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A B S T R A C T   

Southwest China has been the largest terrestrial carbon sink in China over the past 30 years, but has recently 
experienced a succession of droughts caused by high precipitation variability, potentially threatening vegetation 
productivity in the region. Yet, the impact of precipitation anomalies on the vegetation primary productivity is 
poorly known. We used an asymmetry index (AI) to explore possible asymmetric productivity responses to 
precipitation anomalies in Southwest China from 2003 to 2018, using a precipitation dataset, combined with 
gross primary productivity (GPP), net primary productivity (NPP), and vegetation optical depth (VOD) products. 
Our results indicate that the vegetation primary productivity of Southwest China shows a negative asymmetry, 
suggesting that the increase of vegetation primary productivity during wet years exceeds the decrease during dry 
years. However, this negative asymmetry of vegetation primary productivity was shifted towards a positive 
asymmetry during the period of analysis, suggesting that the resistance of vegetation to drought, has increased 
with the rise in the occurrence of drought events. Among the different biomes, grassland vegetation primary 
productivity had the highest sensitivity to precipitation anomalies, indicating that grasslands are more flexible 
than other biomes and able to adjust primary productivity in response to precipitation anomalies. Furthermore, 
our results showed that the asymmetry of vegetation primary productivity was influenced by the effects of 
temperature, precipitation, solar radiation, and anthropogenic and topographic factors. These findings improve 
our understanding of the response of vegetation primary productivity to climate change over Southwest China.   

1. Introduction 

Southwest China, mainly covered by subtropical vegetation, repre
sents one of the largest terrestrial carbon sinks in China over the past 30 
years (Liu et al., 2016; Piao et al., 2009). However, this carbon sink and 
growth of vegetation are generally vulnerable to drought (Frank et al., 

2015; Ge et al., 2021). Southwest China is the largest karst region in the 
world (Song et al., 2019), where the vegetation in this region is 
vulnerable to the seasonal drought (Liu et al., 2012). Also, the relatively 
low soil moisture cannot meet the demand of land surface evapotrans
piration due to the low water-holding capacity (Liu et al., 2011a), 
leading to widespread water stress on vegetation. 
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In recent years, large-scale afforestation and intensive ecological 
restoration projects have been implemented to alleviate land degrada
tion (Yue et al., 2022), making Southwest China a hotspot region for the 
increase in vegetation cover and aboveground biomass (Brandt et al., 
2018). Simultaneously, a recent study reported that vegetation in 
Southwest China still has strong carbon sink potential (Zhang et al., 
2022), and optimizing current forestation projects could generate a 
long-term and sustainable carbon sink in the future. Yet, extreme 
drought events occurred frequently, leading to a large decrease in 
vegetation productivity during the drought period (Tong et al., 2018). 
Thus, it is essential to understand the response of carbon dynamics to 
climate changes over Southwest China. 

Previous studies have already analyzed the intensity and frequency 
of extreme drought events in Southwest China, as well as the vegetation 
response and the legacy effects of drought. For instance, multiple 
drought metrics showed that the frequency and duration of drought 
events in this region have increased from 2000 to 2014, concurrent with 
rising temperature and decreasing precipitation (Li et al., 2014; Zhang 
et al., 2013). Also, extreme drought events could suppress vegetation 
growth, reducing vegetation productivity and its carbon sequestration 
capacity (Zhang et al., 2012). Furthermore, vegetation in this region has 
capacity to recover its greenness and productivity from the effects of 
drought within 6 months, primarily due to subsequent increased pre
cipitation, climate warming, and land management (Chen et al., 2021; 
Li et al., 2019). 

However, few studies investigated the asymmetry of vegetation 
primary productivity in response to precipitation anomalies over 
Southwest China, that is, the comparison between the increase in 
vegetation primary productivity during wet years and the decrease in 
vegetation primary productivity during dry years. Improving this 
knowledge is crucial for a better understanding of carbon budget and 
resilience of terrestrial ecosystems. 

Current studies about the asymmetry of vegetation productivity in 
response to precipitation anomalies were mainly made over arid and 
semi-arid areas (e.g., Africa, USA, and Australia), where vegetation 
productivity was highly sensitive to variations in water availability 
(Dannenberg et al., 2019). However, the magnitude of this asymmetric 
response could decrease with increasing mean annual precipitation 
(Al-Yaari et al., 2020), which posed challenges for monitoring the 
asymmetry of vegetation productivity in humid areas. Thus, only a few 
studies focused on humid areas (e.g., Southwest China). According to 
field studies, the primary productivity in arid grasslands, for instance, 
was more responsive to a wetter condition (Wilcox et al., 2017). Similar 
result could be found in the semi-arid regions (e.g., Australia, USA), in 
which a positive asymmetry in vegetation productivity were observed 
(Haverd et al., 2017). Higher interannual rainfall variability was re
ported to favor a more dynamic vegetation response to rainfall anoma
lies when comparing different semi-arid ecosystems in West Africa using 
remote sensing data (Ratzmann et al., 2016). 

A comprehensive assessment of the asymmetric response of vegeta
tion productivity to precipitation anomalies in the humid region is 
necessary for a better understanding of the ecosystem function under 
climate change. Southwest China is a humid region with a subtropical 
monsoon climate, different from previous studies in terms of rainfall and 
climate. Recently, extreme climate events over Southwest China have 
occurred frequently, with the most severe and sustained drought events 
occurring in the summer of 2006, 2009/2010 winter-spring, and the 
summer periods of 2011 and 2013 (Li et al., 2011; Long et al., 2014; 
Yuan et al., 2016). These extreme drought events provide an ideal 
foundation for studying the asymmetry of vegetation primary produc
tivity in response to precipitation anomalies in humid regions. 

