; Xiao et al., 2004). These indices have been widely used
in the studies of vegetation canopy, biomass, water content, and
phenology. We also calculated the Normalized Difference Snow Index
(NDSI), which was used for snow detection (Hall et al., 1995). These
spectral indices were calculated using the Landsat surface reflectance
based on the following equations and spectral bands:

NDVI ¼ ρNIR−ρred

ρNIR þ ρred
ð1Þ

EVI ¼ 2:5� ρNIR−ρred

ρNIR þ 6� ρred−7:5� ρblue þ 1
ð2Þ

LSWI ¼ ρNIR−ρSWIR

ρNIR þ ρSWIR
ð3Þ

NDSI ¼ ρgreen−ρSWIR

ρgreen þ ρSWIR
ð4Þ
where ρblue, ρgreen, ρred, ρNIR, and ρSWIR are the surface reflectance values
of Band 1 (blue, 0.45–0.52 mm), Band 2 (green, 0.53–0.61 mm), Band 3
(red, 0.63–0.69 mm), Band 4 (near-infrared, NIR for short hereafter,
0.76–0.90 mm) and Band 5 (shortwave-infrared, 1.55–1.75 mm) in
the Landsat TM/ETM+ sensors.

We further calculated the (1) difference between LSWI and
NDVI (LSWI − NDVI) and (2) difference between LSWI and EVI
(LSWI − EVI) for each of Landsat images. The resultant difference
maps provided additional information on the mixture (mixing ratio)
of water, soils, and plants within a pixel.

2.2.4. Bad-quality observations in Landsat images
Bad observations were identified, including clouds, cloud shadows,

SLC-off gaps, and snow cover. Fig. 2 shows detailed data preprocessing
procedures for exclusion of these bad-quality observations. After these
preprocessing procedures, the vegetation index data were clipped
according to a common geographic extent and assembled into a time
series dataset ready for use.

2.2.4.1. ETM+ SLC-off pixels. The Landsat 7 ETM+ came into operation
in 1999 as the successor of TM; however, the scan-line corrector (SLC)
of ETM+ failed permanently on May 31st, 2003, which caused approx-
imately 22% of the pixels to be missing from an image (Arvidson,



Fig. 3. The annual distribution of Landsat imagery by a) sensors (Landsat TM4, Landsat TM
5, and Landsat ETM+) and b) seasons (spring, summer, autumn, and winter) in the study
area for the scene (path/row 113/27) from 1986 to 2010. c) The image numbers in the
flooding and transplanting phase and whole year for the five epochs.
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Goward, Gasch, &Williams, 2006). The SLC-off was most obvious in the
edge area of an image and gradually diminishes toward the center of the
image. We excluded the SLC-off gaps for ETM+ images according to
their metadata.

2.2.4.2. Clouds and cloud shadows. Cloud and cloud shadow detection is
essential for optical remote sensing data processing. We used the
Fmask routine (Zhu & Woodcock, 2012) to detect the clouds and
cloud shadows in an image, which first identifies potential cloud pixels
based on cloudphysical properties, then detects cloud shadows through
its darkening effects in the NIR band and a flood-fill transformation
method, and finally, matches clouds and cloud shadows to generate
the map of cloud and cloud shadow. Although a recent study found
that temporal information from time series images can improve the
detection capability of cloud and cloud shadow (Goodwin et al.,
2013), Fmask has the advantage of processing a large amount of images
in a more computationally efficient way.
2.2.4.3. Snow cover. Snow cover in the study regionwas another issue for
land cover mapping and needed to be eliminated as well (Xiao, Boles,
et al., 2005). In this study, we used the NDSI index and NIR spectral
band to identify snow cover with the thresholds NDSI N 0.40 and
NIR N 0.11 (Hall et al., 1995). The snow cover was extracted from each
of the Landsat images. Those pixels identified as snow cover were also
excluded from the identification of paddy rice fields, together with
clouds and cloud shadows.

2.2.4.4. Statistical analysis of good-quality observations of time series
Landsat images. Because good quality observations for each month of
every year were unavailable (Fig. S2), it was necessary to combine
images from multiple years (epochs) for the paddy rice analysis.
Fig. 3c shows the data availability status for the whole year and the
flooding/transplanting phase in each epoch. Good observation numbers
in individual pixels varied over space. We calculated pixel-based statis-
tics for good observation numbers, excluding clouds, cloud shadows,
snow, and SLC-off gaps, over the flooding and transplanting phase
(Fig. 4a–e) and the whole year (Fig. 4f–j) for the five epochs. The
maximum number of good-quality observations within a pixel during
the flooding and transplanting phase was 9 in the late 1980s, 7 in the
early 1990s, 12 in the late 1990s, 19 in the early 2000s, and 11 in the
late 2000s (Fig. 3c). In the epoch of the early 2000s, 99% of pixels had
over seven good-quality observations in the flood/transplanting phase.
In the epochs of late 1990s, late 1980s and late 2000s, 84%, 72%
and 71% of pixels had over four good-quality observations in the
flood/transplanting phase (Fig. 4k), even though there were no blank
observations in all the above four epochs. Data availability was worst
in the early 1990s' epoch when 20% of pixels were missed in the
flood/transplanting phase and another 80% had only one to three
instances of good observations (Fig. 4k). This indicated that potential
paddy rice flooding signals could be biased in that 20% area in the
epoch of the early 1990s while in the other four epochs the input data
were effectively good. The statistics on the yearly scale had similar
characteristics (Fig. 4l).

