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Paddy rice agriculture plays an important role in various environmental issues including food security,
water use, climate change, and disease transmission. However, regional and global paddy rice maps
are surprisingly scarce and sporadic despite numerous efforts in paddy rice mapping algorithms and
applications. With the increasing need for regional to global paddy rice maps, this paper reviewed the
existing paddy rice mapping methods from the literatures ranging from the 1980s to 2015. In particular,
we illustrated the evolution of these paddy rice mapping efforts, looking specifically at the future trajec-
tory of paddy rice mapping methodologies. The biophysical features and growth phases of paddy rice
were analyzed first, and feature selections for paddy rice mapping were analyzed from spectral, polari-
metric, temporal, spatial, and textural aspects. We sorted out paddy rice mapping algorithms into four
categories: (1) Reflectance data and image statistic-based approaches, (2) vegetation index (VI) data
and enhanced image statistic-based approaches, (3) VI or RADAR backscatter-based temporal analysis
approaches, and (4) phenology-based approaches through remote sensing recognition of key growth
phases. The phenology-based approaches using unique features of paddy rice (e.g., transplanting) for
mapping have been increasingly used in paddy rice mapping. Current applications of these phenology-
based approaches generally use coarse resolution MODIS data, which involves mixed pixel issues in
Asia where smallholders comprise the majority of paddy rice agriculture. The free release of Landsat
archive data and the launch of Landsat 8 and Sentinel-2 are providing unprecedented opportunities to
map paddy rice in fragmented landscapes with higher spatial resolution. Based on the literature review,
we discussed a series of issues for large scale operational paddy rice mapping.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Food security is always a big challenge due to the continuously
increasing population and limited land, especially given that the
global population is expected to reach around 9 billion in 2050
from 7 billion in 2010. As a major staple, rice feeds almost half of
the world’s population (Kuenzer and Knauer, 2013) and provides
19% of the daily human energy supply as the first-ranked cereal
type (Elert, 2014). Paddy rice areas account for more than 12% of
global cropland area (FAOSTAT, 2010) and are increasing remark-
ably, especially in Africa with diets shifting to include more rice.
Asia has the largest paddy rice fields (Maclean and Hettel, 2002)
and produced more than 90% of global rice in 2011 (Kuenzer and
Knauer, 2013), while Africa and Europe need to import rice from
other countries (Elert, 2014). Therefore, paddy rice maps are neces-
sary for understanding and assessing the status of food security at
regional, national, and global scales.

Paddy rice also plays an important role in other environmental
issues including water use, climate change, and disease transmis-
sion. Paddy rice planting is an important source of water use.
Around one-fourth to one-third of the world’s developed freshwa-
ter resources are used for rice irrigation as the production of 1 kg of
rough rice needs about 2500 L of water (Bouman, 2009). The
improvement of water-use efficiency in rice agriculture would
greatly benefit global water resource protection. Measuring water
resource consumption from rice agriculture requires spatially
explicit information on paddy rice distribution and dynamics.

Paddy rice agriculture also affects climate change through
exchange of greenhouse gases and water flux. Flooded paddies
for rice planting yield large amounts of evapotranspiration that
change land surface energy balance through changing latent heat.
Accurate estimation of actual evapotranspiration in the agricul-
tural landscapes needs high quality paddy rice maps. Paddy rice
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fields are also important sources of methane (CH4) emission (Sass
et al., 1999). Global emissions of rice-based methane account for
more than 10% of the total CH4 flux in the atmosphere (Ehhalt
et al., 2001; Sass and Cicerone, 2002). CH4 is the second important
greenhouse gas following CO2; however, its capability is 28 times
that of CO2. Previous studies estimated global CH4 emission but
with a large uncertainty (ranged from �14.8 to �100 Tg a�1)
(Yan et al., 2009, 2003) that was found to be related to the reliabil-
ity of the information regarding the amount of organic amend-
ments and the area of paddy rice fields (Yan et al., 2009).

Besides its effects on food security, water resource use, and cli-
mate change, paddy rice agriculture is also related to the transmis-
sion of disease such as highly pathogenic avian influenza A (H5N1)
virus (Gilbert et al., 2008), as paddy rice fields are an important
habitat for free-ranging ducks and wild waterfowl in winter and
a prime location for transmission of the avian influenza virus
(Gilbert et al., 2014, 2008). In sum, it is important to monitor
and map paddy rice fields at regional and global scales in an effort
to enhance our knowledge of a series of environmental issues.

Clearly, knowledge of area, distribution and dynamics of paddy
rice is important for decision-making and academic studies related
to paddy rice. However, as far as we know, there are no available
global paddy rice maps or temporally continuous regional scale
maps up to date, which is a source of the uncertainties in estimat-
ing methane emissions (van Groenigen et al., 2013; Yan et al.,
2009), water use (Tao et al., 2008), natural wetland loss in some
regions (Wang et al., 2010; Wang et al., 2011), and other environ-
mental issues (Fig. 1).

Many efforts have been made in paddy rice mapping by using
various algorithms (e.g., supervised classifiers, unsupervised classi-
fiers, knowledge-based approaches, and phenology-based classi-
fiers) as well as different data sources including optical remote
sensing (e.g., SPOT-VGT, MODIS, and Landsat) and microwave
remote sensing (e.g., RADARSAT, PALSAR). A synthesis analysis of
existing paddy rice mapping algorithms would contribute to the
development of a universal mapping approach and its extensive
application. To cultivate global paddy rice mapping efforts, this
study aimed to review the existing paddy rice mapping algorithms
from the literatures since 1987. The review paper was organized
into six sections. We first analyzed the significance of paddy rice
Fig. 1. Simple conceptual diagram about the significance of paddy rice agriculture.
maps in Section 1. In Section 2, we briefly analyzed the status
quo of paddy rice maps. In Section 3, we summarized biophysical
features of paddy rice fields throughout its major growing stages
and their potential applications on paddy rice mapping. In Sec-
tion 4, the evolution of paddy rice mapping methods was system-
atically analyzed and the existing methods were divided into four
categories. In Section 5, we discussed current challenges and
opportunities in future global/regional paddy rice mapping. Sec-
tion 6 concluded the major findings and implications in the context
of large scale applications.
2. Existing paddy rice maps at national or larger scales

Global cropland layers have been generated and categorized
from land cover products such as MODIS-based MCD12Q1 (Friedl
et al., 2002), MERIS-based GlobCover (Bontemps et al., 2011),
MERIS and SPOT-VGT based CCI-LC (Kirches et al., 2014),
Landsat-based FROM-GLC (Gong et al., 2013), and Global Land
Cover based on the integration of pixel- and object-based methods
with knowledge (Chen et al., 2015). In addition, global cropland
maps have also been generated thematically; for example, 30-m
Landsat-based FROM-GC (Yu et al., 2013), as well as a 1-km global
IIASA-IFPRI cropland percentage map through integrating existing
global and regional products (Fritz et al., 2015). However, paddy
rice-specific maps are still unavailable. Existing global paddy rice
maps are generally produced using statistical approaches
(Frolking et al., 2002; Huke et al., 1997; Leff et al., 2004;
Monfreda et al., 2008).