Here, multiple satellite-observed and model simulation data (gross 
primary productivity (GPP), net primary productivity (NPP), vegetation 
optical depth (VOD), precipitation) and two different asymmetric index 
quantification methods (see Methods) were used to assess the asym
metry of vegetation productivity in response to precipitation anomalies 

over Southwest China from 2003 to 2018. The goals of this study are: (1) 
to investigate the asymmetric response of primary productivity to 
extreme drought events and its general trend during the recent two 
decades over Southwest China, and (2) to analyze the main environ
mental factors associated with the asymmetric response. 

2. Materials and methods 

2.1. Study area 

The Southwest China (96◦21́-112◦04́E; 20◦54́-34◦19́N), covering an 
area of 1.37 × 106 km2, includes Sichuan, Yunnan, Guizhou, and 
Guangxi Provinces, as well as the Chongqing municipality (Fig. 1). 
Southwest China, characterized by a subtropical monsoon climate, has a 
distinctive karst landscape and its elevation progressively rises from the 
southeast to the northwest (Wang et al., 2021). Furthermore, vegetation 
is highly fragile owing to the impact of geology, landforms, climate, and 
human activity (Wang et al., 2010). For example, karst regions are 
vulnerable to the change of environment and human activities, resulting 
in severe soil erosion and rocky desertification. In addition, the growing 
population over the past three decades has increased the demand for 
water and natural resources (Hao et al., 2015). 

In this study, the International Geosphere Programme (IGBP) scheme 
of land cover classification was used as the basis for the creation of land 
cover types (Loveland and Belward, 1997). It contains 17 types of land 
cover. We selected the MODIS MCD12Q1 Land cover map at 500-m 
spatial resolution from 2001–2010 to get information about the land 
cover in Southwest China. Furthermore, we masked pixels of 
non-vegetation types, including “Urban and Built-Up”, “Snow and Ice”, 
“Water bodies”, and “Barren or sparse vegetated”, and aggregated to 25 
km spatial resolution. Also, pixels which contained the “Wetland” land 
cover type were masked, because VOD is underestimated when the 
observation footprint contains substantial open water bodies (Liu et al., 
2011b). We combined evergreen needleleaf forest, evergreen broadleaf 
forest, deciduous needleleaf forest, deciduous broadleaf forest, and 
mixed forest into a forest. We further combined closed shrublands, open 
shrublands, woody savannas, and savannas into shrublands, and crop
lands and cropland/natural vegetation mosaic into croplands. Accord
ingly, the vegetation of Southwest China is stratified into four land cover 
classes: forest (39.24%), croplands (22.38%), shrublands (20.29%), and 
grasslands (18.09%), corresponding to different climate regimes. 

2.2. Satellite and auxiliary datasets 

Vegetation productivity products (GPP, NPP, VOD), climatic vari
ables (precipitation, potential evapotranspiration, and land surface 
temperature), and auxiliary data (land cover, maximum rooting depth, 
DEM) were used in the present study. The GPP, NPP, and VOD were used 
to evaluate vegetation productivity in relation to the change of biomass 
and to calculate the asymmetry index (AI). This study focused on the 
period of 2003–2018, due to data limitations (VODCA C-VOD was 
available from June 2002 to 2018) and severe drought frequently 
occurring since the 2000s (Zhang et al., 2013). More details about the 
datasets were introduced below and summarized in Table 1. 

2.2.1. Proxies of vegetation productivity 

2.2.1.1. NPP dataset from the mod17a3hgf. The MODIS MOD17A3HGF 
V6 product provides a yearly NPP at 500-m spatial resolution, which is 
accumulated using whole 8-day available MOD15A2H product for each 
pixel (Running et al., 2019). All good-quality observations (according to 
the per-pixel associated QA flags) of NPP during 2003–2018 were used 
in this study. 

2.2.1.2. GPP dataset from the vegetation photosynthesis model (VPM). 

G. Dong et al.                                                                                                                                                                                                                                    



Agricultural and Forest Meteorology 331 (2023) 109350

3

The VPM GPP dataset (Zhang et al., 2021) is based on a satellite-based 
LUE model driven by satellite data from MODIS MOD09A1 surface 
reflectance, MCD12Q1 land cover, and MYD11A2 land surface tem
perature, as well as climate data from National Centers for Environ
mental Prediction (NCEP) reanalysis II. This dataset is available to the 
public and has three temporal resolutions (8-day, monthly, and annual) 
and three spatial resolutions (500-m, 0.05◦, and 0.5◦). A previous study 
shows that the VPM GPP could accurately represent the impacts on 
grasslands in drought years (Pei et al., 2020). Here, annual VPM GPP at 
0.05◦ spatial resolution was selected. 

2.2.1.3. Global long-term microwave vegetation optical depth climate 
archive (VODCA). Satellite-based VOD is widely used to monitor the 
dynamics of aboveground biomass (AGB) (Liu et al., 2015) and the 
impacts of drought events on vegetation over Southwest China (Brandt 
et al., 2018). A previous study (Moesinger et al., 2020) indicated that 
VODCA product exhibits high potential for detecting the change of 
ecosystem dynamics because of its sensitivity to water content of 
vegetation (VWC). Furthermore, VODCA, as long-term daily VOD 
products using the Land Parameter Retrieval Model (LPRM), includes 
three different spectral bands at the spatial resolution of 0.25◦: C-band 
(2002–2018), X-band (1997–2018), and Ku-band (1987–2017). C-band 
VOD as the low-medium frequency band in VODCA products was used 
here, which can be accessed at https://zenodo.org/record/2575599. 