2.3. Pixel- and phenology-based land cover mapping algorithms

The pixel- and phenology-based approach has been successfully
applied in mapping paddy rice using MODIS imagery in South China
and South and Southeast Asia (Xiao, Boles, et al., 2005; Xiao et al.,
2002, 2006). As time series Landsat images are now available, it is im-
portant to explore whether the algorithm and Landsat data can be
used in the temperate climate areas. In addition, a temperature-based
phenology algorithm was added to improve selection of images at
appropriate phenological stages (Table 1). Here we describe the
algorithms in detail.

2.3.1. Temperature-based plant growing season and crop calendar
Air temperature is an important driving factor for the plant growing

season, phenology and crop calendar. Usually when daily air tempera-
tures rise above 0 °C (frost point) in the spring, natural vegetation starts
to green up. Agronomical activities are typically conducted when air
temperature reaches certain thresholds (Xiao, Gilbert, Slingenbergh,
Lei, & Boles, 2007), as thermal resources are one of the critical com-
ponents for crop growth and crops need certain accumulated tempera-
tures to finish their lifecycle. Therefore, delineation of thermal growing
seasons for natural vegetation and crops could help us select images at
appropriate time windows for better discrimination of various land
cover types.

There is no universal method for defining the thermal growing
seasons of different vegetation types (Linderholm, 2006). As the daily
temperature variation is obvious in the study area with high latitudes,
frost status is determined by daily minimum temperature. Thus, we
used the daily minimum temperature thresholds of 0, 5 and 10 °C
(Linderholm, Walther, & Chen, 2008) to define the phenology timing:



Fig. 4. The spatial patterns of good observation numbers of Landsat images (path/row 113/27) in the flooding and transplanting phase in the epochs: a) late 1980s, b) early 1990s, c) late
1990s, d) early 2000s, and e) late 2000s, as well as good observation numbers in the whole year in the epoch: f) late 1980s, g) early 1990s, h) late 1990s, i) early 2000s, and j) late 2000s.
Summarized good observation statistics for e) the flooding and transplanting phase and f) the whole year.
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(1) the start (TGS-0-S) and end (TGS-0-E) dates of thermal growing
season above 0 °C (TGS-0), which are consistent with the last spring
frost and first autumn frost and the theoretical growing season of
natural vegetation; (2) the start (TGS-5-S) and end (TGS-5-E) dates of
thermal growing season above 5 °C (TGS-5), which is another widely-
used indicator for the theoretical growing season of vegetation; and
(3) the start (TGS-10-S) and end (TGS-10-E) dates of thermal growing
season above 10 °C (TGS-10), which correspond to the start and the
end dates of the theoretical growing season of thermophilic crops
such as paddy rice (Fig. 5). We collected daily meteorological data
during 1986–2010 from the Fujin station (66.4 m asl), which is closest
to the study area. Using the method described in our previous studies
(Dong et al., 2009, 2013), the results of the TGS-0-S, TGS-5-S, TGS-10-
S, TGS-10-E, TGS-5-E, and TGS-0-E were 103 ± 5 (mean ± standard
Table 1
A summary of thephenology-based algorithms used in this study for non-cropland land coverm
bottom one. The frequency constraints donot apply to themaximum,minimumandmeanNDV
phenological dates of TGS-0-S, TGS-5-S, TGS-10-S, TGS-10-E, TGS-5-E and TGS-0-E are address

Category Land cover layers

Impervious land surface and barren lands Built-up, barren land
Upland natural vegetation types Evergreen vegetation

Deciduous natural vegetation
Sparse vegetation

Water-related land cover types Permanent water body

Permanent mixed water/vegetation pixels
Spring flooded natural wetlands
Summer flooded natural lands
Paddy rice
deviation, SD), 123 ± 7, 144 ± 6, 256 ± 6, 275 ± 6, and 291 ±
6 DOY, respectively. We used these thermal growing season variables
to determine phenology timing of paddy rice flooding and other land
cover types (Table 1). The climatic warming effects on the phenology
timing during the study period (from 1986 to 2010) were limited
(Fig. S3) and we used the mean − SD as the starts of growing season
and mean + SD as the ends of growing season, for example, we used
138 (144 minus 6) DOY as the TGS-10-S for the algorithm (Table 1).
2.3.2. Maps of non-cropland land cover types as masks in the algorithm
We generated a few masks of non-cropland land cover types to

reduce commission error of the resultant paddy rice maps. Here we
describe these masks in brief (Table 1).
asks and paddy ricemapping. Themaskswere extractedone by one from the top line to the
I values. The dailyminimum temperaturewas used to define the plant growing season. The
ed in Section 2.3.1.

NDVI LSWI LSWI − NDVI
(EVI)

Time window applied Frequency
constraints

b0 TGS-5-S to TGS-5-E N90%
N0 DOY 1 to DOY 365 (or 366) N90%

NDVImax N 0.5 TGS-0-S to TGS-10-S Not applied
NDVImax b 0.4 TGS-0-S to TGS-0-E Not applied
NDVImean b 0.1 N0 TGS-0-S to TGS-0-E N80%

NDVImean N 0.1 N0 TGS-5-S to TGS-5-E N80%
NDVImax N 0.3 N0 TGS-0-S to TGS-10-S N10%

