
Abstract  Soil microbes drive decomposition of soil organic matter (SOM) and regulate soil carbon 
(C) dynamics. Process-based models have been developed to quantify changes in soil organic carbon 
(SOC) and carbon dioxide (CO2) fluxes in agricultural ecosystems. However, microbial processes related to 
SOM decomposition have not been, or are inadequately, represented in these models, limiting predictions 
of SOC responses to changes in microbial activities. In this study, we developed a microbial-mediated 
decomposition model based on a widely used biogeochemical model, DeNitrification-DeComposition 
(DNDC), to simulate C dynamics in agricultural ecosystems. The model simulates organic matter 
decomposition, soil respiration, and SOC formation by simulating microbial and enzyme dynamics and 
their controls on decomposition, and considering impacts of climate, soil, crop, and farming management 
practices (FMPs) on C dynamics. When evaluated against field observations of net ecosystem CO2 
exchange (NEE) and SOC change in two winter wheat systems, the model successfully captured both 
NEE and SOC changes under different FMPs. Inclusion of microbial processes improved the model's 
performance in simulating peak CO2 fluxes induced by residue return, primarily by capturing priming 
effects of residue inputs. We also investigated impacts of microbial physiology, SOM, and FMPs on 
soil C dynamics. Our results demonstrated that residue or manure input drove microbial activity and 
predominantly regulated the CO2 fluxes, and manure amendment largely regulated long-term SOC 
change. The microbial physiology had considerable impacts on the microbial activities and soil C 
dynamics, emphasizing the necessity of considering microbial physiology and activities when assessing 
soil C dynamics in agricultural ecosystems.

Plain Language Summary  Soil microbes drive decomposition of soil organic matter (SOM) 
and regulate soil carbon (C) dynamics. Process-based models are useful tools for quantifying changes 
in soil organic carbon (SOC) and carbon dioxide (CO2) fluxes in agricultural ecosystems. However, 
microbial processes related to SOM decomposition have not been, or are inadequately, represented in 
these models, limiting predictions of SOC responses to changes in microbial activities. We developed a 
microbial-mediated decomposition model based on a widely used biogeochemical model, DeNitrification-
DeComposition (DNDC), to simulate C dynamics in agricultural ecosystems. The model simulates 
organic matter decomposition, soil respiration, and SOC formation by simulating microbial dynamics 
and controls on decomposition, and considering impacts of climate, soil, crop, and farming management 
practices (FMPs) on C dynamics. We also investigated impacts of microbial physiology, SOM, and FMPs 
on soil C dynamics. Our results demonstrated that residue or manure input drove microbial activity 
and predominantly regulated CO2 fluxes, and manure amendment largely regulated long-term SOC 
change. The microbial physiology had considerable impacts on microbial activities and soil C dynamics, 
emphasizing the necessity of considering microbial physiology and activities when assessing soil C 
dynamics in agricultural ecosystems. These results provide insights in simulating microbial-mediated soil 
C dynamics in agricultural ecosystems.
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play a central role in decomposing 
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1.  Introduction
Soils contain more carbon (C) than plant biomass and the atmosphere combined at the global scale 
(IPCC, 2013; Lehmann & Kleber, 2015). Through soil C sequestration or converting and releasing soil or-
ganic carbon (SOC) into atmospheric carbon dioxide (CO2) or methane (CH4), soils exert large impacts on 
global climate change (IPCC, 2013; Lal, 2004). Moreover, soil organic matter (SOM) contains nutrients that 
are essential for plant growth. Therefore, SOM dynamics influence the availability of soil nutrients, there-
by impacting plant productivity in terrestrial ecosystems (Lal, 2008). Despite considerable research, large 
uncertainty remains over the spatiotemporal variability and magnitude of the SOC changes and the associ-
ated CO2 fluxes in agricultural ecosystems due to complex processes and interactions involved (e.g., Dignac 
et al., 2017; Lal, 2018). At the same time, there is a considerable interest in promoting soil C sequestration 
in agricultural soils (e.g., Amelung et al., 2020; Smith, 2004), which will require advances in methods for 
measurement and monitoring, increased process-level understanding, improved process-based modeling of 
agricultural soils and impacts of farming activities, and expanded and enhanced geospatial databases of soil 
properties and farming management (e.g., Paustian et al., 2016).

Changes of SOC in agricultural ecosystems ultimately depend on the balance between C inputs (e.g., plant 
litter, organic manure) and outputs (e.g., SOC losses due to decomposition or erosion), which are affected by 
farming management practices (FMPs), plant biomass production, and SOM formation and decomposition. 
Agricultural management practices, such as fertilization, input of crop straw, and organic manure amend-
ment, have been regarded as important regulators of the SOC changes, although the trend and magnitude 
of the SOC changes in response to agricultural activities are highly variable (e.g., Liu et al., 2014; Maillard 
& Angers, 2014; Powlson et al., 2012). In addition, SOC changes and CO2 fluxes from decomposition are 
largely controlled by soil microbial physiology and activity, given that soil microbes play a central role in 
SOM decomposition, formation, and depletion (Kallenbach et al., 2016; Miltner et al., 2012). However, the 
responses of microbial-mediated decomposition processes to agricultural activities and the impacts of mi-
crobial physiology on SOC changes remain unclear (Kallenbach et al., 2016; Prommer et al., 2020).

Process-based biogeochemical SOC models such as DeNitrification-DeComposition (DNDC), DayCent, and 
Roth-C have been developed and applied to quantify SOC dynamics and CO2 fluxes in agricultural eco-
systems as well as evaluate their responses to variations in FMPs and environmental factors (e.g., Parton 
et al., 2015; Smith et al., 1997; Van Wesemael et al., 2010). While many improvements have been made 
in modeling agricultural SOC dynamics by incorporating farming activities, vegetation, and biogeochem-
ical processes related to C cycling into the framework of biogeochemical models (e.g., Li et al., 1994), key 
limitations still exist. For example, in most biogeochemical models SOC decomposition is simulated as a 
first-order process and is directly proportional to the size of SOC pool. Microbial processes important to 
SOC decomposition and their associated microbial communities often have not been, or are inadequately, 
represented in these models, which limit the model's capacity of predicting SOC responses to changes in 
microbial activities (Georgiou et al., 2017; Sulman et al., 2014). In recent years, several microbial models 
of SOC decomposition have been proposed or developed to predict soil C dynamics by explicitly represent-
ing microbial or enzymatic decomposition of SOC (e.g., Abramoff et  al.,  2017; Allison et  al.,  2010; Gao 
et al., 2020; Guo et al., 2020; Wang et al., 2013; Wieder et al., 2015). Microbial SOC models have incorporated 
processes to simulate microbial dynamics and feedbacks between SOC changes and microbial activities. 
However, they usually lack detailed processes to explicitly simulate plant growth and litter production, and 
have not incorporated FMPs (e.g., harvest, tillage, fertilization, irrigation, organic manure amendment) that 
influence soil C dynamics (e.g., Sulman et al., 2018), limiting their applications in agricultural ecosystems. 
Furthermore, there are large uncertainties regarding their behaviors in modeling SOC changes and CO2 
fluxes due to very limited model testing against field-scale observations.