Although VOD products based on L-band sensors (Konings et al., 
2021) with a lower frequency and deeper penetration depths show 
higher sensitivity to VWC and AGB, the period covered by L-band VOD 
products starts in 2010, and, hence, cannot be used in the present study 
to analyze the long-term vegetation response. 

2.2.1.4. Net ecosystem exchange (NEE) from in-situ observation. In this 
study, we obtained in-situ observational NEE data from the Xishuang
banna (XSBN) flux tower of the Chinese Terrestrial Ecosystem Flux 
Observation and Research Network (ChinaFLUX) (Yu et al., 2016). The 
XSBN site (101◦15́55ʺE, 21◦55́39ʺN) was in protected natural forests on 
the subtropical zone in Southwest China, providing yearly NEE data 
from 2003–2010 (Yu et al., 2006). This in-situ NEE data provides a 
unique opportunity to validate the interannual variation in the asym
metry of NPP, although NEE is a function of the difference between NPP 
and heterotrophic respiration (Rh). 

2.2.2. Climatic variables 

2.2.2.1. Precipitation and potential evapotranspiration (PET). TerraCli
mate, as a high-resolution global dataset, provides monthly climate data 
at 1/24◦ (~4 km) spatial resolution. It uses climatically aided interpo
lation, combining the WorldClim version 1.4 and version 2 datasets with 
CRU Ts4.0 and JRA-55 (Abatzoglou et al., 2018). Compared to gridded 

Fig. 1. The geographic location of Southwest China. (a) Land cover map of Southwest China based on 10 years (2001–2010) of MODIS MCD12Q1 data, (b) 
topographic map from the SRTM V3 DEM product, and (c) distribution of karst landscape from V3 world karst map. 

Table 1 
Overview of all data used in the present study.  

Variables Source Spatial resolution Temporal resolution Time period Reference 

NPP MOD17A3HGF 500m yearly 2003–2018 (Running et al., 2019) 
GPP VPM 0.05◦ yearly 2003–2018 (Zhang et al., 2021) 
C-VOD VODCA 0.25◦ daily 2003–2018 (Moesinger et al., 2020) 
NEE ChinaFLUX  yearly 2003–2010 (Yu et al., 2006) 
Precipitation TerraClimate 4km monthly 2003–2018 (Abatzoglou et al., 2018) 
PET TerraClimate 4km monthly 2003–2018 (Abatzoglou et al., 2018) 
LST MOD11A1 1km daily 2003–2018 (Wan et al., 2015) 
Elevation SRTM V3 30m   (Farr et al., 2007) 
Max rooting depth  1km   (Fan et al., 2017)  
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datasets with a coarser resolution, the TerraClimate dataset represented 
a considerable reduction in overall mean error and an increase in spatial 
realism (Abatzoglou et al., 2018). The precipitation and potential 
evapotranspiration (PET) data were selected in this study. 

2.2.2.2. Land surface temperature (LST) dataset from the MOD11A1. The 
MODIS MOD11A1 V6 product provides a daily LST at a spatial resolu
tion of 1 km (Wan et al., 2015). All good-quality observations (according 
to the per-pixel associated QA flags) of daytime LST were used as the 
source of the temperature data to investigate the drivers of asymmetry of 
vegetation productivity in response to precipitation anomalies. 

2.2.3. Other auxiliary data 

2.2.3.1. Maximum rooting depth. Plant rooting depth could affect the 
long-term carbon cycle and ecosystem resilience to drought (Fan et al., 
2017). It was estimated at 30ʺ (~1 km) global grids based on an inverse 
model driven by observed productivity and atmosphere (Fan et al., 
2017). Therefore, the maximum rooting depth of root uptake averaged 
over 10 years (2004–2013) was selected to analyze the response of 
vegetation to precipitation change. 

2.2.3.2. Elevation dataset from the shuttle radar topography mission 
(SRTM). Elevation has a significant effect on the frequency of extreme 
droughts (Zhang et al., 2013). Meanwhile, vegetation growth and its 
type are determined by the combination of various topographic factors 
(Laamrani et al., 2014). The SRTM V3 product provided by NASA JPL at 
a 30-m spatial resolution (Farr et al., 2007) was used as the source of the 
elevation data to investigate the drivers of asymmetry of vegetation 
productivity in response to precipitation anomalies. 

In these datasets above, NPP, GPP, VOD, precipitation, PET, and LST 
were regridded to yearly values at a spatial resolution of 0.25◦ using a 
simple average method. Max rooting depth, land cover, and DEM were 
also regridded to a spatial resolution of 0.25◦. Data pre-processing were 
processed on Google Earth Engine platform. 

2.3. Methods 

2.3.1. Asymmetry index (AI) 
AI was used to measure the asymmetry of vegetation productivity in 

response to precipitation anomalies. In the present study, two methods 
were used for the calculation of the AI as proposed by Al-Yaari et al. 
(2020) based on wet and dry years (refer to Section 2.3.1.1) and (2) 
Haverd et al. (2017) based on extreme climate (refer to Section 2.3.1.2), 
as follows: 

2.3.1.1. Asymmetry index calculated based on wet and dry years. Ac
cording to Al-Yaari et al. (2020), AI can be defined as the difference 
between the increase of vegetation productivity during wet years and 
the decrease during dry years. Here, AI is calculated as follows (Al-Yaari 
et al., 2020): 

Positive pulse =
max(Var) − mean(Var)

abs(mean(Var))
(1)  

Negative decline =
mean(Var) − min(Var)

abs(mean(Var))
(2)  

AI = Positive pulse − Negative decline (3)  

where var is the value of GPP, NPP, and VOD. max and min represent the 
highest and lowest values over the study period (2003–2018). abs and 
mean represent the absolute and mean yearly values. A Positive pulse and 
Negative decline represent the gain of variables during wet years and the 
decline of variables during dry years, respectively. 