N0 TGS-10-S + 40 to TGS-10-E N10%
N0 TGS-10-S to TGS-10-S + 40 N10%



Fig. 5. The temporal profile of paddy rice vegetation indices (NDVI, EVI, and LSWI) at the site (133.643° E, 47.676° N) and air temperature, including daily mean temperature (T), daily
maximum temperature (MaxT), and daily minimum temperature (MinT) as well as daily precipitation at the meteorological site. The crop calendar shown in the figure is referred to
the growth and development datasets of crops derived from Climatic Data Center, National Meteorological Information Center of China. The daily meteorological data are from the
only site closest to the study area, Fujin Site, and the data are averaged from 2006 to 2010. The field photo, taken in June of 2013, shows the physical condition of the flooding and
transplanting phase. The six temperature-based thermal growing season variables (TGS-0-S, TGS-5-S, TGS-10-S, TGS-0-E, TGS-5-E and TGS-10-E) are marked.
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2.3.2.1. Barren land and built-up land. Built-up materials and barren
land have high reflectance in the visible and higher reflectance in the
shortwave infrared bands. They have LSWI b 0 values throughout the
plant growing season (Fig. 6). We counted the number of observations
with LSWI b 0 within the thermal growing season above 5 °C (from
TGS-5-S to TGS-5-E) and divided it by the total number of good-
quality observations in a pixel, i.e., frequency of observations with
LSWI b 0. The pixels with a frequency of N90% (10% error assumption)
were classified as built-up and barren land (Table 1).

The frequency of a feature in all of the good observations for a pixel
over an epoch period was calculated using the following equation:

F ¼ Nclass

Ntotal þ Nbad
ð5Þ

where Fclass is the frequency of a feature among all of the good-quality
observations in an epoch; Nclass is the number of feature observations;
Ntotal is the total observation (image) number in the epoch; and Nbad
is the number of bad observations (e.g., clouds, shadows, snow, and
SLC-off gaps).

2.3.2.2. Evergreen vegetation, deciduous natural vegetation, and sparse
vegetation. Evergreen vegetation has green leaves all year round, while
deciduous vegetation has a period of defoliation. LSWI has proven
effective in separating evergreen and deciduous vegetation in previous
studies (Xiao, Boles, et al., 2005; Xiao, Biradar, Czarnecki, Alabi, &
Keller, 2009). We used the algorithm of LSWI N 0 with a frequency of
N90% to map evergreen vegetation (e.g., trees and shrubs). After ever-
green vegetation was excluded, deciduous natural vegetation can be
identified through NDVI values higher than that of agricultural land in
early spring. By TGS-10-S, natural vegetation has grown a few weeks
after thaw and all of the new leaves have emerged; thus, it has high
EVI and NDVI values (close to dense vegetation) while paddy rice or
other crops are just sowed. Thus, we used the maximum NDVI N 0.5
within the time period of TGS-0-S to TGS-10-S to generate a map of
deciduous natural vegetation (Table 1). Besides the evergreen and



Fig. 6. The spectral and phenology characteristics of different land cover types from individual points, including a) paddy rice (134.066° E, 47.204° N), b) wetland (133.583° E, 47.232° N),
c) evergreen forest (135.158° E, 47.221° N), d) corn (134.115° E, 47.412° N), e) water (132.156° E, 47.701° N), f) deciduous forest (133.576° E, 46.947° N), and g) built-up land (133.882° E,
47.595° N).
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deciduous vegetation (e.g., forests, shrubs, and grass), there are some
areas of sparse vegetation (e.g., saline and alkaline land) distributed
throughout the study area. Those sparse vegetation areas have very
low greenness during the entire growing season. We used the maxi-
mum NDVI b 0.4 in the thermal growing season above 0 °C to mask
them (Table 1).

2.3.2.3. Permanent water body and mixed pixels of water and vegetation.
Permanent water body and mixed pixels of water and vegetation have
a unique relationship between LSWI and NDVI (EVI), i.e., LSWI N NDVI,
LSWI N EVI (Xiao et al., 2002), as shown in Fig. 6. A permanent
water body has lower greenness while the mixed pixels of water and
vegetation have higher greenness. In this study, we used NDVI b 0.1 at
N80% frequency within the thermal growing season above 0 °C (TGS-
0-S to TGS-0-E) to map permanent water body, while we used NDVI N
0.1 at N80% frequency to map permanent mixed pixels of water and
vegetation in an epoch (Table 1).

2.3.2.4. Spring flooded natural wetlands and summer flooded lands.Natural
wetlands are oftenflooded in late springdue to snowmelt, duringwhich
period natural wetlands grow rapidly and could reach NDVI values
greater than 0.3 while crops are not yet planted (Fig. 6). In this
study, the spring flooded natural wetlands were identified based on
their flooding feature and higher NDVI values between TGS-0-S and
TGS-10-S (Table 1). Besides spring snowmelt, summer precipitation
also can cause some areas along rivers and streams to be flooded. Due
to frequent flooding, these areas are typically retained as natural
wetlands or other non-cropland land cover types. We generated these
summer flooded lands according to their flooding signals in peak
growing season (Table 1).
2.3.3. Paddy rice
Paddy rice has a unique agronomic feature in that it is transplanted in

amixture of soil andwater, and theflood/open-canopy phase often lasts a
few weeks after transplanting (Le Toan et al., 1997; Xiao et al., 2002),
while other crops (e.g., wheat, corn, and soybean) do not need
transplanting and are not grown in flooded soils. Before canopy closure,
paddy rice fields are a mixture of water and rice plants, as observed by
sensors or, in other words, “flood/open-canopy phase”. After the rice can-
opy is closed, optical sensors cannot see water under the canopy. From
the canopy closure to the ripening stages and harvest, they have similar
spectral characteristics with other crops (e.g., wheat). Therefore, the key
is to detect themixed condition of surfacewater and green rice vegetation
during the flood/open-canopy phases. As shown in Fig. 5, LSWI and EVI
(or NDVI) are temporarily inversed in the flood/open-canopy phase,
which has been presented in the previous studies (Xiao, Boles, et al.,
2005; Xiao et al., 2002, 2006). The flood/open-canopy status was identi-
fied if an observation met the criterion of LSWI N NDVI or LSWI N EVI in
the pixel. Otherwise, it was not a flood/open-canopy pixel.