The process-based biogeochemical model, DNDC, has incorporated a relatively complete suite of biophysi-
cal and biogeochemical processes and FMPs, which enables it to simulate vegetation growth, transport and 
transformations of C and nitrogen (N), SOC changes, and greenhouse gas (GHG) fluxes in terrestrial ecosys-
tems (e.g., Deng et al., 2018, 2020; Gilhespy et al., 2014; Giltrap et al., 2010; Li, 2000; Li et al., 1992a, 2012). 
However, DNDC does not explicitly simulate microbial or enzymatic decomposition of SOM, and therefore 
is unable to reproduce microbial regulations on soil C cycle. In this study, our objectives were: (a) to develop 
a microbe-driven SOM decomposition model, based on the DNDC model, to predict microbial activities 
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and C dynamics, and evaluate the model's performance in quantifying CO2 fluxes and SOC changes from 
agricultural ecosystems and (b) to explore the impacts and evaluate the relative importance of FMPs, SOM, 
and microbial physiology on soil microbial activity, SOC change, and CO2 flux.

2.  Materials and Methods
2.1.  The DNDC Model

DNDC is a process-based biogeochemical model developed for quantifying ecosystem C sequestra-
tion and the exchange of C and N gases between terrestrial ecosystems and the atmosphere (Li, 2000; Li 
et al., 1992a, 1992b). The model has been extensively evaluated against datasets of SOC changes and GHG 
fluxes measured worldwide (Gilhespy et al., 2014; Giltrap et al., 2010). DNDC is comprised of six interacting 
sub-models: soil climate, plant growth, decomposition, nitrification, denitrification, and methanogenesis. 
The soil climate, plant growth, and decomposition sub-models convert the primary drivers, such as climate, 
soil properties, vegetation, and anthropogenic activity, into soil environmental factors, such as soil temper-
ature and moisture, pH, redox potential, and concentration of substrates for the simulated biogeochemical 
processes. The nitrification, denitrification, and methanogenesis sub-models simulate C and N transforma-
tions that are mediated by soil microbes and controlled by soil environmental factors and substrate concen-
trations (Li, 2000; Li et al., 2012).

In DNDC, net ecosystem CO2 exchange (NEE) is calculated as the difference between net primary produc-
tion (NPP) and soil microbial heterotrophic respiration. NPP is simulated at a daily time step by considering 
impacts of several environmental factors (e.g., solar radiation, air temperature, soil moisture, and N availa-
bility) on plant growth (Deng et al., 2014). The impacts of solar radiation, soil moisture, or N availability on 
NPP are calculated based on the potential photosynthetically active radiation (PAR), water, or N required 
by optimum plant growth and the availability of these factors. The model simulates the production of plant 
biomass and litter, and incorporates the residue litter into the SOM pools. Soil heterotrophic respiration is 
simulated by tracking the decomposition of SOM. The model divides SOM into four organic pools: litter, 
living microbes, humads (i.e., active humus), and passive humus. Each pool is further divided into labile 
and resistant sub-pools with specific C:N ratios and decomposition rates (Figure 1). In DNDC, the size of 
the living microbes pool does not affect the decomposition rates of other SOM pools. Decomposition of each 
SOM pool depends on its specific decomposition rate and pool size, as well as soil thermal, moisture, and 
mineral N conditions (Li et al., 1994, 2012). When organic matter, such as litter or organic manure, has been 
applied into the soil, the model partitions it into different litter and/or humads pools based on its C:N ratio 
(Figure 1; Li et al., 1994, 2012). Organic C is converted to CO2, microbial biomass, humads, and finally pas-
sive humus through decomposition. Labile C is gradually lost and resistant C becomes relatively more abun-
dant in the soil during decomposition of exogenous organic matter (Figure 1). The model also simulates soil 
N dynamics by tracking a series of biogeochemical reactions: decomposition (mineralization), microbial 
immobilization, plant uptake, ammonia volatilization, ammonium adsorption, nitrification, denitrification, 
nitrate leaching, and fluxes of N gases (i.e., NH3, NO, N2O, and N2). Soil mineral N concentration is calcu-
lated at a daily time step and is a factor regulating SOM decomposition (Li et al., 1992a). Further details 
regarding the DNDC structure, inputs, and outputs, as well as the physical, chemical, and biogeochemical 
processes incorporated into the model's framework, are available in Gilhespy et al. (2014), Li (2000), and Li 
et al. (2012).

2.2.  Modification of DNDC

In this study, we improved the DNDC model by explicitly simulating the microbe-driven SOM decomposi-
tion. The improved model simulates cycling and storage of multiple SOM pools by explicitly simulating mi-
crobial and enzyme dynamics and their controls on SOM decomposition, in addition to simulating impacts 
on C dynamics of crop growth and common FMPs in agricultural ecosystems (Figure 1).

2.2.1.  SOM Pools and Decomposition

The model primarily simulates decomposition of six SOM pools (Figure 1). The very labile, labile, and re-
sistant litter pools are organic matter from plant residue or organic manure amendments, and have different 
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C:N ratios and relatively high, moderate, and low potential decomposition rates, respectively. The other 
three SOM pools are labile humads, resistant humads, and passive humus. The humads pools receive prod-
ucts from SOM decomposition or microbial death, and have different potential decomposition rates as well. 
The model simulates decomposition of these six pools, with the decomposition rate of each pool directly 
regulated by soil enzyme concentration (Equation 1, below, and Equations A1–A7 in Appendix A). During 
decomposition, decomposed litter and SOM are primarily converted into dissolved organic carbon (DOC) 
and dissolved organic nitrogen (DON). The DOC and DON can be assimilated by soil microbes to form 
microbial biomass, released as CO2 and mineralized into ammonium (NH4-N), respectively, and/or leached 
out of the soil. The model also explicitly simulates dynamics of soil microbial and enzyme pools, and dead 
microbes and decayed enzyme are major components of humads and an important source of DOC and 
DON (Figure 1). In addition, the model considers C flows from humads to humus to represent humification 
of the humads pools (Li et al., 1992a; Molina et al., 1983).