Furthermore, AI is calculated by the difference between Positive pulse 

and Negative decline. AI > 0 indicates a positive asymmetry, meaning 
that the increase of variables during wet years exceeds the decrease 
during dry years, and AI < 0 indicates a negative asymmetry, meaning 
that the decrease of variables during dry years exceeds the increase 
during wet years. 

2.3.1.2. Asymmetry index calculated based on extreme climate. Accord
ing to Haverd et al. (2016), the asymmetry index can also be defined by 
the difference between the change of vegetation productivity driven by 
precipitation extremes, and calculated by the outer pth percentiles of 
variables over the study period. Therefore, AIp is calculated as follows 
(Haverd et al., 2016): 

Positive pulsep =
mean(Var) − mean

(
Var+p

)

mean(Var)
(4)  

Negative declinep =
mean

(
Var− p

)
− mean(Var)

mean(Var)
(5)  

AIp = Positive pulsep − Negative declinep (6)  

where var is the yearly value of GPP, NPP, and VOD. mean represents the 
mean yearly values. ‘+p’ indicates the replacement of yearly values 
above the pth percentile with the median value, and ‘-p’ indicates the 
replacement of yearly values under the (100-p)th percentile with the 
median value over the averaging period (2003–2018). Positive pulsep, 
corresponding to Positive pulse in Eq. (1), indicates that the positive 
precipitation extremes increase the mean value of variables. 
Negative declinep, corresponding to Negative decline in Eq. (2), indicates 
that the negative precipitation extremes decrease the mean value of 
variables. AIp > 0 indicates that the increase in mean yearly value of 
variables due to the positive precipitation extremes is higher than the 
decrease due to the negative precipitation extremes and vice versa. 

In the present study, 20th (p=20) was selected to calculate the 
asymmetry index based on Haverd method. Positive pulse was simply 
referred as pulse and Negative decline was referred as decline. Mean
while, to study the decadal trends of asymmetry, we used a temporal 
moving window of 5 years to calculate the running mean of AI. 

2.3.2. Drivers of the asymmetry 
Previous studies showed that abiotic factors (e.g. precipitation) and 

biotic factors (e.g. growth potentials of vegetation in response to 
resource pulses) can have an effect on the asymmetry of vegetation 
productivity (Al-Yaari et al., 2020; Felton et al., 2021). Also, mean 
annual precipitation is a key factor in limiting vegetation productivity 
and its biomass (Huxman et al., 2004). A strong relationship has been 
reported between vegetation primary productivity and precipitation 
over Southwest China (Linger et al., 2020; Wu et al., 2013). Therefore, 
we consider four climatic variables and a biotic variable to explore the 
possible drivers for the asymmetry of vegetation productivity. These 
variables include the ratio of yearly precipitation to PET (RATio), the 
mean annual precipitation (MeanPR), the precipitation interannual 
variability (CVPR; calculated by the coefficient of variation of precipi
tation), the asymmetry of precipitation anomalies (AiPR), as well as the 
productivity potential of vegetation (MaxNPP; calculated by the largest 
yearly values of NPP). 

In the present study, we used the Random Forest (RF) model to 
determine the most important predictor variable. RF model was an 
ensemble learning method for classification and regression (Rial et al., 
2017), which has advantages in the handling of categorical and 
continuous predictors, resistance to overfitting, and measurement of 
variable importance (Iverson et al., 2008). Here, we used the function of 
“TreeBagger” in RF model based on MATLAB (version R2021a) to esti
mate the importance of the variables, and used all available pixels of 
created variable maps over study region as the input variable. We also 
calculated the variable importance for each biome according to the IGBP 
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land cover map. The above process was repeated 100 times, and selected 
mean value of all runs as the output result. These variables showing the 
highest importance could be considered as key drivers for the asym
metry of vegetation productivity. 

3. Results 

3.1. Biome specific productivity asymmetry 

The asymmetry of productivity over Southwest China was quantified 
for each biome (Fig. 2a-c), and the results from AIGPP (Fig. 2a) and AINPP 
(Fig. 2b) showed a negative asymmetry of vegetation productivity in 
Southwest China, suggesting that the gain of vegetation primary pro
ductivity during wet years exceeds the loss during dry years. Across four 
biomes (e.g., forest, shrublands, grasslands, and croplands), the asym
metry of vegetation productivity was generally negative. The AIGPP 
value was negative in all biomes, and grasslands had the highest nega
tive AIGPP value (Fig. 2a). AINPP showed the same negative except for 
grasslands (Fig. 2b). The AIVOD was negative for grasslands (Fig. 2c). 
These results showing negative AI values over Southwest China suggest 
that the decrease in vegetation primary productivity during dry years 
was, generally, larger than the increase during wet years. 

The spatial patterns of AI response over Southwest China showed 
spatial heterogeneity among GPP (Fig. 2d), NPP (Fig. 2d), and VOD 
(Fig. 2f). The negative AIGPP and AINPP values could be observed in the 
Yunnan province, the western part of Guizhou and Guangxi province, in 

contrast to the positive AI values over the northwestern Sichuan, 
southern and northern part of Chongqing, and eastern part of Guizhou. 
Compared to the spatial patterns of AIGPP and AINPP, higher negative 
AIVOD value was observed in the forest regions of Chongqing (Fig. 2f). 
These results were generally similar to those produced from the Haverd 
method (Fig. S1). 