Farmers do not irrigate or flood the fields until the air temperature
reaches a threshold. The TGS-10-S is the starting date for paddy rice plant-
ing preparation. The flooding phase ends when the canopy closure
reaches a certain level, as reflected in a quick increase in NDVI and EVI
and decrease in LSWI, which typically happens 40 days after TGS-10-S.
We set TGS-10-S + 40 days as the ending date for the flooding and
transplanting process, when the EVI is close to 0.3–0.4 (Fig. 5). This
threshold of ending date was also verified by communications with the
local farmers. Thus, the potential paddy rice flooding was mapped with
the phenology timing from TGS-10-S to TGS-10-S + 40 (Table 1). All of
the above-mentioned non-cropland land cover masks were excluded
from thismap,whichfinally resulted in the paddy ricemap in each epoch.
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2.4. Accuracy assessment of Landsat-based paddy rice maps

We collected the validation data from multiple sources for the
five epochs of paddy rice maps. For the late 2000s, we digitized the
validation areas of interest (AOIs) by integrating high resolution images
and field photos. The high-resolution images in 2006–2010 used includ-
ed 38 scenes of high resolution images (mainlyWorldViewpan images)
from the National Geospatial-Intelligence Agency (NGA) Commercial
Archive Data and the historical imagery archive from Google Earth,
which are shown in Fig. S4. There were 846 GPS photos collected in
the summer of 2013 that were managed in the Global Geo-Referenced
Field Photo Library (http://www.eomf.ou.edu/photos/), and 89 plots
with GPS records from 2011 were collected as well (Fig. S4). Although
these field data were collected in the summers of 2013 and 2011, they
can provide reference information for the AOI digitization due to the
continuity of rice cropping. The AOIs were digitized according to
the field shape, size and referring to the field photos (Fig. S6); not all
the AOIs had associated field photos/plots due to the spatial inconsis-
tency of high-resolution images and field data. The feature extraction
(e.g., smaller field size, regular shape) of paddy rice fields was based
on these field data. A total of 253 polygon AOIs (79,833 pixels,
Fig. S5a) were created for a thorough accuracy assessment of the
resultant land cover map using the confusion matrix approach, detailed
information about the AOI numbers for different categories was shown
in Table 2. For the early 2000s and late 1990s' epochs, the AOIs were
digitized referring to 15-m ETM+ panchromatic layers and 30-m
color composite images from multiple growth stages by independent
researchers. The color composites (R/G/B= Band 5/4/3) in the flooding
and transplanting phase had remarkable features of paddy rice in tone
(dark blue), regular shape and field size (Fig. S5f). Finally, we collected
76 AOIs (37,744 pixels) for the early 2000s and 77 AOIs (26,778) for
the late 1990s (Table 2). For the early 1990s and late 1980s' epochs,
the AOIs were also digitized using color composite images from Landsat
TM5. We also collected a land cover thematic map for 1985 as com-
plementary reference for the late 1980s' epoch (Research Group of the
Agricultural Natural Resources Survey for Sanjiang Plain, 1985). Finally,
72 AOIs (17,925 pixels) and 83 AOIs (33,961 pixels) were collected for
the early 1990s and late 1980s, respectively (Table 2).

The AOIs in all five epochs were distributed across the study
area within a stratification of four classes (paddy rice, upland crops,
forest, and water/wetland) (Fig. S5a–e). Because paddy rice is the
major concern of this study, we did not evaluate the other land cover
types in the resultant confusion matrixes. The other three types of
AOIs were combined as the non-paddy rice category.

2.5. Inter-comparison between Landsat-RICE map and existing land cover
data

The Landsat-based paddy rice map in this study was compared with
the NLCD dataset (Liu et al., 2005, 2014), which was derived from the
Resource and Environment Data Center, Chinese Academy of Sciences.
The NLCD-China datasets at the scale of 1:100,000 were developed
through visual interpretation mainly using the Landsat TM/ETM+
images (Fig. S7) (Liu et al., 2005, 2014) and included five epochs (late
1980s, 1990, 2000, 2005, and 2010). The NLCD project used a land
Table 2
The areas of interest (AOIs) collected for the validations of paddy rice maps in five epochs. The

Epochs Paddy rice Non-paddy rice

Upland crop

Late 2000s 117 (26,390) 44 (2425)
Early 2000s 28 (24,871) 25 (4804)
Late 1990s 26 (16,164) 25 (2059)
Early 1990s 23 (5574) 25 (4192)
Late 1980s 34 (13,376) 25 (10,588)
cover classification system that has six primary land cover categories
and 25 subcategories (Liu et al., 2005). Cropland categories included
“paddy cropland” (paddy rice) and “dry cropland” (upland crops)
categories. The overall accuracies for five epochs of primary land cover
datasets were all over 91% at the national scale (Liu, Liu, Zhuang,
Zhang, & Deng, 2003; Liu et al., 2014). The vector maps were converted
into 1 km × 1 km gridded raster data and each grid included area
fraction information for each land cover category (Liu et al., 2005). We
compared the paddy rice area changes based on this gridded raster
data in the five epochs. We also obtained the vector data of NLCD for
two counties (Fuyuan and Raohe) in 2000, 2005 and 2010, which
were converted into 30-m raster to compare with our Landsat-RICE
results for the epochs of the late 1990s, early 2000s, and late 2000s,
respectively.
3. Results