On sub-continental scales, some efforts of paddy rice mapping
have been made including South Asia (Gumma et al., 2011; Xiao
et al., 2006) and Southeast Asia (Bridhikitti and Overcamp, 2012;
Kuenzer and Knauer, 2013), northeastern Asia (Dong et al.,
2016a, 2016b), as well as on the national scales, like the Landsat-
based Cropland Data Layer (CDL) in the USA (Johnson and
Mueller, 2010) and MODIS-based paddy rice maps of India, China
and Bangladesh (Gumma et al., 2014; Sun et al., 2009; Xiao et al.,
2005). A recent paddy rice map was released for monsoon Asia
however, it was not validated (Fig. 2) (Nelson and Gumma,
2015). Therefore, all these efforts generally have limited spatial
and temporal coverages. There is still no operational paddy rice
mapping approach for larger scale or global efforts; and these
existing paddy rice maps are only on static images and systematic
or temporal dynamic information is unavailable. In addition, the
existing efforts show a remarkable discrepancy on paddy rice areas
(Appendix Table A1).
3. Biophysical features of paddy rice and its feature selection in
remote sensing

3.1. Biophysical characteristics and growth phases of paddy rice

Thorough comprehension of rice physiology and planting situa-
tions is the prerequisite of paddy rice mapping. Not only do the
general physical features of various crops differ, but also the char-
acteristics of rice in varied growing phases diverge (Chang et al.,
2005). The growing phases of paddy rice can be divided into four
stages according to Brouwer et al. (1989): (1) the nursery stage
from sowing to transplanting (�1 month), (2) the vegetative stage
from transplanting to panicle initiation (1.5–3 months, including
tillering), (3) the reproductive stage from panicle initiation to flow-
ering (�1 month, including stem elongation, panicle initiation,
heading and flowering), and (4) the ripening stage from flowering
to full maturity (�1 month, including milk stage, dough stage, and
mature grain) (Brouwer et al., 1989). Paddy rice is the only crop
that needs abundant water in the growing stages; in particular,



Fig. 2. Paddy rice distribution in monsoon Asia, where over 90% of rice in the world is produced. The map is derived from the International Rice Research Institute (IRRI)
(Nelson and Gumma, 2015).
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paddy rice is the only staple grain that needs to be transplanted,
while winter wheat, corn, and soybean do not. Thus, the identifica-
tion of paddy rice requires those spectral bands or indices that are
sensitive to the mixture of water body, soil and vegetation. The
temporal variation of water–soil–vegetation composition will be
a critical factor in paddy rice identification (Fig. 3). In addition,
paddy rice fields need to have good drainage and irrigation condi-
tions and that requires the size of one field to not be too big. Thus,
field size could be a potential feature for paddy rice mapping; how-
ever, field stems could be mixed with crops when coarse resolution
images are used.

3.2. Key feature selection for paddy rice extraction

3.2.1. Spectral features of paddy rice fields
Paddy rice and other crops could have different spectral fea-

tures by using hyperspectral remotely sensed data (Arafat et al.,
2013); however, the direct discrimination of paddy rice and other
crops based on one arbitrary phase is usually unreliable due to the
similarity of their spectral characteristics (Wang et al., 2012) and
the complexity of paddy rice under different cultivation conditions
(Song et al., 2011). The spectral signatures of paddy rice are espe-
cially affected by the background soil and water conditions in early
stages (Fig. 3). The pure spectral feature-based paddy rice mapping
efforts are stated in Section 4.1.

The reflectance spectra of paddy plants vary during different
growth phases (Chang et al., 2005). Multi-temporal profile analysis
of paddy rice features is widely used in existing paddy rice map-
ping efforts and generally utilizes temporal analysis of VIs (Qiu
et al., 2015; Xiao et al., 2006, 2005). For example, the Normalized
Difference Vegetation Index (NDVI) and Enhanced Vegetation
Index (EVI) show an increase and decrease variation respectively
with a peak in the heading phase (Wang et al., 2011). The Land Sur-
face Water Index (LSWI) also shows a similar variation in the rice
growth cycle but with a jump in the transplanting phase due to
water inundation (Xiao et al., 2002) (Fig. 3). The different VIs also
have various sensitivities, for example, Motohka et al. (2009) found
that EVI was superior to NDVI in terms of agreement with the
in situ phenology data; Qiu et al. (2015) found the variation of
LSWI was relatively smaller in rice than in other crops during the
period from tillering to heading dates. The applications of temporal
VIs in paddy rice mapping are described in Sections 4.2–4.4.

3.2.2. Polarimetric features of paddy rice fields
As lower frequency waves have longer lengths and deeper pen-

etration capability in vegetation canopy, we can assume the longer
bands (e.g., C- and L-bands) have stronger relationship with above
ground biomass and LAI, while shorter band (e.g., X-band) can bet-
ter examine shorter seedlings in early stages of paddy rice. Previ-
ous studies have verified this assumption. For example, Inoue
et al. (2002) conducted a comprehensive experiment that observed
all the backscatter signatures from five frequencies (Ka, Ku, X, C,
and L-bands), all polarizations (HH, VH, HV, and VV), and four inci-
dent angles (25�, 35�, 45�, and 55�) from pre-transplantation to
post-harvest cultivation, and found LAI was best correlated with
HH- and cross-polarization of the C-band, while fresh biomass
was best correlated with HH- and cross-polarization of the L-
band; other bands (Ka, Ku, X-bands) had no significant relation-
ships with LAI or biomass. Suga and Konishi (2008) also compared
the X-, C- and L-band backscatters from different sensors in the
growth phase of paddy rice and found the shorter band performed
better in the earlier growth phase. Thus, the shorter X-band was



Fig. 3. The key growth stages of paddy rice and remote sensing representation. The seasonal dynamics of three MODIS-based vegetation indices (NDVI, EVI, and LSWI) as well
as the nighttime land surface temperature (LST) from a typical paddy rice site (Hulin Site, 132.825�E, 45.737�N) in 2010. The calendar information is derived from the
agricultural phenological observations data. The below photos of show transplanting, tillering, and mature phases of rice farming. The hollow triangular and round symbols
on the LSWI curves mean the snow/ice, clouds and cloud shadows from the MODIS quality layer and blue band P0.2, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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found superior to the C- and L-bands in detecting small rice seed-
lings as well as the panicle biomass and can be a strong indicator
for rice grain yield simulation (Inoue et al., 2002; Inoue and
Sakaiya, 2013). C-band and L-band show promising capabilities
in LAI or fAPAR estimates for rice growth (Inoue et al., 2014) and
paddy rice field mapping (Kurosu et al., 1995; Torbick et al.,
2011). Furthermore, Wang et al. (2009) and Yisok et al. (2009) also
found the L-band HH backscatter was more sensitive to rice struc-
tural variation and growth than the VV backscatter. Microwave
data has been used for paddy rice mapping for a long time and
more details were described in Section 4.