The basic concept underlying a microbial-driven decomposition model is that the decomposition of SOM 
is controlled by the activity of exoenzymes, instead of simply concentration of SOM (Schimel & Wein-
traub, 2003). Specifically, the rate of decomposition of each SOM pool is simulated using the Arrhenius and 
Michaelis-Menten equations (e.g., Allison et al., 2010; Wang et al., 2013); with the rate directly controlled 
by concentrations of soil enzyme and each SOM pool, soil temperature and moisture, and clay content 
(Equation 1).

          
SOM SOM

SOM

SOMmax Enzyme ST
SOM

D V f T f W f
K� (1)

where DSOM is the decomposition rate (mg C h−1) of each SOM pool, VmaxSOM is the maximum rate of SOM 
decomposition at reference temperature (20°C) when SOM concentration is not limiting, Enzyme is the 
aggregate concentration of soil exoenzymes (mg C g−1) that is simulated based on soil microbial activities 
(Section 2.2.3), SOM is the concentration of each SOM pool (mg C g−1), KSOM is the Michaelis half-saturation 
constant for decomposition of each SOM pool, and f(W) and f(ST) are functions calculating the impacts 

Figure 1.  Structure of the soil organic matter (SOM) decomposition module in the modified DNDC model. Boxes 
represent simulated organic matter pools, solid arrows represent fluxes among the pools, and P1 to P10 represent 
simulated processes. The model simulates decomposition of six SOM pools (green boxes). SOM pool decomposition 
rates are directly controlled by the soil enzyme concentration, which is regulated by dynamics of soil living microbes, 
dissolved organic carbon, and dissolved organic nitrogen (collectively DOM in the figure).
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on SOM decomposition of soil water content and clay content, respectively (Equations A9 and A10). The 
VmaxSOM values are different for each SOM pool (Table 1), and the maximum rate of SOM decomposition 
under a specific temperature is calculated using the Arrhenius equation (f(T); Equation A8).

2.2.2.  DOC and DON Dynamics and Soil Microbial C and N Uptakes

Soil DOC and DON are produced through decomposition of each SOM pool, from death of microbes and 
decay of enzymes, added through root exudation, and/or through amendments of organic manure (e.g., 
slurry manure). They can be taken up and used by soil microbes for biomass production and respiration 

Parameter Description Values Sources

Parameters selected for sensitivity analysis

VmaxDOCuptake Maximum uptake rate of DOC at a reference temperature of 20°C, mg C (mg microbe C)−1 hr−1 0.24 Huang et al. (2018)

RMicrobeMaintenance Rate of microbial maintenance respiration, h−1 0.002 Calibrateda

RMicrobeDeath Microbial turnover rate, h−1 0.002 Allison et al. (2010)

CAE Potential microbial carbon assimilation efficiency 0.6 Sinsabaugh et al. (2013)

FMICtoDOC Fraction of dead microbial biomass that allocated to DOC 0.5 Allison et al. (2010)

Wang et al. (2013)

REnzymeProduction Enzyme production rate, h−1 10–5 Calibrateda

REnzymeDecay Enzyme decay rate, h−1 10–3 Abramoff et al. (2017)

VmaxLitter_vl Maximum decomposition rate of very labile litter at reference temperature, mg C (mg Enzyme C)−1 
hr−1

81 Wang et al. (2012)

VmaxLitter_l Maximum decomposition rate of labile litter at reference temperature, mg C (mg Enzyme C)−1 hr−1 81 Wang et al. (2012)

VmaxLitter_r Maximum decomposition rate of resistant litter at reference temperature, mg C (mg Enzyme C)−1 hr−1 5.6 Calibratedb

VmaxHumads_l Maximum decomposition rate of labile humads at reference temperature, mg C (mg Enzyme C)−1 hr−1 13 Calibratedb

VmaxHumads_r Maximum decomposition rate of resistant humads at reference temperature, mg C (mg Enzyme C)−1 
hr−1

1.3 Calibratedb

VmaxHumus Maximum decomposition rate of humus at reference temperature, mg C (mg Enzyme C)−1 hr−1 0.43 Calibratedb

Other parameters

EaLitter_vl Activation energy for decomposition of very labile litter in the Arrhenius equation, KJ mol−1 37 Wang et al. (2012, 2013)

EaLitter_l Activation energy for decomposition of labile litter in the Arrhenius equation, KJ mol−1 37 Wang et al. (2012, 2013)

EaLitter_r Activation energy for decomposition of resistant litter in the Arrhenius equation, KJ mol−1 53 Wang et al. (2012, 2013)

EaHumads_l Activation energy for decomposition of labile humads in the Arrhenius equation, KJ mol−1 47 Wang et al. (2012, 2013)

EaHumads_r Activation energy for decomposition of resistant humads in the Arrhenius equation, KJ mol−1 47 Wang et al. (2012, 2013)

EaHumus Activation energy for decomposition of humus in the Arrhenius equation, KJ mol−1 53 Wang et al. (2012, 2013)

KLitter_vl Michaelis half-saturation constant for decomposition of very labile litter, mg C g−1 soil 1.20 Calibratedc

KLitter_l Michaelis half-saturation constant for decomposition of labile litter, mg C g−1 soil 1.20 Calibratedc

KLitter_r Michaelis half-saturation constant for decomposition of resistant litter, mg C g−1 soil 12.0 Calibratedc

KHumads_l Michaelis half-saturation constant for decomposition of labile humads, mg C g−1 soil 12.0 Calibratedc

KHumads_r Michaelis half-saturation constant for decomposition of resistant humads, mg C g−1 soil 60.0 Calibratedc

KHumus Michaelis half-saturation constant for decomposition of humus, mg C g−1 soil 100.0 Calibratedc