3.1. Paddy rice planting area maps from analysis of Landsat images in the
late 2000s

The paddy rice planting area extraction in the late 2000s' epoch
was used to showcase the generation of the non-cropland masks and
resultant paddy rice map (Fig. S8). In the late 2000s, most of paddy
rice fields were concentrated in the plain area between the Naoli River
and Heilongjiang River where water resources were rich and close to
several tributaries and streams of the Heilongjiang and Wusuli Rivers.
Further statements about the paddy rice maps in other epochs are
detailed in the paddy rice area dynamic analysis in Section 3.4. The
remaining areas that were neither paddy rice (Fig. S8b) nor non-
cropland masks (Fig. S8a) were unclassified, and most of those areas
were upland crops, such as corn and soybean.
3.2. Accuracy assessment of the Landsat-RICE paddy rice maps

Accuracy assessments of the resultant paddy rice maps in five
epochs were conducted by using the validation AOIs described in
Section 2.4, and the results indicated that the resultant paddy rice
and non-paddy rice maps had high accuracies (Table 3). The overall
accuracies were 95%, 92%, 90%, 84% and 87% in the late 2000s, early
2000s, late 1990s, early 1990s, and late 1980s' epochs, respectively,
while the Kappa coefficients were 0.90, 0.82, 0.79, 0.60, and 0.72
respectively. The paddy rice had higher producer accuracy (PA, 94%)
and user accuracy (UA, 93%) in the epochs of the late 2000s and early
2000s (PA 91% and UA 97%) due to the higher Landsat data intensity,
followed by the epochs of the late 1990s and late 1980s (Table 3). The
early 1990s had the lowest PA (61%) andUA (83%) due to data availabil-
ity (Fig. 4); the limited number of good observations yielded a relatively
high omission error (39%) in themap. All of thefive epochs of paddy rice
maps had reasonably good accuracies and can be used to quantify the
dynamics of paddy rice areas in the five epochs from 1986 to 2010.
This study also indicates that the paddy rice maps from our Landsat-
RICE system are reliable if there are sufficient numbers of good quality
observations of Landsat images.
numbers inside the brackets are the validation pixels used.

Total

Natural forests Water/wetland

37 (36,130) 55 (14,888) 253 (79,833)
14 (5214) 9 (2855) 76 (37,744)
14 (5216) 12 (3339) 77 (26,778)
13 (4431) 11 (3728) 72 (17,925)
13 (4681) 11 (5316) 83 (33,961)

http://www.eomf.ou.edu/photos/


Table 3
Confusion matrix of land cover validation based on the areas of interest (AOIs) frommultiple-source data, including high resolution images of Google Earth and the National Geospatial-
Intelligence Agency (NGA) Commercial Archive Data for the late 2000s' epoch, Landsat images and schematic maps for other previous epochs (Fig. S5). Overall accuracy (OA) and Kappa
coefficients as well as user and producer accuracies are provided.

Epoch Ground truth pixels in
individual epochs

Classified pixels User accuracy

Rice Non-rice

Late 2000s Classified results Rice 24,698 1947 26,645 93%
Non-rice 1692 51,496 53,188 97%

Ground truth pixels 26,390 53,443 79,833 OA = 95%
Producer accuracy 94% 96% Kappa = 0.90

Early 2000s Classified results Rice 22,633 820 23,453 97%
Non-rice 2238 12,053 14,291 84%

Ground truth pixels 24,871 12,873 37,744 OA = 92%
Producer accuracy 91% 94% Kappa = 0.82

Late 1990s Classified results Rice 13,803 432 14,235 97%
Non-rice 2361 10,182 12,543 81%

Ground truth pixels 16,164 10,614 26,778 OA = 90%
Producer accuracy 85% 96% Kappa = 0.79

Early 1990s Classified results Rice 3403 701 4104 83%
Non-rice 2171 11,650 13,821 84%

Ground truth pixels 5574 12,351 17,925 OA = 84%
Producer accuracy 61% 94% Kappa = 0.60

Late 1980s Classified results Rice 10,522 1616 12,138 87%
Non-rice 2854 18,969 21,823 87%

Ground truth pixels 13,376 20,585 33,961 OA = 87%
Producer accuracy 79% 92% Kappa = 0.72
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3.3. A comparison of the Landsat-RICE maps with the NLCD datasets