3.2.3. Field shape and size features of paddy rice fields
As paddy rice grows in bounded flooded fields, the field size

should be controlled and overlarge fields would increase the oper-
ational difficulty of irrigation management. That feature would be
useful for the object-based classification approach. The shape and
texture characteristics are also important variables. While the
shapes of rice paddies may differ across regions (Fig. 4), the tex-
tures of paddy rice fields are all uniform due to the homogeneous
nature and morphology of paddy rice fields that can be character-
ized by using the mean, consistency, entropy, and correlation
statistics. However, existing studies hardly used these features
for paddy rice mapping. Shiu et al. (2012) used the objects not from
the images but from the GIS dataset for the post classification of
paddy rice and proved the efficiency of the object-based approach
in reducing the speckle or mixed pixels. As to textural information
however, Kim and Yeom (2012, 2014) found it only contributed to
minor improvements or even a slight decline in paddy rice map
accuracy. Further study and assessments in large scale areas and
using different growth phase images are needed. A systematic
assessment of the application of shape, field size, and texture infor-
mation would contribute to more accurate paddy rice mapping.
However, these information have been barely used in the existing
efforts (Tables 1–4).
4. Evolution of paddy rice mapping algorithms

4.1. Category One: Reflectance data and image statistic-based
approaches

From the 1980s to the 1990s, Landsat MSS/TM was the major
data source for paddy rice mapping, and the band reflectance were
the major input data while the supervised and unsupervised clas-
sifiers were widely used for classification (Table 1). For example,
early in 1987, Landsat MSS imagery was used to map paddy rice
based on the band reflectance data by using the maximum likeli-
hood classifier (MLC) and vector classifier (Mccloy et al., 1987),
that study also indicated that the criteria for classification should
be changed for different phenological stages of rice. Rao and Rao
(1987) also mentioned the importance of critical crop time win-
dows for data acquisition, specifically, by identifying the period
with minimum overlap of greenness between rice and other crops,
and they successfully mapped rice in the pilot regions of India.
Then Tennakoon et al. (1992) found that the spectral characteris-
tics of paddy rice are subject to growth stages and highly influ-
enced by soil moisture; furthermore, they found that, when using
MLC approach, Landsat TM band combination 5/4/3 was an appro-
priate band combination for the identification and area estimation
of rice at the maturity stage and bands 5/3/1 provided better infor-
mation at the young stage of rice. However, Panigrahy and Parihar
(1992) found the Landsat TM band 2/3/4/5 and 2/3/4/7 performed
better than the combination of TM band 1/2/3/4 by using the same
approach (MLC). These explorations of reflectance data selection
and its sensitivity to growth phases were still constrained how-



Fig. 4. Selected paddy rice field samples for the globe with the same scale, which show the landscape differences among different regions. The central map shows the spatial
distribution of rice production across the world in 2000, which was compiled by the University of Minnesota Institute on the Environment with data from Ramankutty et al.
(2008).

Table 1
A literature summary of existed studies using the reflectance data and image statistic-based paddy rice mapping approaches (Category One).

ID Refs. Sensor used Variables
used

Phases of data used Methods Study area Accuracy

1 Mccloy et al. (1987) Landsat MSS Band
reflectance

Multi images from the establishment (Nov–
Jan) and growing phases (Feb)

MLC, VC SW of New South
Wales

>87%

2 Rao and Rao (1987) Landsat MSS Band
reflectance

Multi images in Kharif (Rabi) season VI Case regions in India >90%

3 Panigrahy and
Parihar (1992)

Landsat TM Band
reflectance

Single image on Oct 17 (middle Kharif Season) MLC Case regions in India >78%

4 Tennakoon et al.
(1992)

Landsat TM Band
reflectance

Multi images from Seedling and Ripening
stages

MLC Case region in
Thailand

>88%

5 Fang et al. (1998) Landsat TM,
NOAA AVHRR

Band
reflectance

All available images, no phase specific MLC Hubei, China 91.6%

6 Fang (1998) Landsat TM Band
reflectance

Single image in early growing season before
transplanting

Unsupervised
classification

Hubei, China >81%

7 Turner and
Congalton (1998)

SPOT XS 3 images
(G/R/NIR)

Multi images from pre- and first half of flood Hybrid
classification

West Africa 70%

8 Kurosu et al. (1997) ERS-1 C-band r0 Multi images from June to September 1992 MLC Ohgata-mura area,
Japan

93%

9 Okamoto and
Kawashima (1999)

Landsat, JERS-1 Reflectance
and r0

Landsat data in dry season, JERS-1 in planting
season

TS Indramayu,
Indonesia

–

10 Le Toan et al. (1997) ERS-1 C-band r0 Multi images in growing season TS Two sites in
Indonesia and Japan

–

Note: AVHRR—Advanced Very High Resolution Radiometer; DVI—difference vegetation index; EVI—enhanced vegetation index; IPVI—infrared percentage vegetation index;
LSWI—land surface water index; MODIS—Moderate Resolution Imaging Spectroradiometer; NDBI—normalized build-up index; NDVI—normalized difference vegetation
index; NOAA—National Oceanic and Atmospheric Administration; RGVI—rice growth vegetation index; RVI—ratio vegetation index; SAVI—soil adjusted vegetation index;
SPOT-5 HRG—Satellite Pour l’Observation de la Terre 5 High Resolution Geometric; SPOT VGT—Satellite Pour l’Observation de la Terre (SPOT) vegetation; TVI- transformed
vegetation index. r0—Backscattering coefficient.
Abbreviations for the methods: Maximum Likelihood Classification (MLC); visual interpretation (VI), threshold-based segmentation (TS).
Accuracy information is just a general reference considering the different definitions and variables used, and multiple strategy comparison in one study. Some values were the
overall accuracy, while others are minimum accuracy values of producer and user accuracies.
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ever, by the temporally limited data. Besides the supervised MLC
approach (Fang et al., 1998), unsupervised classification was also
used for paddy rice mapping (Fang, 1998).
Besides Landsat imagery, SPOT XS was also used for paddy rice
mapping by using the images from pre-flood and the first half of
the flood period in West Africa (Turner and Congalton, 1998). In



Table 2
A literature summary of existed studies using the VI and enhanced image statistic-based paddy rice mapping approaches (Category Two).