3.2. Decadal trends of asymmetry 

The change in the asymmetry of vegetation productivity in response 
to precipitation anomalies for a 5 year’s temporal moving window from 
2003–2018 was investigated (Fig. 3). The negative asymmetry of 
vegetation primary productivity shifted to positive asymmetry over the 
study period, indicated by AIGPP (slope=0.000309) and AINPP 
(slope=0.000715). For each biome, the decadal trends of asymmetry 
were similar to overall trend (Fig. S3), although there were differences 
in the magnitude of change fluctuations among the different biomes. 
Fluctuations in forests and croplands were relatively small and similar, 
whereas fluctuations in grasslands and shrublands were larger and the 
response was more pronounced for grasslands than for shrublands. 
These results indicate that the sensitivity of vegetation productivity to 
negative precipitation anomalies during dry years has decreased, which 
could suggest that the resistance of vegetation to drought has increased 
even if the frequency of the droughts that occurred over the study period 
is higher. 

A high interannual variability in productivity asymmetry was 

Fig. 2. Asymmetric response of GPP, NPP, and C-VOD to precipitation anomalies in Southwest China. (a)-(c) shows the asymmetry index (AI) of GPP, NPP, and C- 
VOD for each biome, respectively. (d)-(f) shows the spatial distribution of AI in GPP, NPP, and C-VOD within 2003–2018 period respectively using the method from 
Al-Yaari et al. (2020). 
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observed during the study period. A downward trend in AIGPP (Fig. 3a) 
and AINPP (Fig. 3b) values were observed before 2008, and the strongest 
negative asymmetries for AIGPP (-0.005) and AINPP (-0.0164) were 
observed in 2007 and 2008, respectively. Also, the AIGPP value switched 
from positive to negative in 2007. These downward trends in AIGPP and 
AINPP could be attributed to the long-term seasonal drought during 
2003–2014 (Lin et al., 2015). The same trends in AIGPP and AINPP were 
similar to those produced from the Haverd method (Fig. S2). Further
more, to validate the trend of AINPP at the site scale, we selected one NPP 
pixel (Fig. 3d), which contained the observed NEE value from XSBN site 
during the period of 2003–2010. A high agreement (r=0.9956, P-val
ue<0.01) between AINPP and the in-situ AINEE was observed from 
2005–2008 at XSBN. Also, the XSBN site was in the natural forests of 
Southwest China (Yu et al., 2006), NPP in forests and NEE fluxes both 
represented a negative asymmetry over the study period, and declined 
sharply in 2008 (Fig. S3). These results suggest that drought events (e.g., 
2006 summer drought; 2009/2010 winter-spring drought) over South
west China could affect the asymmetry of vegetation primary produc
tivity, leading to the decrease of vegetation primary productivity during 
dry years exceeds the increase during wet years. 

Note that the increase in the AIGPP was observed after 2007 and 
switched from negative to positive in 2011, and AINPP also showed an 
increase since 2008. However, the AIVOD value decreased after 2007 
(Fig. 3c), and experienced a positive to a negative shift in asymmetry in 
2011. The AIVOD showed the overall trend of a significant decline 
(slope<0) during 2003–2018, in contrast to the positive trends in AIGPP 
and AINPP. 

3.3. Comparison of asymmetric responses for each biome 

For a better understanding of the response of vegetation productivity 
to precipitation anomalies, the method Eq. (1)-(6) for the calculation of 
the positive pulse and negative decline of productivity was also used to 
calculate the positive pulse and negative decline of precipitation. The 
average pulses and declines of productivity and precipitation were 
grouped by four biomes (forest, shrubland, grassland, and cropland) 
(Fig. 4). Grasslands were observed to be the most responsive to high 
precipitation anomalies indicated by the higher positive pulse values 
(0.1446 for GPP, 0.1092 for NPP), followed by croplands (0.1412 for 
GPP, 0.0963 for NPP), forests (0.132 for GPP, 0.0808 for NPP) and 
shrublands (0.1242 for GPP, 0.0781 for NPP). Also, forests and shrub
lands did not show high values of positive pulse and negative decline 
compared with grasslands, even experiencing high precipitation anom
alies. These results, supported by the results of Haverd method (Fig. S4), 
indicated that grasslands are more flexible than other biomes and able to 
adjust primary productivity in response to high precipitation anomalies. 

3.4. Drivers for the asymmetry of vegetation primary productivity 

The relationship between asymmetry of vegetation productivity and 
elevation was investigated (Fig. 5). We found the AIGPP and AINPP values 
gradually shifted from negative to positive with increasing elevation 
(Fig. 5a and b), in contrast to AIVOD showed a gradually decreasing trend 
(Fig. 5c). Both the values of pulse and decline showed decreasing trends 
between 0 and 2500 m, and an increasing trend between 2500 and 4500 
m (Fig. 5d-f). In general, the minimum values of these two pulses can be 
observed at elevations between 2000 and 3000 m, and the maximum 

Fig. 3. Temporal variations of the asymmetry index (AI). (a)-(c) represents the asymmetry of GPP, NPP, and C-VOD respectively. (d) shows the asymmetry of NPP 
product and in-situ NEE measurement at Xishuangbanna (XSBN). The AI is calculated from average interannual variations in vegetation variables using a moving- 
average window of 5 years using the method from Al-Yaari et al. (2020). The background shading shows the intensity of rainfall anomalies defined by z-score using 
TerraClimate precipitation, where red/blue color represents the negative/positive z-score values in precipitation, respectively. The gray line represents the long-term 
trend of AI. ** for P < 0.01 and * for P < 0.05. 
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value can be observed above 4500 m. These results indicate an AI de
pendency of elevation: more positive AI values occur in areas of high 
elevation, and more negative AI values occur in areas of low elevation. 