KDOC Michaelis DOC half-saturation constant for DOC uptake, mg C g−1 soil 0.30 Calibratedd

O2E K Michaelis O2 half-saturation constant for DOC uptake, mmol cm−3 0.00015 Li (2016)
aRMicrobeMaintenance and REnzymeProduction were calibrated within their uncertainty ranges of 10−4 to 8 × 10−3 hr−1 and 10−5 to 8 × 10−5 hr−1, respectively (He et al., 2015). 
bVmaxLitter_r was calibrated within the uncertainty range of 0.2–33.0 mg C (mg Enzyme C)−1 hr−1, and VmaxHumads_l, VmaxHumads_r, and VmaxHumus were calibrated 
within the uncertainty range of 0.05–22.0 mg C (mg Enzyme C)−1 hr−1 (Wang et al., 2013). cKLitter_vl, KLitter_l, KLitter_r, KmaxHumads_l, KmaxHumads_r, and KmaxHumus 
were calibrated within the uncertainty ranges of 0.01–100 mg C g−1 soil for decomposition of litter pools and 0.01–500 mg C g−1 soil for decomposition of 
humads or humus pool (Huang et al., 2018; Wang et al., 2013). dKDOC was calibrated within the uncertainty range of 0.14–0.38 mg C g−1 soil (Wang et al., 2013).

Table 1 
Model Parameters for Simulating Microbe and Enzyme Dynamics, and SOM Decomposition
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(Schimel & Weintraub, 2003), or leached out of soils. In addition, the model simulates DOC consumption 
by denitrification (Li et al., 1992a) and methanogenesis (Deng et al., 2017) as well as DON mineralization. 
Specifically, DOC and DON dynamics are simulated as (Equations 2 and 3):

d

dt
D D F D

DOC
DOC DOCManure Root Litter Humads HumadsToDOC Hum      uus

Microbe MICToDOC Enzyme UptakeDeath DOC DOC DOC DOC      F D
N M LLeaching

� (2)

d

dt

D D FDON
DON DON

CN
Manure Root

Litter

Litter

Humads HumadsTo   
 DDOC

Humads

Humus

Humus

Microbe MICToDOC

Microbe

CN CN

Death

CN






D

F
  

DEnzyme

Enzyme

Uptake Leaching
CN

DON DON
� (3)

where DOCManure and DONManure are DOC and DON added through organic manure and are calculated 
based on model inputs of manure amendment rate, manure type, and C:N ratio of manure (Li, 2016; Li 
et al., 2012); DOCRoot is the DOC added through root exudation, which is simulated as 45% of the C trans-
ferred to roots from photosynthetic production (Zhang et al., 2002), DONRoot is the DON added through root 
exudation, which is calculated as the DOCRoot divided by the C:N ratio of root exudation. DLitter, DHumads, and 
DHumus are decomposition of litters, humads, and humus, respectively (Equations A1–A7), DeathMicrobe and 
DEnzyme are the microbe death and enzyme decay at each time step, CNLitter, CNHumads, CNHumus, CNMicrobe, and 
CNEnzyme are the C:N ratios of litters, humads, humus, soil microbes, and enzyme respectively, FHumadsToDOC 
and FMICToDOC are the fractions of decomposed humads and dead microbes that allocated to DOC, respec-
tively, DOCUptake and DONUptake are the DOC and DON uptakes at each time step, DOCN and DOCM are the 
DOC consumed through denitrification (Li et al., 1992a) and methanogenesis (Deng et al., 2017), respec-
tively, and DOCLeaching and DONLeaching are the DOC and DON leached out of soils, which are simulated 
based on subsurface drainage flows and DOC and DON concentrations (Deng et al., 2011; Li et al., 2006). 
Note that DOC and DON flux rates in Equations 2 and 3 are regulated by soil environmental factors and are 
zero under some conditions (e.g., DOCM is zero in uplands).

DOC uptake by soil microbes is modeled based on the Arrhenius and Michaelis-Menten equations 
(Abramoff et al., 2017; Allison et al., 2010) with the potential uptake rate (DOCPUptake) controlled by the soil 
temperature, soil living microbes, and soil DOC and oxygen concentrations (Equation 4).

     
 

2
PUptake DOCUptake

DOC O 22

DOC ODOC max Microbe
DOC O

V f T
K K� (4)

where VmaxDOCUptake is the maximum rate of DOC uptake at reference temperature (20°C) when DOC and 
oxygen concentration are not limiting, DOC and O2 are the soil DOC and oxygen concentrations, respec-
tively, and KDOC and O2E K  are their corresponding Michaelis half-saturation constants. The maximum rate of 
DOC uptake under a specific temperature is calculated using the Arrhenius equation (f(T); Equation A8).

The actual DOC uptake is constrained by soil DOC and DON availability, and is calculated as (Equation 5):




Uptake PUptake

Uptake

DOC DOC If No DOC and DON limitation
DOC DOC If limited by soil DOC or DON availability� (5)

After determining the DOCUptake, the actual DON uptake is calculated as DOCUptake/CNDOC, where CNDOC 
is the C:N ratio of DOC. Please note that the actual DON uptake is constrained by soil DON availability 
because the CNDOC is calculated using the DOC and DON concentrations at each time step.

2.2.3.  Dynamics of Microbes and Enzyme

The model explicitly simulates soil microbial dynamics by considering growth and mortality of microbes, 
and production of enzymes (Equation 6):
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  Microbe Microbe Enzyme
Microbe Growth Deathd P

dt� (6)

where GrowthMicrobe is the growth of microbial biomass, DeathMicrobe is the microbe mortality, PEnzyme is the 
enzyme production.

Microbial growth is controlled by DOC uptake, microbial maintenance respiration, microbial carbon assim-
ilation efficiency (CAE; defined as the maximum fraction of DOC uptake that can be allocated to microbial 
biomass), and availability of total dissolved nitrogen (DN) in soils (Schimel & Weintraub, 2003). If DOC 
uptake exceeds maintenance respiration, the excess C can be assimilated by soil microbes. After meeting 
the demand of microbial growth, the element in excess is released, by growth or overflow respiration for C 
or by N mineralization (Manzoni et al., 2012; Schimel & Weintraub, 2003). The actual growth of microbial 
biomass is also constrained by the DN availability. Specifically, the model simulates the microbial growth as:

 

 

   

    

Microbe Uptake Maintenance
Demand

Microbe Uptake Maintenance
Demand Demand

Growth DOC CAE If 1.0

Growth DOC CAE If 1.0

DNM
N

DN DNM
N N

� (7)

where MMaintenance is the microbial maintenance respiration, DN is total dissolved nitrogen, including both 
DON and mineral N from either SOM mineralization or inputs through FMPs (e.g., fertilization), is simu-
lated through the N biogeochemical reactions in DNDC, and NDemand is the potential N required for microbe 
growth.