ID Refs. Sensor used Variables
used

Phases of Data Used Methods Study area Accuracy

11 Shao et al.
(2001)

RADARSAT-1 C-band with
HH polarization

r0 Multi images in transplanting, flowering
and harvest stages

NN Two counties
in China

97%

12 Oguro et al.
(2001)

Landsat5 TM, SPOT2 HRV,
SPOT4 HRVIR, RADARSAT-
1

NDVI, EVI,
EVI-NDVI,
r0

Multi optical images in growing season;
two SAR images before and just after
planting

MLC Higashi-
Hiroshima
City, Japan

–

13 Niel and
McVicar
(2003)

Landsat ETM NDVI and
D1650nm

Multi images in growing season TS Southern New
South Wales

–

14 Chen and
McNairn
(2006)

RADARSAT-1 (C-band
with HH polarization)

r0 Multi images in dry and wet seasons NN, CD, CD + NN, MLC Two areas in
Philippine

>96%

15 Zhang et al.
(2009)

ALOS/PALSAR r0 Multi images in transplanting, vegetative
and heading stages

SVM An area in
China

>70%

16 Tan et al.
(2007)

RADARSAT-1 (C-band
with HH polarization)

r0 Multi images in vegetative, reproductive,
and ripening stages

ED + SVM An area in
Malaysia

95%

17 Pan et al.
(2010)

Landsat TM NDVI,
NDWI,
NDSI

Multi images from transplant to harvest ISODATA Shaoxing,
China

>61%

18 Thi et al.
(2012)

SPOT-VGT NDVI Time series images from entire year ISODATA Mekong delta 94%

19 Li et al.
(2014)

HJ-1 A/B B/G/R/NIR
bands

Multi images in growing season SVM for pure rice, rice area
fraction index for mixed
pixels

Hunan, China >97%

Note: Change detection (CD), entropy decomposition (ED).

Table 3
A literature summary of existed studies using the VI or RADAR backscatter-based temporal analysis approaches (Category Three).

ID Refs. Sensor used Variables
used

Phases of data used Methods Study area Accuracy

20 J.S. Chen et al.
(2011)

HJ-1A/B NDVI Multi images in early rice
growing season

TS Guangdong,
China

Kappa = 0.71

21 Oguro et al.
(2003)

Landsat 5 and 7 NDVI, EVI Two images after
transplanting

Multi-temporal analysis Hiroshima, Japan –

22 Son et al. (2013) MODIS EVI Time series images in
entire year

TS Mekong Delta,
Vietnam

>80%

23 Nuarsa et al.
(2012)

MODIS NDVI,
RVI, SAVI

Daily data in entire year TS Bali, Indonesia 88%

24 Gumma et al.
(2011)

MODIS NDVI Time series images in
entire year

A suite of methods (SMT, DT, etc.) South Asia 80%

25 Gumma et al.
(2014)

MODIS NDVI Time series images in
entire year

A suite of methods (SMT, DT, etc.) Bangladesh >78%

26 Nelson et al.
(2014)

CSK, COSMO-SkyMed;
TSX, TerraSAR-X

r0 Multi images in growing
season

TS 13 footprints in
Asia

>85% (OA)

27 C.F. Chen et al.
(2011)

MODIS NDVI Time series images in
entire year

LMM + EMD Mekong Delta,
Vietnam

71.6% (OA)

28 Kamthonkiat
et al. (2005)

SPOT VGT NDVI Time series images in
entire year

Peak detector algorithm to separate
rain-fed and irrigated rice

Thailand 89%

29 Bouvet and Le
Toan (2011)

ENVISAT ASAR r0 21 images from growing
season

TS Mekong Basin >81%

30 Chen et al.
(2007)

ENVISAT ASAR C-band r0 Multiple images in early
rice growing season

TS Guangdong,
China

>77%

31 Yang et al.
(2008)

ENVISAT/ASAR VV/HH r0 Single image in middle
growing season

TS Jiangsu, China 81% (OA)

32 K. Li et al.
(2012)

RADARSAT-2 r0 Multi images in growing
season

SVM + PD Guizhou, China >91%

33 Mosleh and
Hassan (2014)

MODIS NDVI Multiple images in
growing season

ISODATA + TS Bangladesh R2 = 0.69–
0.89

34 Jain et al. (2013) Landsat, MODIS NDVI, EVI Multiple images in entire
year

TS, TMA, Peak method Northwest and
central India

–

Note: Spectral matching techniques (SMT), decision tree (DT), Linear Mixture Model (LMM), Empirical Mode Decomposition (EMD).
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addition to optical remote sensing, RADAR was another data source
for paddy rice mapping by using similar approaches (MLC or unsu-
pervised classifiers) including the ERS-1 C-band data (Kurosu et al.,
1997) and JERS-1 L-band data (Okamoto and Kawashima, 1999).
Through a multi-temporal data analysis, Kurosu et al. (1997) found
that flooded-field data are essential for identifying rice fields.

In sum, at the early stage of paddy rice mapping: (1) Landsat
data were the major data source while other data sources (such
as SPOT XS and ERS-1, JERS-1) were only used in rare cases due
to limited data availability; (2) traditional supervised and unsuper-
vised classifiers, especially the MLC approach, were used for the
studies; (3) crop phenology and determination of a suitable period
had been recognized as a vital feature for paddy rice mapping.
However, the acquisition of Landsat and other data was still a big
challenge due to the expensive price, data receiving capability at
the moment, and frequent cloud coverage in rice planting regions.



Table 4
A literature summary of existed studies using the phenology-based paddy rice mapping approaches, based on remote sensing recognition of key growth phases (Category Four).

ID Refs. Sensor used Variables used Phases of data used Methods Study area Accuracy

35 Xiao et al. (2005) MODIS NDVI, EVI, LSWI, NDSI Time series images in entire
year

PA Southern
China

–

36 Xiao et al. (2006) MODIS NDVI, EVI, LSWI, NDSI Time series images in entire
year

PA South and
Southeast Asia

–

37 Feng et al. (2011) MODIS NDVI, EVI, LSWI 2007–2008 Panjin, China 89.5%
38 Sakamoto et al.

(2009)
MODIS EVI, LSWI, DVEL (EVI-LSWI) Time series images in entire

year
TS Part of

Mekong delta
–

39 Sun et al. (2009) MODIS EVI, LSWI Time series images in entire
year

PA China >73%

40 Bridhikitti and
Overcamp (2012)

MODIS EVI, NDVI, LSWI, NDSI, FT
(flooding and transplanting)

Time series images in entire
year

TS Southeast Asia –

41 Jeong et al. (2012) MODIS, SAR LSWI, EVI Time series images in entire
year

Variable TS Yedang, Korea –

42 Peng et al. (2011) MODIS LSWI, EVI Time series images in entire
year

PA Hunan, China >84%

43 Torbick et al.
(2011)

PALSAR,
ScanSAR,
MODIS

r0, LSWI, EVI, NDVI Multiple images in entire
year

PA Sacramento
Valley, USA

95%

44 Shiu et al. (2012) FORMOSAT-2 Band reflectance (R/G/B/NIR) Multi images in
transplanting and tillering
stages

ISODATA + MLC, Object-
based and pixel-based

Taiwan >82%

Note: Phenology-based Algorithm (PA), Temporal Mixture Analysis (TMA), Polarization Decomposition (PD).
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Furthermore, agricultural systems in tropical regions (e.g., South
and Southeast Asia) are highly variable as the seedling and trans-
planting stages of paddy rice are subject to varied monsoon rain
arrival times. Thus, although the data temporal window was gen-
erally well recognized at this stage, paddy rice mapping at a regio-
nal scale remained difficult.