The relationship between asymmetry of vegetation productivity and 
temperature was investigated (Fig. 6). We found an AIGPP value corre
sponding negative asymmetry below 30 ◦C (Fig. 6b), in contrast to the 

Fig. 4. The sensitivity of GPP, NPP, and C-VOD to precipitation anomalies for each biome. The axis of (a)-(c) represents the positive pulse of GPP, NPP, and C-VOD, 
respectively. The axis of (d)-(f) represents the negative decline of GPP, NPP, and C-VOD, respectively. The positive and negative pulses were calculated using the 
method from Al-Yaari et al. (2020). The same method was used to calculate the positive pulse and negative decline of precipitation. 

Fig. 5. The influence of elevation on the asymmetry of vegetation productivity. The relative magnitude of (a)-(c) the asymmetry index and (d)-(f) positive pulses and 
negative declines for GPP, NPP, and C-VOD for different elevation conditions, respectively. The asymmetry index, positive pulse, and negative decline were 
calculated using the method from Al-Yaari et al. (2020). 
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AIVOD showing positive asymmetry (Fig. 6c), and the AINPP value grad
ually shifted from positive to negative as a function of increasing tem
perature (Fig. 6a). Both values of pulse and decline showed decreasing 
trends between 0 ◦C and 20 ◦C, and an increasing trend between 20 ◦C 
and above 30 ◦C (Fig. 6d-f). The minimum values of these two pulses can 
be observed at temperatures between 15 ◦C and 25 ◦C, and the 

maximum value can be observed above 30 ◦C. The result of AINPP in
dicates that high temperatures have a strong influence on the asymmetry 
of vegetation productivity, causing strongly negative AINPP in areas with 
high temperatures. These results were generally similar to those pro
duced from the Haverd method (Fig. S5 and Fig. S6). 

The relationship between the asymmetry of vegetation productivity 

Fig. 6. The influence of temperature on the asymmetry of vegetation productivity. The relative magnitude of (a)-(c) the asymmetry index and (d)-(f) positive pulses 
and negative declines for GPP, NPP, and C-VOD for different temperature conditions, respectively. The asymmetry index, positive pulse, and negative decline were 
calculated using the method from Al-Yaari et al. (2020). 

Fig. 7. The influence of maximum rooting depth on the asymmetry of vegetation productivity. The relative magnitude of (a)-(c) the asymmetry index and (d)-(f) 
positive pulses and negative declines for GPP, NPP, and C-VOD for different maximum rooting depth conditions, respectively. The asymmetry index, positive pulse, 
and negative decline were calculated using the method from Al-Yaari et al. (2020). 
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and maximum rooting depth was studied (Fig. 7). There are no signifi
cant trends in positive pulse and negative decline values with increasing 
rooting depth (Fig. 7d-f), suggesting that the vegetation in this region is 
not under severe water stress and that vegetation is not primarily 
controlled by precipitation despite the presence of karst landscape 
structure in this region. 

In addition, five variables with the RF models were used to predict 
the asymmetry of vegetation productivity (Fig. 8). These results showed 
that RATio was the most important predictor variable in AIGPP, MaxNPP 
was the most important indicator in AINPP followed by MeanPR which 
was the most important indicator in AIVOD (Fig. 8a). At the biome scale, 
RATio, MaxNPP, and MeanPR were the most important indicators in 
forests areas for AIGPP (Fig. 8b), AINPP (Fig. 8c), and AIVOD (Fig. 8d), 
respectively. MeanPR was the most important indicator in shrublands, 
suggesting that productivity asymmetry over shrublands could be 
explained by the mean annual precipitation. RATio, MeanPR, and 
MaxNPP were the most important indicators for grasslands in AIGPP, 
AINPP, and AIVOD respectively. MeanPR was the most important indicator 
for grasslands in AINPP and AIVOD. 

4. Discussion 

4.1. Asymmetric response of vegetation productivity to precipitation 
anomalies 

These results indicated that vegetation productivity over Southwest 
China showed negative asymmetry between 2003 and 2018 (Fig. 2), in 
contrast to previous studies on arid and semi-arid regions (Haverd et al., 
2017). Our studies emphasize on the dominant role of negative asym
metry of vegetation productivity in Southwest China, suggesting that 
vegetation in this region is vulnerable to drought events. These results 
characterizing humid regions were in line with site-scale studies over the 
grassland site located in the Austrian Central Alps (Wu et al., 2018). The 
negative AI value could be caused by a situation where an increase in 
vegetation productivity during wet years could not compensate for the 
decline of vegetation productivity due to the frequent drought. In 

extreme wet years, vegetation productivity over the humid regions tends 
to saturate or decline with increased precipitation, concurrent with the 
reduction in other available resources such as light and nutrients 
(Schwalm et al., 2010). At the same time, the temperature and radiation, 
as key factors for vegetation growth, may alter with the duration of rainy 
periods, thus negatively affecting vegetation primary productivity 
(Nemani et al., 2003). On the contrary, during extreme drought years, 
vegetation primary productivity decreases significantly with continued 
reduction in precipitation (Yuan et al., 2016). In particular, dramatic 
declines in vegetation productivity may occur when precipitation de
creases exceed the threshold of vegetation mortality (McDowell et al., 
2011). Furthermore, additional negative effects such as heatwaves, fire 
disturbance (Qin et al., 2022), and pest breakout (Brando et al., 2014) 
could also reduce vegetation productivity. 