The comparisons of the Landsat-RICEmaps andNLCD derived paddy
rice maps in three epochs (late 2000s, early 2000s, and late 1990s)
show that the two maps have higher agreement in the late 2000s'
epoch (Fig. 7a), while in the other two epochs, Landsat-RICE had re-
markably higher area estimates of paddy rice fields than did NLCD
(Fig. 7b & c). The zoom-in analysis in one case region shows that
NLCD missed abundant paddy rice fields in the early 2000s' epoch, de-
spite a good interpretation in cropland (Fig. 7d–f), and that similar un-
derestimations also occurred for the late 1990s (Fig. 7c). As NLCD used
the images in peak growing season to do image interpretation, different
crops (e.g., paddy rice, corn, and soybean) were difficult to separate
from each other spectrally (Fig. S7). The difference of the two products
may also be partly attributed to the inconsistent epoch composite years
of the two datasets. We used the first and second five years of each de-
cade as the epochs, while NLCD used arbitrary and inconsistent periods
(late 1980s: 1987–1989; 1995: 1995–1996; 2000: 2000; 2005: 2005;
2010: 2009–2010). Additional discussion is given in Section 4.3. We
also used the same validation samples to assess the NLCD maps in the
three epochs and their accuracies were lower than the Landsat-RICE's
(Table S1); in particular, the NLCD's low producer accuracy and high
omission error suggest that abundant rice fields were missed and clas-
sified as upland crops in NLCD maps (also shown in Fig. 7).
3.4. Dynamics of paddy rice planting area from 1986 to 2010 as estimated
by Landsat-RICE

The paddy rice planting area in the study area expanded continuous-
ly from 1986 to 2010 (Fig. 8). In the late 1980s, paddy rice fields com-
prised of very limited areas (154 km2 in total) that were distributed in
a scatteredmanner on the plain to thewest ofWusuli River and the val-
ley plain along the Naoli River. There was little change in the area of
paddy rice through the early 1990s' epoch (with an area of 136 km2).
However, significant increases of paddy rice fields have occurred since
the 1990s, and the paddy rice area reached 727 km2 in the late 1990s
(Fig. 8a–e). The paddy rice expansion first occurred in the northern
part of Raohe County along the Naoli River in the late 1990s, expanded
north, and then the paddy rice field increased rapidly in the 2000s in
Fuyuan County (Fig. 8d–e). The paddy rice expansion could be
attributed to the accessibility of the river water resources. The paddy
rice area reached 1460 km2 and 2900 km2 in the early 2000s and late
2000s, respectively. Both Landsat-RICE and NLCD maps showed a con-
tinuous and consistently increasing trend in the five epochs, though
Landsat-RICE had higher area estimates in almost all of the epochs
(Fig. 8f).

The maps of the first periods of paddy rice cultivation as well as the
cultivation times were generated by overlaying the paddy rice maps
from all of the epochs (Fig. 9a & b). The paddy rice area increases
(Fig. 8f) and the cultivation times (Fig. 9b inset) were consistent;
which showed the most paddy rice fields had cultivation ages of less
than 20 years following continuous cultivations. This was also proved
by the paddy rice expansion maps among the five epochs (Fig. 9c).
Paddy rice had expanded to neighboring crop fields rapidly since the
1990s and paddy rice field abandonment was very limited (Fig. 9c). In
the 1980s, there were very few crop fields that had paddy rice. In the
northern areas, most paddy rice was first cultivated in the late 2000s,
while in the southern areas, there were more fields reclaimed for
paddy rice in the late 1990s (Fig. 9a).
4. Discussion

4.1. The use of all available Landsat images for the phenology-based paddy
rice mapping (Landsat-RICE)

Since the release of Landsat data by USGS/EROS, Landsat has become
a major data source for people to conduct time series image analysis
(Wulder, Masek, Cohen, Loveland, & Woodcock, 2012), as it provides
more information at a higher spatial resolution (30-m) and longer tem-
poral range (back to 1970s) in comparison to other optical sensors, such
as MODIS, MERIS, and SPOT-VGT. However, there is no operational
processing system, standard surface reflectance or data quality products
for Landsat images. An effort was made to archive a Web-enabled
Landsat annual, seasonal, monthly, and weekly composited mosaic
products (WELD) for the top of atmosphere (TOA) reflectance, TOA
brightness temperature, and TOA normalized difference vegetation
index (NDVI) by using the L1T ETM+ images with cloud cover of
b40% (Roy et al., 2010); these mosaic products were designed to
contribute to land cover dynamics (e.g., forest dynamics) as well as
geo- and bio-physical parameter retrieval (Hansen et al., 2014; Roy



Fig. 7. Comparison between our resultant paddy ricemaps (Landsat-RICE) and NLCD based paddy ricemaps in three epochs: a) late 2000s, b) early 2000s, and c) late 1990s. The insets in
Fig. a–c show the statistics of the four types of pixels (non-rice in both Landsat-RICE and NLCD, rice in Landsat-RICE non-rice in NLCD, non-rice in Landsat-RICE rice in NLCD, both rice in
Landsat-RICE andNLCD). d–f) show the details of the Landsat-RICE andNLCD at a case region in the early 2000s' epoch: d) the color compositemap of Landsat 5 image inDOY 176 of 2002,
e) Landsat-RICE based rice fields (in yellow), and f) NLCD-based paddy rice fields (in yellow) and upland crops (in light green) on the background of color composite map.
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et al., 2010). In this study, we offered two further improvements: first,
we used all the available Landsat images in 1986–2010 from both TM
and ETM+ sensors, regardless of the cloud cover quantities of individ-
ual images. From a data mining perspective, the use of all available im-
ages could maximize the amount of good-quality observations for time
series analysis at pixel level. Second, the surface reflectance data, in-
stead of the TOA reflectance data, were used to improve the precision
of vegetation indices.