4.2. Category Two: VI and enhanced image statistic-based approaches

Since 2000, new improvements in paddy rice mapping
approaches have generally derived from two factors: (1) utilizing
new classifiers, and (2) new data inputs from new types of data
sources (e.g., MODIS) and inclusion of vegetation indices (VIs).
First, some new classifiers were increasingly used for paddy rice
mapping; for example, the Neutral Net (NN) classifier was used
for paddy rice mapping by using multiple images from the trans-
planting, flowering, and harvest stages of paddy rice with high
accuracy (91%) (Shao et al., 2001). By involving more images,
Chen and McNairn (2006) tested four methods (Neural Network
(NN), Change Detection (CD), integration of NN and CD, and MLC)
and found the integrated approach was most promising. They also
mentioned that the radar backscatter increases significantly within
a short growth period after transplanting, which can be used to
separate paddy rice and other land covers. Besides NN, other meth-
ods were also increasingly used such as the Support Vector
Machine (SVM) (Li et al., 2014; Tan et al., 2007; Zhang et al.,
2009). Zhang et al. (2009) used three PALSAR HH polarization
images taken during transplanting, tillering, and heading phases
with the SVM classifier and achieved a reasonably accurate paddy
rice map. The advantage of SVM is in its robust capability to train
sample numbers (Li et al., 2015). A recent study found that appli-
cation of SVM in complex landscapes is still challenging and pro-
posed a combined supervised and unsupervised classification
using a mixed-pixel decomposition model (Li et al., 2014). Tan
et al. (2007) further improved the SVM method by involving an
entropy decomposition (ED) model to generate the feature vectors.

Besides the improvement in classification approaches, data
variables were also improved for paddy rice mapping. Reflectance
data were the major source for paddy rice classifications in Cate-
gory One; VIs, combinations of reflectance from two or more bands
for signal enhancement for particular aims, provided further infor-
mation for feature extraction of rice mapping. For example, NDVI
and EVI (Huete et al., 2002) are two widely used indices for vege-
tation greenness. NDVI is sensitive to chlorophyll with responses in
visible bands, it is also limited by saturation under closed canopy
and soil background (Huete et al., 2002; Xiao et al., 2003), while
EVI is more sensitive to NIR and robust to biomass variation
(Cheng, 2006). Some water-related indices, e.g. Normalized Differ-
ence Water Index (NDWI) (Gao, 1996) and Land Surface Water
Index (LSWI) (Xiao et al., 2002), were also very helpful for paddy
rice mapping as paddy rice is planted in a water abundant environ-
ment. Since 2000, these VIs have been used frequently in paddy
rice mapping efforts. These studies indicated that the transforma-
tion of optical remote sensing bands into vegetation indices (e.g.,
NDVI, EVI, LSWI, NDWI, and Normalized-Difference Snow Index
(NDSI)) could increase land cover/use classification accuracy when
compared with the traditional classification techniques that used
the original reflectance or digital number data (Oguro et al.,
2001; Pan et al., 2010; Thi et al., 2012). A recent study showed a
combined application of VIs was more promising than the utility
of single index (Tornos et al., 2015). For example, by using three
VIs (NDVI, NDWI, and NDSI) and a simple ISODATA unsupervised
classifier, Pan et al. (2010) found that the VI-based approach is
superior to the traditional classification methods based on the
original un-transformed images.

In sum, the approaches in Category Two (Table 2) made great
advances compared to Category One in three aspects: (1) More
sophisticated classifiers (e.g., SVM, NN) were used. These new algo-
rithms have been proved with improved accuracies compared to
the traditional supervised and unsupervised approaches (e.g.,
MLC) (Chen and McNairn, 2006). However, the performance of
these improved algorithms still relied on the data input and data
acquisition time window. (2) Vegetation indices (e.g., NDVI, EVI,
NDWI, and LSWI) became major data sources instead of the reflec-
tance data in Category One, as VIs can effectively provide green-
ness, water content, and soil information. (3) The studies were
more goal-oriented in using suitable temporal windows for paddy
rice mapping. Table 2 showed that all the algorithms in this cate-
gory were applied to the images in key phenological stages like
transplanting, tillering, and harvest. Besides the multiple vegeta-
tion indices, hyper-temporal NDVI analysis was also used to map
paddy rice (Thi et al., 2012). However, the phenological variations
or temporal profile information of paddy rice were not really used
despite the usage of images from different stages.
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4.3. Category Three: VI or RADAR backscatter-based temporal analysis
approaches

Although multi-temporal images had been used in the algo-
rithms of Category Two, the key phenological characteristics or
variations in greenness/water content/soil based on time series
analysis were not quantified and used for paddy rice mapping.
The studies involved in Category Three used time series analysis
for paddy rice mapping. Generally two kinds of algorithms were
used: (1) According to the temporal variation of vegetation indices,
paddy rice can be discriminated from other land covers by using
the threshold-based approach (or decision tree) (Chen et al.,
2011; Oguro et al., 2001). For example, Chen et al. (2011) used
temporal NDVI data from 30-m HJ-1 A/B images for paddy rice
mapping in southern China by using the threshold-based approach
from temporal profile analysis. Li et al. (2012) used the Landsat-
derived NDVI temporal profile analysis to map the cropping inten-
sity change from 2004 to 2010 in Poyang Lake Region, China. Son
et al. (2013) used EVI data and a threshold-based approach to
map paddy rice in the Mekong Delta, Vietnam. In addition to opti-
cal data, cloud-free RADAR data was used for paddy rice mapping;
for example, Nelson et al. (2014) used SAR X-band HH polarization
data and successfully mapped paddy rice for 13 diverse footprints
in South and Southeast Asia. Bouvet and Le Toan (2011) and Chen
et al. (2007) detected paddy rice through the increase of the co-
polarized backscatter intensity between the transplanting phase
and vegetative stage phase. One study also found the combined
use of multi-temporal NDVI (EVI) data with SAR (Synthetic Aper-
ture Radar) data to perform better than single application of either
VIs or SAR (Oguro et al., 2001). In some studies thresholds were
determined based on the temporal profile analysis with a semi-
quantitative approach or expert knowledge, while others used a
more quantitative approach by calculating the mean and standard
deviation of variance data (Nuarsa et al., 2012). These methods
tend to exclude and mask different land cover types one by one
according to signature analysis of land cover before creating an
automatic classifier, which can substantially improve classification
efficiency and usually lead to higher accuracy than traditional clas-
sifiers (e.g., MLC). (2) The second subgroup of methods used time
series analysis, such as spectral matching techniques (Thenkabail
et al., 2009; Thenkaball et al., 2007) and the Linear Mixture Model
(LMM) (Chen et al., 2011). For example, a suite of methods includ-
ing spectral matching techniques, decision trees, and ideal tempo-
ral profile data banks help to rapidly identify and classify rice areas
over large spatial expanses by using time series NDVI datasets
(Gumma et al., 2011, 2014); those approaches are suitable for
cloudy regions with complex landscapes. Chen et al. (2011) used
the LMM approach and Empirical Mode Decomposition (EMD) fil-
tered NDVI data for rice classification and acquired promising
results.