The microbial maintenance respiration is simulated as a constant fraction (RMicrobeMaintenance) of living micro-
bial biomass (Equation 8):

 Maintenance Microbe Maintenance MicrobeM R� (8)

The potential N required for microbial growth is determined by potential microbial growth without DN 
limitation and the microbial C:N ratio (Equation 9):

   Demand Uptake Maintenance MicrobeDOC CAE / CNN M� (9)

The mortality rate of soil microbes is modeled as a density-dependent process of living biomass (Abramoff 
et al., 2017) (Equation 10):

  2
Microbe MicrobeDeathDeath MicrobeR� (10)

The enzyme concentration directly controls the decomposition of each SOM pool, and is determined by the 
enzyme production (PEnzyme) and decay (DEnzyme) at each time step (Equation 11).

 Enzyme Enzyme
Enzymed P D

dt� (11)

By following Allison et al. (2010), we modeled enzyme production as a constant fraction (REnzymeProduction) 
of living microbial biomass (Equation 12) and modeled enzyme decay as a first-order process with a rate 
constant REnzymeDecay (Equation 13).

 Enzyme EnzymeProduction MicrobeP R� (12)

 Enzyme EnzymeDecay EnzymeD R� (13)
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2.3.  Field Data

2.3.1.  SOC Data From the Rothamsted Experiment

To evaluate the performance of the modified DNDC in simulating long-
term SOC changes, we used SOC observations from the Rothamsted 
classical broadbalk winter wheat experiment (Powlson et al., 2012). The 
experiment started in 1843, and field observations at Harpenden in Hert-
fordshire in Southern England (N51°48′36″, W0°22′30″) included SOC 
changes of winter wheat croplands during 1843–2010. The soil is classi-
fied as Chromic Luvisol in the FAO Soil Classification, or Aquic Paleudalf 
in the U.S. Soil Taxonomy. The soil (0–23 cm depth) has a pH of 7.0–7.5, 
and its texture is 25% sand, 50% silt, and 25% clay (www.era.rothamsted.
ac.uk/Broadbalk/bbksoils).

Winter wheat has been grown continuously since 1843, except for oc-
casional fallows during the period from 1926 to 1966 to control weeds. 
Wheat was sown in autumn and harvested in summer of the next year. 
We evaluated the model using field data of SOC changes under three 
treatments: control, conventional fertilizer application (NPK), and farm-
yard manure amendments (FYM). The control treatment has received no 
fertilizer or organic manure since 1843. The NPK is local conventional 
practice of applying 144 kg N ha−1 yr−1, 35 kg P ha−1 yr−1, and 90 kg K 
ha−1 yr−1. The FYM treatment has received farmyard manure at a rate 
of 35 metric ton ha−1 yr−1 (about 2,800 kg C ha−1 yr−1) since 1843 (Ta-
ble  2). Changes in SOC (0–23  cm), climate, soil properties, and FMPs 
were recorded during the experimental period. Long-term SOC changes 
under the three treatments indicated that both application of synthetic 

fertilizers and amendment of organic manure caused increasing SOC. After about 150 years, the SOC stock 
(0–23 cm) at the NPK plot was about 0.25 times (25%) higher than the control plot, and the SOC stock 
(0–23 cm) at the FYM plot was about 2.5 times higher than the control plot (Johnston et al., 2009). The 
long-term SOC data provided a unique data set for assessing the impacts of fertilization and manure man-
agement on SOC changes and evaluating the model's capability in predicting the SOC responses to these 
different FMPs.

2.3.2.  NEE Data From Winter Wheat Eddy Flux Tower Sites in Oklahoma

Field data used to evaluate the simulations of NEE from the modified DNDC model were measured from 
a winter wheat cropland at the US Department of Agriculture-Agricultural Research Service (USDA-ARS), 
Grazinglands Research Laboratory (GRL, N35°34′7, W98°3′21″), in El Reno, Oklahoma. This area has a 
temperate continental climate with an average air temperature of 14.9°C and an average annual rainfall of 
860 mm from 1971 to 2000 (Fischer et al., 2012). Field data included daily NEE measured during October 
2014 to September 2016 (Bajgain et al.,  2018). The soil of the study field is characterized as deep, well-
drained, loam with clayey or loamy subsoil. During the study period, wheat was sown in September and 
was terminated in June of the next year, and the field was kept fallow during the summer seasons with weed 
control by tillage and herbicide application. The field received C inputs through wheat residue return and 
N inputs through synthetic N fertilizations during the study period (Table 2). Continuous CO2 fluxes were 
measured using an eddy covariance (EC) tower, and daily and annual values of NEE (positive values rep-
resent net CO2 fluxes into the atmosphere and negative fluxes represent net CO2 uptake by the wheat field) 
were used for evaluating the model. In addition to NEE measurements, climate, soil properties, and FMPs 
for the wheat field were also recorded.

Model parametersa Rothamsted Oklahoma

Soil bulk density, g cm−3 1.25 1.3

Clay content, % 25 21

Initial SOC contentd, % 1.0 1.6

pH 7.7 5.9

Fraction of crop residue returnd 0.5 1.0

N fertilizationb, d, kg N ha−1 0 or 144 72 or 62

Organic manure applicationc, d, kg C ha−1 0 or 2,800 0

C:N ratio of manured 12.5 None
aModel input parameters were from field records. bAmount of synthetic 
N fertilizer applied into fields was 0 kg N ha-1 under the control and FYM 
treatments and 144 kg N ha−1 under the NPK treatment at the Rothamsted 
site, and was 72  kg N ha−1 in the 2014 to 2015 crop season and 62  kg 
N ha−1 in the 2015 to 2016 crop season at the Oklahoma site. cAmount 
of organic manure applied on Rothamsted fields was 0 kg C ha−1 under 
the control and the NPK treatment and 2,800 kg C ha−1 under the FYM 
treatment. dThe parameters selected for sensitivity analysis.