In the Landsat-RICE system, we integrated some existing widely-
used packages and algorithms to do data preprocessing, including at-
mospheric correction with LEDAPS (Masek et al., 2006), cloud and
cloud shadow masking with Fmask (Zhu & Woodcock, 2012), image
matching with AROP (Gao et al., 2009), and snow identification (Hall
et al., 1995). In addition, we developed several modules to (1) calculate
vegetation indices and label the data quality information into the
vegetation index products, (2) subset and stack time series images
within epochs, (3) extract time series data of individual pixels
(e.g., processing in Figs. 5–6), (4) analyze Landsat data availability or
good-quality observation statistics (used in Figs. 3–4), and (5)map indi-
vidual land cover masks through phenology-based algorithms (Table 1).

4.2. Advantages of the pixel- and phenology-based paddy rice mapping
algorithm

Numerous studies have used individual images to generate land cover
maps, based on large volumes of training datasets of various land cover
types, image statistics for various spectral bands, and supervised
(e.g., maximum likelihood) and/or unsupervised (e.g., K-Means) classi-
fiers. These image- and statistics- based approaches face challenges in
the extension of the resulting classifier rules and parameters over time
as all of thesemethods are region- and phase-dependent due to the spec-
tral variability in different periods and regions. As an alternative, time se-
ries data of individual pixels and phenology-based algorithms have been
used for cropland classification, such as high temporal resolution MODIS
data (Lobell & Asner, 2004; Pan et al., 2012; Wardlow & Egbert, 2008;
Wardlow, Egbert, & Kastens, 2007) and multi-temporal Landsat images
(Zhong et al., 2014).

This study extended our previous efforts that used time series MODIS
data to map paddy rice in South China and South and Southeast Asia
(Xiao, Boles, et al., 2005; Xiao et al., 2006) and successfully demonstrated
the consistency and robustness of the algorithms for both MODIS and
Landsat images. An improvement in the algorithm is the use of the
temperature-based plant-growing season to guide selection of Landsat
images for various image analyses. In this study, we used the daily mini-
mum air temperature to define plant-growing season. Our study showed
that the air temperature-defined plant growing season could effectively
simplify and improve the phenology-based algorithm.

4.3. Comparison between NLCD (visual interpretation and digitalization
approach) and Landsat-RICE (phenology-based automatic approach)

Based on the same validation samples, the Landsat-RICE maps
yielded a higher accuracy than that of the NLCD data derived fromvisual
interpretation (Table S1). The accuracy of land cover maps from visual



Fig. 8. Resultedmaps of paddy rice planting areas for the scene (path/row 113/27) in five epochs: a) late 1980s, b) early 1990s, c) late 1990s, d) early 2000s, and e) late 2000s. f) The tem-
poral dynamic of paddy rice areas according to the five epochs of Landsat-RICE maps and NLCD-based paddy rice maps.
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interpretation and digitalizationwas largely dependent on the timing of
the selected images and the skills and experiences of the interpreters.
Image selection in the NLCD project often used the images at peak
plant growing season (Liu et al., 2005, 2014), when paddy rice, wetland,
and upland crops could have similar spectral characteristics (Fig. S7). In
addition, the NLCD project was labor-intensive and time-consuming.
The data quality of the products over time cannot be guaranteed due
to the diverse understanding of spectral features of the individual land
cover types, varying experiences of interpreters, and turnover of
image interpreters from the NLCD 1980s to the NLCD 2010.

Our time series Landsat- and phenology-based approach (Landsat-
RICE) has additional advantages. First, it can be run repeatedly in areas
with similar climate and farming systems over time, independent of re-
searchers. The algorithms are based on the understanding of phenology
and the associated spectral signature of paddy rice fields. Second, the
temporal Landsat-based method is likely to have more reasonable out-
comes than thosemethods based on one image as it increases the num-
bers of good-quality observations in image pixels, as shown in this
study.

4.4. Satellite evidence of paddy rice expansion from 1986 to 2010 and its
uncertainty

Paddy rice is a major dietary staple for a billion Chinese people.
Industrialization, urbanization and rural development in Southern
China over the past forty years resulted in substantial loss of paddy
rice and reduced cropping intensity (from triple cropping to double
cropping and from double cropping to single cropping) in Southern
China. This study provided satellite-based evidence of paddy rice expan-
sion in Northeast China from 1986 to 2010, where single cropping
(e.g., rice, maize and soybean) dominates. Paddy rice area increased
rapidly since the late 1990s, which was associated with increasing
population pressure, paddy rice price, and climatic warming (Gao &
Liu, 2011). Our study area was located in the most northeastern part
of China, which is covered by a large area of natural wetlands. The
paddy rice expansion could raise many environmental problems, as
the new land reclamation has reduced natural wetlands and affected
terrestrial carbon cycling and biodiversity.

The ability to make quantitative comparisons of land cover maps
(e.g., paddy rice area and distribution, as in this study) with different
classification accuracies is a concern for remote sensing studies that
usemulti-decade images (e.g., Landsat) and post-classification compar-
ison methods to quantify land cover and land use changes over time.
Land cover classification accuracy is likely variable and strongly influ-
enced by (1) availability of good-quality image data, (2) availability of
in-situ data, and (3) algorithms. The implementation of the Landsat-
RICE system for the period from the 1980s to 2000s is largely limited
by the amount of good-quality observations within the period of
flooding and rice transplanting (~1month in length), due to the limited
number of images per year (associated with the long revisit cycle of
16 days) and variable data quality (clouds, cloud shadows, SLC-off in
Landsat 7). It is difficult or impossible to generate an annual paddy
rice map from a single year of Landsat images. Therefore, we combined
the images in a 5-year epoch in an effort to measure changes in paddy
rice area and spatial distribution at a temporal resolution of 5 years.
We provided detailed analysis of data availability and quality through-
out the Landsat TM/ETM+ records available from USGS/EROS. The
paddy rice maps for earlier epochs could still have some biases due to
the data availability and quality issues which were reported by using
the effective data ratios shown in the Figs. 3c and 4. The relatively
high omission errors in early epochs (21% in the late 1980s and 39% in
the early 1990s) could result in an underestimation of paddy rice
areas and affect the quantitative analysis of paddy rice expansion over
time. More specifically, underestimation in earlier epochs could lead