In sum, multi-temporal VI analysis was used to distinguish
paddy rice from other land cover types in this category (Table 3).
The hypothesis proposed in these studies is that the phenological
patterns of paddy rice distinguishes from other vegetation, usually
it has more water abundant phenomena in the beginning trans-
planting phase, is greener during the peak growing season (tiller-
ing phase), and has higher soil content in the harvest phase. The
threshold-based approach can examine these variations of paddy
rice; however, this approach is difficult to apply extensively due
to the substantially diverse paddy rice cropping systems in differ-
ent regions (Fig. 4). For example, VI temporal profiles often exhibit
considerable intra-class variability due to different climates and
management practices in different regions (Wardlow et al.,
2007). The second type of algorithms, despite its more quantitative
mathematical mechanism, may be difficult to be extended to other
regions with shifted cropping patterns. The intra-class variability
of temporal profiles could introduce misclassification to the spec-
tral matching methods (Lunetta et al., 2010). Therefore, a more
robust rice identification needs a more clear quantitative expres-
sion and justification of certain physical characteristics and/or
key phenological phases.

4.4. Category Four: Phenology-based approaches through remote
sensing recognition of key growth phases

All three previous categories of studies have recognized the
importance of the key paddy rice growth phase in paddy rice map-
ping; Category Three approaches added on the temporal variation
of vegetation indices. However, quantitative recognition of the key
phenological phases, e.g., transplanting, tillering, and harvest, were
not examined using a remote sensing approach. In recent studies,
more and more researchers have begun to use a more straightfor-
ward phenology-based approach for paddy rice mapping. For
example, Xiao et al. (2002) found that the flooding and transplant-
ing signals can be extracted by using the relationship between
NDVI (EVI) and LSWI, specifically that LSWI values are temporarily
greater than NDVI or EVI values during these phases. The relation-
ship of these two VIs are more robust than the threshold approach
based on individual VIs. Based on this unique remote sensing sig-
nal in the early period of the growing season and the masking of
non-cropland layers, paddy rice can be extracted. This simple
phenology-based approach is robust as paddy rice is the one crop
that requires transplanting and an inundation environment. Based
on this approach, continental scale paddy rice maps was generated,
covering southern China, South Asia, and Southeast Asia by using
8-day time series MODIS data (Xiao et al., 2006, 2005). This method
has attracted increasing attention and is now widely used in vari-
ous geographical regions (Dong et al., 2015, 2016a, 2016b; Qin
et al., 2015; Shi et al., 2013; Zhang et al., 2015).

To date, several general improvements have been made. First,
cloud disturbances in paddy rice planting areas create noises in
the time series data that severely affects the phenological signal
identification. Some efforts have been made to gap-fill the VI data-
sets in more sophisticated ways. For example, Sakamoto et al.
(2007) improved the flood detecting approach by utilizing
wavelet-based VI filtering and used the new VI products to detect
temporal changes in the extent of annual flooding, and finally
mapped inland aquaculture and triple rice-cropping areas in the
Mekong Delta.

Second, the flooding signals could be not only from transplant-
ing of paddy rice, but also from flooding due to extreme rainfall
events in summer, or the snow melt flooding in spring, therefore,
the temporal window identification of transplanting is essential.
Several studies have attempted to improve the phenology-based
rice mapping method (Xiao et al., 2005) by defining the flooding
and transplanting periods based on observed phenology data from
agricultural meteorological stations (Peng, 2009; Peng et al., 2011;
Shi et al., 2013). The dependence of these improved methods on
agricultural phenology data limited the approach’s extensive appli-
cations in the regions without observations. Calendar data from
scattered agricultural meteorological stations will also create large
uncertainties when interpolated to regional or national scales.
Some recent studies tried to use air temperature or land surface
temperature (Dong et al., 2015; Zhang et al., 2015) to define the
temporal window. For example, MODIS LST data was used to define
the time window and provided more spatially explicit information
by using the start dates of the thermal growing season in high lat-
itude regions (Zhang et al., 2015), i.e., the starting point defined by
a minimum LST higher than 5 �C. Air temperature was also used to
define the starting point of the paddy rice transplanting phase
(Dong et al., 2015). However, this method could only be suitable
for temperate zones where cropping is limited by thermal condi-
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tions; in tropical zones, thermal conditions are not a constraining
factor for paddy rice planting.

Third, the masking approaches of non-paddy rice classes, e.g.,
wetlands, have been improved. As paddy rice is not the only land
cover type with flooding signals, the exclusion of non-paddy rice
types is critical for reducing the commission errors of resultant
paddy rice map. Water bodies, built-up land, and forests are rela-
tively easy to eliminate; however, some land cover types like nat-
ural wetlands could have temporal profiles similar to that of rice.
Shi et al. (2013) discriminated wetland according to its longer
growing season by using high NDVI values over 15 eight-day com-
posites during one year.

Fourth, besides the optical RS-based VI relationship approach
(Xiao et al., 2002), SAR datasets have also been used to detect
flooding and transplanting signals of paddy rice fields. Torbick
et al. (2011) used PALSAR FBS data and a decision tree approach
to identify flooding signals that were compared and shown to be
consistent with the MODIS LSWI/EVI based results. Other data
sources have also been used to detect the transplanting of paddy
rice; for example, the SSM/I brightness temperature-based Soil
Wetness Index (SWI) was used to detect transplanting signals
(Gupta et al., 2011), and the resultant estimated rice transplanting
periods showed a good agreement (90%) with the ground truth
observations. The application of these new data sources is helpful
for future operational paddy rice mapping.

In addition to the transplanting-based paddy rice approach, an
indicator considering both LSWI and EVI changes from tillering to
heading phases was also used to map paddy rice (Qiu et al.,
2015). Specifically, the variation of LSWI in paddy rice fields was
found to be relatively smaller than that of other crops from tillering
to heading dates. Thus, the ratios of LSWI change amplitude to 2-
band Enhanced Vegetation Index (EVI2) during that period were
utilized to generate an indicator, so-called the Combined Consider-
ation of Vegetation phenology and Surface water variations (CCVS),
for paddy rice mapping. This approach proved more robust in
terms of intra-class rice variability when compared to the trans-
planting phenology-based approach (Xiao et al., 2006, 2005). How-
ever, more validations in other regions could be needed for
extensive applications of this algorithm.
5. Discussion