Table 2 
Primary Model Input Parameters for the Rothamsted and Oklahoma 
Winter Wheat Sites

http://www.era.rothamsted.ac.uk/Broadbalk/bbksoils
http://www.era.rothamsted.ac.uk/Broadbalk/bbksoils
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2.4.  Model Application

2.4.1.  Model Evaluation

The modified DNDC was run for the Rothamsted and Oklahoma winter wheat sites to evaluate the model's 
performance in simulating long-term SOC changes and seasonal to annual CO2 fluxes, respectively. The 
Rothamsted site was simulated from 1840 to 2010, and the Oklahoma site was simulated from 2014 to 2016. 
Daily meteorological data required for driving the model (i.e., air temperature and precipitation for Roth-
amsted and air temperature, precipitation, and solar radiation for Oklahoma) were obtained from on-site 
measurements for both sites. The primary soil input parameters, including soil texture, clay fraction, bulk 
density, pH, initial SOC content, were also determined using on-site records (Table 2). The input parameters 
of FMPs, including planting and harvest dates, tillage, fertilization, wheat residue return, and amendments 
of organic manure, were estimated from field records (Table 2).

New model parameters are needed to simulate microbial and enzyme dynamics as well as decomposition of 
each SOM pool. These parameters were set either to literature values or calibrated against the field observa-
tions of SOC changes under NPK in the Rothamsted classical broadbalk winter wheat experiment through 
the trial and error method (Table 1). The calibrated parameters included rates of microbial maintenance 
respiration (RMicrobeMaintenance) and enzyme production (REnzymeProduction), maximum decomposition rates of 
resistant litter (VmaxLitter_r), labile humads (VmaxHumads_l), resistant humads (VmaxHumads_r), and humus 
(VmaxHumus) at reference temperature, and Michaelis half-saturation constants for decomposition of each 
SOM pool and DOC uptake.

RMicrobeMaintenance and REnzymeProduction were estimated by calibrating simulated SOC changes with observed 
SOC changes under the NPK treatment at the Rothamsted site. The maximum decomposition rates at 20°C 
were estimated as 5.6, 13, 1.3, and 0.43 g C (g Enzyme C)−1 hr−1 for the resistant litter, labile humads, re-
sistant humads, and humus pools, respectively, by calibrating against observed SOC changes under NPK. 
The values of these parameters were within their reported uncertainties (Wang et al., 2013) and generally 
reflected the trend of decreased potential decomposition rate from labile humads to resistant litter and hu-
mads, and to humus in DNDC (Li et al., 1992a).

The Michaelis half-saturation constants for decomposition of each SOM pool were estimated after fixing 
their corresponding maximum decomposition rates. We calibrated the Michaelis half-saturation constants 
(Table 1) by considering the reported uncertainties of these parameters (Huang et al., 2018; Wang et al., 2013) 
and the steady-state concentrations of each SOM pool by referring to the analysis by Wang et al. (2013). In 
general, the input parameters described above were primarily determined by calibrating against observed 
SOC changes under NPK at the Rothamsted site, and the calibrated model was then validated by comparing 
simulations against observations of SOC changes under the control and FYM treatments at Rothamsted, 
and NEE at the Oklahoma site. The new model parameters for simulating microbe and enzyme dynamics, 
and SOM decomposition (Table 1) were identical between the Rothamsted and Oklahoma sites.

Two statistical measures, the relative root mean squared error (RRMSE) and the correlation coefficient (R), 
were used to quantify the accordance and correlation between model predictions and field observations 
(Moriasi et al., 2007).

2.4.2.  Impacts of FMPs, SOM, and Microbial Physiology on Soil Carbon Dynamics

To investigate the impacts of FMPs, SOM, and microbial physiology on soil microbial activity, CO2 fluxes, 
and SOC changes, we conducted a series of simulations with the modified DNDC by varying 18 parameters 
(Tables  1 and  2). These parameters are relevant to FMPs, initial SOC content, maximum SOM decom-
position rate, or microbial physiology, and can impact SOC change and CO2 flux from soil heterotrophic 
respiration (e.g., Six et al., 2006). The baseline was set by referring to the environmental conditions and 
FMPs under the control treatment of the Rothamsted classical broadbalk winter wheat experiment. We 
conducted simulations for the years from 1840 to 2010 (around 170 years), with continuous cultivation of 
winter wheat during these years, which was slightly different with the setting of occasional fallow years 
under the control treatment. In the baseline simulation, there was no fertilization and manure amendment, 
and the fraction of returned crop residue was set to 0.5. In order to fully represent potential combinations 
of the selected parameters, we created alternative scenarios by varying these parameters simultaneously. 
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The variations for the parameters related to FMPs were set generally by 
referring to the farming management in the Rothamsted experiment, and 
the ranges were from 0.0 to 1.0 for the fraction of the returned crop resi-
due, 0–144 kg N ha−1 year−1 for N fertilizer application rate, 0–2,800 kg C 
ha−1 year−1 for organic manure input, and 10 to 15 for manure C/N ratio. 
For the other parameters, we set two ranges of variation (±20% and ±50% 
of the baseline value) to represent relatively small and large variations 
for parameters related to SOM or microbial physiology. These two sets 
of scenarios were denoted as V20% and V50%, respectively. The changes 
of all these parameters were randomly picked from their corresponding 
ranges, assuming uniform frequency distributions. Two thousand scenar-
ios were run for each range of variations by using the Latin Hypercube 
Sampling strategy (Helton & Davis, 2003). The modified DNDC model 
was run from 1840 to 2010 with the varied parameters for both V20% and 
V50% (in total 4,000 runs). Simulated mean annual SOC changes, CO2 
fluxes from soil heterotrophic respiration, soil living microbe biomass, 
and enzyme pool size from 1840 to 2010 under different scenarios were 
analyzed.

In addition, we evaluated relative importance of the selected parameters 
to SOC change, CO2 flux from soil heterotrophic respiration, and soil 
microbial activity by using a global sensitivity analysis, the Smirnov test 
(Saltelli et al., 2008; Tarantola & Becker, 2016). The Smirnov test can cal-
culate a sensitivity index that quantifies the relative importance of the 
selected parameters (Tables 1 and 2) to outputs (i.e., SOC change, CO2 
flux from soil heterotrophic respiration, soil living microbes, and enzyme 
pool in this study) by fully exploring the variance space of the parame-
ters. A parameter with higher sensitivity index is more sensitive (or im-
portant) than another parameter with lower sensitive index under their 
corresponding variations (Saltelli et al., 2008).