The AIVOD value was positive among three biomes of forest, crop
lands, and shrublands (except for grassland), which was opposite to the 
results of AINPP. There are two potential reasons to explain the unex
pected opposite result between AIVOD and AINPP. The first reason may be 
due to the oversimplification of the passive microwave VOD retrieval 
algorithms (Wang et al., 2023), which could result in an overestimation 
of VOD during dry years. A recent evaluation study (Wang et al., 2023) 
based on multiple VOD products showed a negative correlation between 
the VODCA C-VOD and soil moisture in Amazon forests, and attributed it 
to the simplified scattering process and inappropriate parameter setting 
in VOD retrieval algorithms. In addition, MODIS NPP, as an optical 
remote sensing product, could be affected by cloud contamination, 
topography, and aerosol concentrations (Zeng et al., 2022), leading to a 
decrease in the accuracy of the NPP product. The other reason could be 
related to the anthropogenic factors such as intensive afforestation 
ecological protection that promoted the growth of vegetation in 
Southwest China after 2000. A previous study showed that large-scale 
ecological projects in Southwest China have led to a broad increase in 
the leaf area index (LAI) and AGB, which attenuated the negative effects 
caused by drought, resulting in an overall positive asymmetry in 
biomass in this region during 2003–2018 (Tong et al., 2020; Tong et al., 
2017). 

Fig. 8. Variable importance of the five pre
dictors used to predict the asymmetry of vege
tation productivity. High values indicate more 
important drivers in RF models. (a) shows the 
variable importance of predictors used to pre
dict the asymmetry index of GPP, NPP, and C- 
VOD across entire Southwest China, respec
tively. (b)-(d) shows the variable importance of 
predictors used to predict the asymmetry index 
of GPP, NPP, and C-VOD for each biome, 
respectively. The input variables were the ratio 
of yearly precipitation to potential evapotrans
piration (RATio), mean annual precipitation 
(MeanPR), precipitation interannual variability 
(CVPR), asymmetry of precipitation anomalies 
(AiPR), and productivity potential of vegetation 
(MaxNPP), respectively.   
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4.2. Comparison of the asymmetric response for each biome 

Our results showed that vegetation productivity from grasslands had 
the highest sensitivity to precipitation anomalies (Fig. 4), suggesting 
that the primary productivity in grasslands is more susceptible to pre
cipitation anomalies than in other biomes. Grasslands with high sensi
tivity to drought have a simpler structure and lower productivity 
compared to forests and shrublands, with aboveground parts that tend to 
wither during drought periods but re-emerge rapidly when drought 
ceases to occur. (Stampfli et al., 2018). Furthermore, while grasslands 
regrow rapidly as precipitation deficits alleviate, those grasslands usu
ally do not immediately restore to pre-drought productivity states of 
carbon sequestration (Stuart-Haentjens et al., 2018), which may also 
explain why the grassland’s primary productivity shows negative 
asymmetry. Our result differs from a meta-analysis of grassland pre
cipitation manipulation experiments at dry sites (Wilcox et al., 2017) 
that found a positive asymmetry of vegetation productivity in response 
to precipitation extremes. This could reveal an interesting difference 
between grassland functioning out study region (mainly belong to 
humid regions) in contrast to findings of (semi-)arid regions, that 
grassland primary productivity in humid regions is more susceptible to 
the effects of dry years relative to wet years. 

Forests showed relatively weaker negative asymmetric response to 
precipitation anomalies, suggesting that forests have a stronger capa
bility of drought resistance than crops and grasslands (Li et al., 2019). At 
the early stage of the drought period, forests could absorb precipitation 
held in the root zone or shallow soil moisture (Liu et al., 2019). 
Compared with other three biomes, even under high water deficit con
ditions, forests could be able to adjust stomatal conductance and reduce 
transpiration to avoid excessive water loss (Choat et al., 2018; Reich
stein et al., 2002). 

Compared with grasslands and forests, shrublands have a moderate 
sensitivity to precipitation anomalies and recovery time for vegetation 
productivity, due to their more complex structure and function than 
grasslands and less demand for water, nutrients, and carbohydrates for 
growth than forests (Li et al., 2019). In contrast to natural biomes, 
cropland may have water supplements like artificial irrigation and 
cultivation and thereby be less sensitive to increase in precipitation, 
showing negative asymmetric response to precipitation anomalies. 
These results were in line with a recent study from Wang et al. (2022) 
who found a significant negative AI in croplands. 

4.3. Effect of precipitation anomalies on vegetation productivity 
asymmetry 

Our results also showed that the AIGPP and AINPP values shifted from 
negative to positive over the study period (Fig. 3), although persistent 
negative precipitation anomalies and drought events occurred between 
2003 and 2014. This may be due to the intrinsic response of the vege
tation mediates or buffers the cumulative negative effects over time 
(Felton et al., 2021), resulting in a diminished rather than amplified 
negative asymmetric response of vegetation productivity. For instance, a 
recent study (Trugman et al., 2020) found evidence of a shift towards 
forests with more drought-tolerant traits, driven by forest mortality. 
Furthermore, long-term drought can select for species with drought 
resistance and lead to changes in species composition (Fauset et al., 
2012), thus weakening the negative response of vegetation productivity 
to precipitation anomalies (Felton and Smith, 2017; Jentsch et al., 
2011). 

Surprisingly, the 2011 summer drought attenuates the negative 
asymmetry of productivity in forest despite a significant reduction in 
precipitation (Fig. S3). This could be due to the increase in incoming 
solar radiation available to vegetation in 2011, resulting in an increase 
in primary productivity. A study by (Song et al., 2019) indicates that the 
incoming solar radiation increased by 13% during the 2011 summer 
drought because of cloud cover reduction, which facilitated the 

vegetation growth in the case where water is not limited. The increase in 
solar radiation contributed to the greening of the forest and the increase 
in canopy photosynthesis, although this region experienced a reduction 
in precipitation during the summer drought in 2011 (Song et al., 2019). 
Similar findings could be found in the Amazon forest (Jones et al., 2014; 
Yang et al., 2018) that due to the increase in solar radiation in Amazon 
forests, the extreme drought in 2015–2016 did not affect the greenness 
of vegetation and even promoted the growth of vegetation. 