5.1. Major characteristics of evolution of paddy rice mapping methods

Paddy rice mapping is an important topic due to its significance
for human wellbeing and environmental issues. Beyond original
research articles, two reviews have also been published: Kuenzer
and Knauer (2013) has summarized the different studies from
the perspective of data types (high- to medium-resolution optical
data, low-resolution optical data, hyperspectral data, and radar
data); while Mosleh et al. (2015) reviewed the progress in rice area
mapping and production forecasting, also taking the perspective of
remote sensing data (optical and microwave imagery). This study
tried to investigate the evolution of paddy rice mapping methods
by summarizing the four categories of paddy rice mapping
approaches. This trace analysis is helpful for the establishment of
future operational paddy rice mapping capabilities. The major find-
ings on the method of evolution can be summarized by the
following:

In term of algorithms, the improvement of paddy rice mapping
approaches is consistent with general land cover classification
development. Specifically, it underwent traditional classifiers
(classic supervised or unsupervised classifiers such as MLC) and
visual interpretation, more intelligent classifiers (e.g., NN, SVM,
and DTs), time series analysis-based or integrated approaches
(e.g., spectral matching), and the simple and phenology-based
approach through remote sensing recognition of key phenology
signals. The mapping strategy changed from general land cover
classification (universal land cover classifiers for general land cover
types) to the more specific thematic mapping (specific for paddy
rice). Due to the spectral variability in different periods and
regions, the image statistic-based approaches in early stages had
limits on the extension of classifier rules as all of these methods
were region- and phase-dependent. As an alternative, time series
data and phenology-based algorithms have been increasingly used
for paddy rice as well as other crop mapping (Lobell and Asner,
2004; Pan et al., 2012; Wardlow and Egbert, 2008; Wardlow
et al., 2007; Zhong et al., 2014).

In term of data sources, Landsat and AVHRR were almost the
only optical data sources for paddy rice mapping before 2000.
Landsat’s applications in paddy rice mapping have the longest his-
tory (Fang et al., 1998; Mccloy et al., 1987; Oguro et al., 2003;
Panigrahy and Parihar, 1992). Besides abundant local and small
scale studies, national scale studies have also been conducted after
2000; for example, a paddy rice map was included in China’s NLCD
products, which includes six major categories and 25 subcategories
derived from a visual interpretation approach based on Landsat
imagery from multiple epochs: late 1980s, ca. 1995, ca. 2000, ca.
2005, and ca. 2010 (Liu et al., 2005, 2010; Zhang et al., 2014). Based
on Landsat data, the National Agricultural Statistics Service (NASS)
of the USA has also produced the Cropland Data Layer (CDL), which
is a crop-specific classification product including paddy rice
(Johnson and Mueller, 2010). The operation of the MODIS sensor
greatly promoted paddy rice mapping efforts given its hyper-
temporal resolution, as well as the other sensors like SPOT-VGT,
AVHRR, and MERIS. The free release of Landsat archive data by
USGS/EROS provides an unprecedented data source for paddy rice
mapping given its ideal spatial resolution and long records dating
back to the 1970s. Synthetic Aperture Radar (SAR) is anticipated
to play an important role in paddy rice mapping in tropical and
subtropical regions given their frequent cloud coverage (Shao
et al., 2001) and one study showed its even more promising capa-
bility in mapping rice area and transplanting dates (Asilo et al.,
2014); however, its acquisition capability is still not as good as
optical sensors.

In terms of input variables, optical remote sensing-based meth-
ods experienced an evolution from reflectance data, to NDVI/EVI,
then to NDVI/EVI and LSWI/NDWI, and finally other combined
indicators (e.g., CCVS, Qiu et al., 2015). Paddy rice fields are a
dynamic mixture of soil, water, and green vegetation following
specific growth phases. NDVI and EVI reflect the greenness while
LSWI and NDWI yield flooding signatures. Xiao et al. (2002) pro-
posed a quantitative method to define flooding (i.e., LSWI
+ a > NDVI/EVI), Shi et al. (2013) used NDWI to replace LSWI. The
difference between LSWI and NDWI is in the usage of different
shortwave infrared bands (using MODIS as an example, NDWI uses
band 7 (2105–2155 mm) while LSWI uses band 6 (1628–
1652 mm). Another study also found that NDWI usage lead to a
negligible increase in commission errors over studies that use
LSWI, but that NDWI was also more sensitive to the presence of
water in mixed land cover conditions typical of moderate spatial
resolution analyses (Boschetti et al., 2014) which was consistent
with (Shi et al., 2013). Besides these existing VIs, one study also
proposed a Rice Growth Vegetation Index (RGVI) and found it to
have a good relationship with rice age and can be used for rice
plant mapping (Nuarsa et al., 2011).

In terms of study hotspots, the study numbers are consistent
with paddy rice production areas. Specifically, most studies
focused on Southeast Asia and South Asia. Paddy rice mapping in
tropical regions is more difficult due to the shorter growing season
and more frequent cloud coverage. However, the phenology-based
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approach also encountered new challenges in cold temperate
zones where the winter season is long, snowmelt occurs in spring,
and precisely identifying the time period of the flooding and trans-
planting phases is vital (Zhang et al., 2015; Dong et al., 2016a,
2016b).

5.2. Challenges and opportunities: Implications for future paddy rice
mapping

Based on the literature review, future regional to global paddy
rice mapping efforts should reduce the existing uncertainties in
algorithms, data, and validation processes and involve the emerg-
ing advanced sensors and methods, as well as new crowdsourcing
based validation approaches. Here we discuss the existing chal-
lenges and opportunities from the three aspects.

5.2.1. Uncertainties and solutions in algorithms
Agricultural statistical methods have been used for paddy rice

monitoring for a long time (e.g., FAOSTAT). However, it is time-
consuming with uncertainties from subjective measures; also, it
has limited information in spatial distribution. Remote sensing
methods has played a dominant role in paddy rice mapping, which
is the foci of this study.

While the transplanting recognition-based paddy rice mapping
methodology has been used increasingly for large scale paddy rice
mapping in recent studies (e.g., South Asia, Southeast Asia, China)
(Sun et al., 2009; Xiao et al., 2006, 2005; Zhang et al., 2015), the
intra-class variability of paddy rice fields continues to prevent
the acquisition of accurate transplanting signals. One uncertainty
in the algorithm is the setting of a (LSWI + a > EVI/NDVI); the orig-
inal study set a as 0.05 (Xiao et al., 2005) while following studies
Fig. 5. Spatial distribution of the bad observation frequency in monsoon Asia in 2010 by u
the quality layer and the blue band (Xiao et al., 2005). (For interpretation of the referen
article.)
used values ranging from 0 to 0.2 (Peng et al., 2011; Sun et al.,
2009). For multiple cropping, setting a to 0.05 for early rice is
promising. The reason for the uncertainty is the mixed pixel issue
occurring between two rice croppings. The uncertainty could be
reduced by using finer spatial resolution images (e.g., Landsat).
The algorithm can however, work well in large field areas when
using MODIS data (Zhang et al., 2015) and small field areas when
using Landsat data (Dong et al., 2015; Qin et al., 2015). Qiu et al.
(2015) presented another indicator, the ratio of change amplitude
of LSWI to EVI, that also proved robust. However, more assess-
ments are necessary before its extensive application. Also, the pre-
defined time window for transplanting could effectively improve
classification accuracy, this would rely on either climate variable-
based phenological definition (Zhang et al., 2015) or cropping
intensity and rice planting calendar retrieval from time series veg-
etation indices data.