3.  Results
3.1.  Model Evaluation

3.1.1.  SOC Change

At the Rothamsted site, changes of SOC storage were clearly different 
among the three treatments with different FMPs (Figure 2). During 1840 
to 2010, the observed SOC storage decreased by about 15% under control, 
slightly increased by about 4% under NPK, and substantially increased by 
172% under FYM. The amendment of FYM was identified as an impor-
tant factor regulating the SOC changes through the Rothamsted experi-
ment (Johnston et al., 2009; Powlson et al., 2012). Current SOC storage 
under the FYM treatment is substantially higher than under control and 
NPK, by 220% (78.4 vs. 24.5 Mg C ha−1) and 162% (78.4 vs. 30.0 Mg C 
ha−1), respectively. SOC storage was also influenced by the N fertiliza-
tion (Figure 2), which was attributed to the higher organic matter returns 
through wheat residue in the NPK plot (Johnston et al., 2009). Simula-
tions of SOC change were similar to corresponding field observations 
for both the NPK treatment used for model calibration and control and 
FYM treatments used for model validation (Figure  2), with the model 
capturing the differences of SOC change among the different treatments 
(Figure 2). From 1840 to 2010, simulated SOC storage decreased by 20% 
under control, increased by about 9% under NPK, and increased by 161% 
under FYM. These simulated SOC changes were in agreement with ob-

Figure 2.  Simulated (lines) and observed (circles) SOC (0–23 cm) from 
1840 to 2010 under the control, fertilizer (NPK), and farmyard manure 
(FYM) treatments at the winter wheat field in the Rothamsted Agricultural 
Station, Harpenden, UK.

Figure 3.  Simulated (lines) and observed (circles) daily net ecosystem 
exchange (NEE) of CO2 during (a) October 2014 through September 2015 
and (b) October 2015 through September 2016, at a winter wheat field 
in El Reno, OK, USA. The black arrows indicate the dates of roots and 
residues return and the blue arrows indicate the dates of tillage events. 
The correlations between the simulated and observed daily NEE were 
significant for all cases (P < 0.001). The gray lines are simulations of daily 
NEE from the original DNDC model that does not explicitly simulate 
microbial decomposition of soil organic matter. The R values between 
the original DNDC's simulations and observations of daily NEE were 
0.70 and 0.77 in the rotational years from 2014 to 2015 and 2015 to 2016, 
respectively.
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servations for both model calibration and validation treatments. The RRMSE values were 7% for NPK (cali-
bration), and 8% and 5%, respectively, for control and FYM (validation).

3.1.2.  NEE

Simulated and observed daily NEE showed similar seasonal patterns at the OK winter wheat site, with net 
CO2 uptake increasing following winter wheat planting, strong net CO2 uptake for most days during wheat 
growing seasons from January to May, and net CO2 release following wheat harvest (Figure 3). During sum-
mer fallow seasons, net CO2 release occurred on most days, and peaks of CO2 release were simulated and 
observed following the events of wheat root or residue incorporation and/or tillage. The simulated and ob-
served daily NEE values were significantly correlated in both rotational years from 2014 to 2015 and 2015 to 
2016 (P < 0.0001), with R values of 0.78 and 0.82 in the first and second rotational years, respectively. These 
results suggest that the modified DNDC model captured the seasonal patterns of daily NEE at the Oklaho-
ma wheat field. The model also captured the magnitudes of the observed NEE. Annual total simulated NEE 
values were 495 and 389 kg CO2-C ha−1, respectively, in the first and second rotational years, which were 
close to the corresponding observations of 559 and 397 kg CO2-C ha−1. The RRMSE values were 13% in the 
first rotational year and 2% in the second rotational year.

Figure 4.  Ranges of simulated (a) average SOC change, (b) average annual soil heterotrophic respiration, (c) average annual mean living microbe mass, and (d) 
average annual mean enzyme pool size over a 170-year period under variations in selected parameters representing farming management practices, soil organic 
matter (SOM) properties, and microbe physiology. Parameters are defined in Tables 1 and 2. For parameters related to SOM or microbial physiology, variation 
ranges are within ±20% (V20%), or within ±50% (V50%). Bars show min and max values, asterisks indicate the 10th and 90th percentiles, boxes represent the 
bounds of 25th, 50th (median), and 75th percentiles, squares represent the average values, and blue triangles represent the baseline simulations.
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3.2.  Impacts of Microbial Physiology, SOM, and FMPs on Carbon Dynamics

3.2.1.  SOC Change

Figure 4a illustrates the simulated average annual SOC changes across the scenarios with different FMPs, 
SOM property, and microbial physiology. The SOC stock was predicted to be relatively stable under the 
baseline scenario. The simulated average annual SOC change rate was −42 kg C ha−1 year−1 (i.e., net C 
loss), and the simulated SOC stock was 14% lower than the initial stock after about 170 years under the 
baseline scenario (Figure 4a). The average annual change in simulated SOC varied from a net decrease 
of −119 kg C ha−1 year−1 to a net increase of 782 kg C ha−1 year−1 across the scenarios in V20% due to 
the variations in FMPs, SOM property, and microbial physiology (Figure 4a). Increasing the variations in 
initial SOM content, maximum SOM decomposition rate, and microbial physiology from ±20% to ±50% 
substantially increased the variations of the SOC change, with the simulated average SOC changes ranged 
between −264 kg C ha−1 year−1 (net decrease) and 1,582 kg C ha−1 year−1 (net increase) across the scenar-
ios in V50% (Figure 4a). Simulated SOC stocks tend to be increasing along with the increases of wheat 
residue input, organic manure amendment, carbon assimilation efficiency (CAE), microbial turnover rate 
(RMicrobeDeath), and enzyme decay rate (REnzymeDecay) (P < 0.01; Table 3), and the decreases of initial SOC stock, 
maximum decomposition rate of humus (VmaxHumus), fraction of dead microbial biomass that allocated 
to DOC (FMICtoDOC), and enzyme production rate (REnzymeProduction) (P < 0.01; Table 3). However, relative-
ly strong correlations (|r| > 0.3) were calculated only for ±50% variations in CAE, VmaxHumus, FMICtoDOC, 
REnzymeProduction, and REnzymeDecay as well as amount of organic manure amendment.