4.4. Influencing factors for the asymmetry of vegetation primary 
productivity 

The AIGPP and AINPP values gradually shifted from negative to posi
tive with increasing elevation (Fig. 5), indicating that the elevation is a 
strong factor for the asymmetry of vegetation productivity over these 
humid regions. The positive AI values at high altitudes could be caused 
by that relatively strong incoming solar radiation. In this region, the 
average temperature and precipitation drop as the elevation increase 
(Tong et al., 2016). In dry years, strong incoming solar radiation 
enhanced vegetation growth and offset the negative effects of water 
deficits. Thus, vegetation primary productivity in areas of high elevation 
was more responsive to wetter conditions, showing positive AI values. 

Plant rooting depth could affect the resilience of vegetation to 
drought (Fan et al., 2017). However, the positive pulse and negative 
decline varied little within different root depths (Fig. 7), which is 
different from that found by Al-Yaari et al. (2020). This may be caused 
by the fact that precipitation in humid regions (e.g., Southwest China) 
can meet the demands of vegetation growth (Chen et al., 2021) despite 
the presence of karst landforms in this region. 

4.5. Uncertainties 

Our research still has potential deficiencies and limitations related to 
the datasets used:  

(1) The uncertainties of NPP and GPP products: the accuracy of 
remote sensing products is affected by topography (Zeng et al., 
2022), which could cause shadows and alter the geometry of the 
local sun-surface-sensor. For example, EVI, as the input param
eter of the VPM model to calculate GPP, could be affected by the 
dark and opaque topographic shadows (Matsushita et al., 2007). 
Also, cloud and aerosol effects are responsible for the decrease in 
high-quality observations. For example, LAI, as the key input for 
the NPP product, was subject to uncertainties in atmospheric 
correction, such as cloud masking, residual sub-pixel clouds, 
incomplete corrections for water vapor absorption, and aerosol 
(Zeng et al., 2022). Thus, high-quality and high-resolution (e.g., 
10-m spatial resolution) vegetation products will be helpfully 
understand the asymmetric response of vegetation productivity 
to precipitation anomalies.  

(2) The uncertainty of the C-band VOD product: For the C-VOD 
values, biomass increases non-linearly with VOD, but prone to 
saturation at high biomass values (Liu et al., 2015). This is 
because the higher-frequency C-VOD values are sensitive to the 
top of the canopy and leaf biomass (Liu et al., 2013; Liu et al., 
2018; Tian et al., 2017), potentially affecting the accuracy of 
AIVOD value. L-VOD indices are more sensitive to the entire 
vegetation stratum (including leaves, branches and trunks), 
which is not the case for high-frequency. However, the period 
covered by passive microwave instruments operating in the 
L-band is too short to be applied in the study. Additionally, the 
coarse spatial resolution (e.g., 25-km) of the VOD product limited 
its applicability for assessing the asymmetry of vegetation pro
ductivity at a finer scale, and C-band VOD was affected by strong 
radio frequency interference (Frappart et al., 2020). Further
more, multiple land cover types (e.g., forests, croplands, and 
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grasslands) were often mixed within a single 25-km pixel. The 
coarse spatial resolution therefore posed challenges for accu
rately calculating a representative AI value for each biome. 
Higher spatial resolution VOD products will be needed for future 
research in this direction. 

Although extreme drought events could affect the asymmetry of 
vegetation productivity over Southwest China, our results did not 
consider whether the frequency of drought events would have an impact 
on vegetation productivity asymmetries. In fact, previous studies 
(Dannenberg et al., 2019; Knapp et al., 2017) have reported that the 
increase in precipitation variability could suppress forest growth and 
lead to a negative asymmetry of vegetation productivity in response to 
precipitation anomalies. Thus, the negative asymmetry of vegetation 
productivity may be more pronounced in areas with a higher frequency 
of drought events. Our study mainly selected Al-Yaari method to 
analyzed possible asymmetric response of vegetation productivity to 
precipitation anomalies over Southwest China. Due to the limited study 
period, our results lacked a comprehensive analysis toward the asym
metric response of vegetation productivity to extreme precipitation. 
Further study should use long-term vegetation productivity datasets to 
explore vegetation productivity asymmetry under extreme climate. 

5. Conclusion and outlook 

We evaluated the asymmetry of vegetation productivity in response 
to precipitation anomalies with an asymmetry index (AI) over Southwest 
China from 2003 to 2018, and found a negative asymmetry of vegetation 
productivity, with the vegetation productivity losses during dry years 
exceeding the gains during wet years. The AI of VOD showed positive 
asymmetry, partly being attributed to a series of ecological conservation 
projects implemented in Southwest China. Large-scale ecological con
servation projects, such as intensive afforestation and reforestation 
projects, could be able to increase the LAI and AGB, attenuating the 
negative effects of vegetation caused by drought. Furthermore, the 
asymmetry of vegetation primary productivity shifted during the period 
of analysis towards positive asymmetry, although drought events 
frequently occurred over the study period, suggesting that the sensitivity 
of vegetation productivity to negative precipitation anomalies in dry 
years has decreased and the resistance of vegetation to drought has 
increased. Vegetation productivity from grasslands had the highest 
sensitivity to precipitation anomalies, suggesting that the productivity 
of grasslands is more susceptible to precipitation anomalies than other 
biomes. 

Some uncertainties among the datasets in the analysis should be 
noted, e.g., the effects of atmosphere and topography on the NPP and 
GPP products, and the saturation effect on C-VOD. For better understand 
the ecosystem function under climate change, the potential mechanisms 
of asymmetric response for each biome in humid areas should be further 
investigated. Extended time series and high spatial resolution vegetation 
productivity products and L-band VOD products should be used in the 
future. 
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