Fig. 9. The dynamics of paddy ricefields at pixel level during 1986–2010: (a) the epochwhen a pixel is identified as paddy ricefield forfirst time. The red, blue, and black boxes are selected
to show thedetails of the dynamics (expansion) of paddy ricefields at pixel level over 5 epochs; (b) the frequency (number of epochs) of a pixel identified as paddy ricefield. The red, blue,
and black boxes are selected to show the details of the continuous cultivation of paddy rice field at pixel level, and the inset shows the distribution of the frequencies in the study area; and
(c) the transition dynamics (inter-epoch) of paddy rice fields between two epochs. It shows one case area from the red box in (a) and (b).
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to exaggerated conclusions regarding the expansion of paddy rice area.
In this study, Landsat-RICE based paddy rice areas showed an increase
from 136 km2 in the early 1990s to 727 km2 in the late 1990s (a 435%
increase). The 21–39% omission errors in the earlier epochs would not
change the trend of paddy rice expansion qualitatively, but rather affect
the magnitude estimate of expansion. Availability of in-situ data
(ground reference data) over time for accuracy assessmentmay also af-
fect accuracy assessment of the resultant land cover maps. In this study,
the validation AOIs for the epochs of the late 1990s, early 2000s and late
2000s were derived from finer resolution imagery, including very high
resolution images from NGA and Google Earth, geo-referenced photos,
and/or 15-m ETM+ panchromatic layers, while the validation AOIs of
earlier epochswere derived from30-mLandsat imagery and/or themat-
ic maps collected. Further enrichment of the in-situ datasets requires
the scientific communities to openly share in-situ data collected at
different times for various purposes and projects. The results from this
local-scale study suggest that both qualitative and quantitative
comparisons of paddy rice planting area maps across various epochs
with different classification accuracies are valuable. However, in order
to fully form and understand quantitative comparisons between maps
from different epochs with varying classification accuracies, additional
studies in other regions with similar agricultural systems are critical.

4.5. Implication and future development of paddy rice mapping

The Landsat-RICE system may have potential to be applied to other
temperate regions where there are single paddy rice croplands such as
Japan and the Korea Peninsula. However, this methodmay not be easily
extended to the tropical regions like Southern Asia where the cropping
systems and land use change (e.g., deforestation) are complex (Gibbs
et al., 2010) and there is also more frequent cloud coverage (Asner,
2001). There may be three strategies to overcome those challenges in
tropical regions. First, we may combine more optical data sources at
similar spatial resolutions, such as (1) the new planned Sentinel-2
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sensor from ESA, which could be an important compliment to Landsat
(Wulder, White, Masek, Dwyer, & Roy, 2011), (2) HJ-1-A and HJ-1-B
from China, which has a multi-temporal, multispectral charge-coupled
device (CCD) with setting similar to the TM/ETM+ band settings
(Jiang, Liang, Townshend, & Dodson, 2013), and (3) the Indian Remote
Sensing Satellite (IRS-P6) which has a medium resolution Linear Imag-
ing Self-Scanner (LISS-III) with spatial, spectral and temporal resolu-
tions comparable to Landsat's (Chander, Coan, & Scaramuzza, 2008).
Second, we may combine and fuse Landsat (30-m spatial resolution)
and MODIS (daily temporal resolution) based on the Spatial and Tem-
poral Adaptive Reflectance Fusion Model (STARFM) (Gao, Masek,
Schwaller, & Hall, 2006). Third, we may combine spectral and phenolo-
gy information from the Landsat images with physical structure infor-
mation from the synthetic aperture radar (SAR) images (Dong, Xiao,
et al., 2013; Torbick et al., 2011).

5. Conclusions

Landsat is the only remote sensing data source to track continuous
regional land use change back to the 1980s at 30-m spatial resolution;
however, the use of time series Landsat imagery in LCLUC studies
faces a series of challenges, including data quality issues (e.g., clouds,
cloud shadows, and SLC-off), uneven data availability at temporal and
spatial scales, incomplete datasets from various ground receiving sta-
tions, as well as relatively big data size and computation requirements.
To our knowledge, this study is the first to analyze all of the available
time series Landsat data in a path/row to quantify the dynamics of
paddy rice planting area in northeast China. The results clearly demon-
strate the value and potential for the datamining of all available time se-
ries Landsat images for long-term LCLUC studies. The Landsat-RICE
system has the potential to effectively track paddy rice planting area
changes in the temperate zones of northeast Asia, where there is one
single cropping season and the temperature-based plant growing sea-
son can effectively simplify and improve image selection and the extrac-
tion of the rice flooding and transplanting signals. However, the
extended application of the system to other regions, e.g., the sub-
tropical and tropical regions, needs additional case studies and algo-
rithm improvement. Future studies are needed to further develop the
time series Landsat data processing system and phenology-based algo-
rithms in an effort to improve the classification of other land cover
types, which includes comprehensive study of phenology of individual
land cover types and development of better phenological metrics and
rules.
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