5.2.2. Uncertainties and solutions in data
Given the dependence of paddy rice algorithms on temporal

data, data availability is the major concern for operational paddy
rice mapping, which is affected by clouds, fragmentation, cropping
systems, etc. Although time series data is increasingly applied to
paddy rice mapping, cloud-induced noises (bad observations due
to clouds and shadows) are still the major limiting factor as paddy
rice production regions are usually cloud-prone areas. Among exist-
ing satellite datasets, hyper-temporal MODIS data is an important
source for ricemapping.Motohka et al. (2009) found thatmore than
65% MODIS observations from Terra satellite were contaminated
with clouds in the case region of monsoon Asia. However, the com-
bined use of MODIS data from both Terra and Aqua satellites
decreased the rate of cloud contamination in the daily data to
sing 8-day MODIS data (MOD09A1). The bad observations were defined referring to
ces to color in this figure legend, the reader is referred to the web version of this



224 J. Dong, X. Xiao / ISPRS Journal of Photogrammetry and Remote Sensing 119 (2016) 214–227
43%. Even with its daily revisit frequency, MODIS still has difficulty
to provide sufficient numbers of good-quality observations for
annual paddy rice mapping in moist tropical areas. Fig. 5 showed
the spatial pattern of bad observations (including clouds, cloud
shadows) in monsoon Asia by using 8-day composite MODIS data.
SAR imagery is a promising data source for paddy rice mapping
given its cloud-free advantage (Bouvet and Le Toan, 2011; Nelson
et al., 2014); however, it also has some limitations compared to
optical remote sensing such as low data acquisition, relatively
low temporal resolution, and speckle noises. The shorter growing
season in multiple cropping systems is another issue for paddy rice
mapping in tropical regions. In addition, fragmentation of paddy
rice fields is another challenge.While 90% of global paddy rice fields
are distributed in Asia, most cropland fields are patchy and frag-
mented. The widely-usedMODIS data have a 500-m resolution that
cannot overcome the intra-class temporal variability of paddy rice.

Despite these challenges, many opportunities continue to arise,
especially from increasing data availability and resolutions,
improved algorithms, and increasing ground truth data. First,
increasing data sources and improved data resolution facilitate
improved spatially explicit paddy rice maps. The generation of
time series Landsat reflectance data (e.g., WELD) (Roy et al.,
2010) will facilitate the expansion of paddy rice mapping to
broader spatial and temporal (back to the 1980s) extents. The
new ESA Sentinel-2A/B sensors together with Landsat 8 data offer
unprecedented opportunities at �30-m spatial resolution and
<5 day temporal resolution (Wulder et al., 2011) datasets highly
useful for mapping and tracking the dynamics of rice paddies,
especially in tropical countries. A recent study showed the feasibil-
ity of annual paddy rice mapping in a single cropping area, temper-
ate zone of Asia by using Landsat 8 data (Dong et al., 2016a).
Second, the algorithms have been evolved to make the most of
the improved data mentioned in Section 4.1.
5.2.3. Calibration/Validation data and other ancillary information
Calibration/Validation (Cal/Val) is a critical component for land

cover mapping studies. Existing Cal/Val data collection methods
include utility of higher resolution images and ground surveys.
Citizen science plays an increasing important role in the collection
of Cal/Val data (Xiao et al., 2011). The Global Geo-Referenced Field
Photo Library (http://www.eomf.ou.edu/photos/) supports this
growing collaboration between citizens and scientists, storing
more than 150,000 photos from the fields as of Feb. 1, 2016. Google
Earth (GE) is also a source of high resolution image collections, and
GE-based region of interest (ROI) online tools or packages, e.g.,
GeoWiki (Fritz et al., 2009) and GM (Gong et al., 2013), enable
ROI extraction by using GE imagery.

Priori knowledge and ancillary data are also useful for avoiding
commission errors. For example, DEM data were used to reduce the
influence of elevation and slope on the estimation of paddy rice
(Peng et al., 2011; Xiao et al., 2006); and the ALOS/PALSAR-based
forest map was also used as a mask to reduce the commission
errors (Dong et al., 2016a).
6. Conclusions

Paddy rice mapping is not a new topic for remote sensing appli-
cation. However, to date there have been no available global paddy
rice maps to support such studies as greenhouse gas emission,
water use, food security, disease control, and climate change. To
motivate the production of robust large-scale paddy rice maps, this
study reviewed previous efforts in paddy rice mapping. In particu-
lar, we tracked the evolution of paddy rice mapping methods and
tried to explore an operational framework for universal, reliable
paddy rice mapping.
The critical role played by phenological signals in key crop
phases has been recognized since the 1980s in the agricultural
remote sensing field; the field next grew into using temporal pro-
file analysis of key growth stages to identify rice; later on, remote
sensing identification of transplanting has been increasingly used
for paddy rice mapping. The temporal analysis and phenology-
based approaches were considered promising methods for the-
matic paddy rice mapping. Existing phenology-based studies suc-
cessfully mapped yearly paddy rice on national or sub-
continental scales by using MODIS data, epoch-scale paddy rice
on regional scale by using Landsat data.

However, the accuracies of these approaches have been largely
limited by the availability of time series image data. The intra-class
variability of paddy rice within variant cropping systems is also a
big challenge for global paddy rice mapping, thus prior knowledge
about cropping intensity and calendars via statistical analysis on
sampling sites at a global level would be necessary. The time win-
dow of the transplanting phase and masking of other land cover
types have proven important for generation of paddy rice maps.
Thermal conditions can help define the time window of paddy rice
transplantation in temperature zones and simplify mapping pro-
cess. However, a universal mapping strategy will need to acquire
cropping intensity and calendar information by using sampling-
based information. The mixed pixel issues can be solved to a great
degree by using higher resolution (e.g., Landsat-like) datasets. SAR
data (e.g., Sentinel-1) can be used as complementary data for
paddy rice mapping.

Since 1987 to the present, remote sensing observation capabil-
ities have improved dramatically such that our paddy rice identifi-
cation and mapping abilities have been substantially improved.
The successful production of a global paddy rice map relies on
improved data acquisition capability (e.g., future sharing of the
combined Landsat and Sentinel-2 data), improved algorithms
(e.g., the application of phenology and object-based approaches),
as well as improved computing capacity (e.g., Google Earth Engine
and Amazon Cloud Drive). After a successful implementation of
global paddy rice mapping, our estimations about magnitudes
and spatial variations in CH4 emission, water use, and food produc-
tion will be greatly improved. In addition, the spatially explicit rice
maps would contribute to more precise epidemiological models.
The rice dynamic information would help us to better understand
response and adaption of agricultural system to global climate
change.
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