V20%b V50%b

SOC 
change CO2 flux

Living 
microbes Enzyme

SOC 
change CO2 flux

Living 
microbes Enzyme

VmaxDOCuptake −0.052 −0.015 −0.009 0.007 −0.051 0.002 0.001 0.012

RMicrobeMaintenance −0.057 −0.016 −0.343* −0.241* −0.069 −0.012 −0.492* −0.277*

RMicrobeDeath 0.157* 0.017 −0.110* −0.066* 0.217* −0.014 −0.209* −0.102*

CAE 0.245* −0.078 0.424* 0.323* 0.365* −0.167* 0.649* 0.390*

FMICtoDOC −0.242* 0.022 −0.004 0.001 −0.348* 0.083* 0.025 0.020

VmaxLitter_vl 0.017 0.001 −0.004 −0.030 0.030 −0.001 −0.009 −0.033

VmaxLitter_l −0.001 −0.009 −0.013 0.016 −0.007 −0.012 −0.008 0.021

VmaxLitter_r 0.039 0.021 0.018 0.025 0.037 0.014 0.012 0.020

VmaxHumads_l 0.017 0.032 0.011 0.021 −0.008 0.037 0.002 0.016

VmaxHumads_r 0.014 0.020 0.004 0.016 0.010 0.023 0.004 0.011

VmaxHumus −0.252* 0.051 0.038 −0.006 −0.356* 0.112* 0.045 −0.018

SOCInitial −0.115* 0.050 0.056* 0.069* −0.201* 0.075* 0.061* 0.067*

FResidue 0.198* 0.571* 0.594* 0.443* 0.108* 0.549* 0.317* 0.199*

N fertilizer 0.023 −0.011 −0.012 −0.016 0.030 −0.010 −0.011 −0.016

Manure 0.758* 0.785* 0.486* 0.334* 0.425* 0.756* 0.283* 0.139*

CNManure 0.020 0.020 0.026 0.024 0.022 0.018 0.038 0.024

REnzymeProduction −0.224* 0.046 −0.014 0.439* −0.322* 0.097* −0.024 0.517*

REnzymeDecay 0.244* 0.002 −0.032 −0.478* 0.345* −0.050 −0.063* −0.577*
aThe "*" represents significant correlations (P < 0.01) between model outputs and selected parameters. bV20% and 
V50% denote variation range ±20% and ±50%, respectively, for parameters related to SOM or microbial physiology.

Table 3 
Correlation Coefficients Between Model Outputs, Including SOC Change, CO2 Flux, Living Microbes, and Enzyme, and 
Selected Model Parameters That are Relevant to FMPs, SOM, or Microbial Physiologya
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3.2.2.  CO2 flux

The simulated average annual CO2 flux from soil heterotrophic respiration was 1,919 kg CO2-C ha−1 yr−1 
across the roughly 170 simulation years in the baseline scenario. The simulations of average annual CO2 
flux varied from 1,497 to 5,707 kg CO2-C ha−1 yr−1 across the scenarios in V20%. Increasing the variations 
in initial SOM stock, maximum SOM decomposition rate, and microbial physiology from ±20% to ±50% 
slightly increased the variation range of the average annual CO2 flux by 8%–1,431–5,992 kg CO2-C ha−1 yr−1 
(Figure  4b), implying that the variation of annual CO2 flux from soil heterotrophic respiration was pri-
marily due to variations in FMPs. For example, increasing the organic manure input from 0 to 2,800 kg C 
ha−1 yr−1 and the fraction of wheat residue return from 0.5 to 1.0 nearly tripled the baseline CO2 flux (5,730 
vs. 1,919 kg CO2-C ha−1 yr−1; Figure 5). Changing other parameters, such as CAE and FMICtoDOC, resulted in 
smaller variations in the simulated average annual CO2 fluxes in comparisons with the changes induced by 
modifying C inputs (Figure 5). In addition, simulated annual CO2 fluxes were strongly correlated with the 
fraction of wheat residue return and organic manure amendments (r > 0.5, P < 0.01; Table 3).

Figure 5.  Simulated average SOC change (kg C ha−1 yr−1; yellow boxes) and annual CO2 flux (kg C ha−1 yr−1; blue 
boxes) from soil heterotrophic respiration across the 170 simulation years under selected scenarios with changes in 
fraction of wheat residue return and manure C input (different rows), and potential microbial carbon assimilation 
efficiency (CAE), and fraction of dead microbial biomass that allocated to dissolved organic carbon (FMICtoDOC) 
(different columns). Values in the white boxes are litter (upper box) and manure (lower box) inputs (kg C ha−1 yr−1) 
for each case. Simulated change in SOC sequestration was primarily driven by C input, particularly by C input from 
manure amendments, and regulated by microbe physiology. Simulated SOC stocks tend to increase with increasing 
CAE and decreasing FMICtoDOC. Note that litter inputs include C from root and are not equal under the scenarios with 
identical fraction (50% or 100%) of wheat residue return due to differences in wheat productivity.
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3.2.3.  Microbial and Enzyme Dynamics

The simulated average annual mean living microbial and enzyme pools were 69.0 and 0.69  kg C ha−1, 
respectively, across the 170 simulation years under the baseline scenario. The average annual mean living 
microbial and enzyme pools varied from 50.4 to 163.2 kg C ha−1 and 0.41–2.07 kg C ha−1, respectively, across 
all the scenarios in V20% (Figures 4c and 4d). Increasing the variations in SOM properties and microbial 
physiology from ±20% to ±50% substantially increased the variations of the simulated living microbial and 
enzyme pools. The simulated average annual mean living microbial and enzyme pools varied from 35.8 to 
286.1 kg C ha−1 and 0.19–4.97 kg C ha−1across the scenarios in V50% (Figures 4c and 4d). Simulated living 
microbial pools were positively correlated with wheat residue return, amount of organic manure amend-
ments, CAE, and initial SOC stock (P < 0.01; Table 3), and negatively correlated with rates of microbial 
maintenance respiration and turnover (P < 0.01; Table 3). However, relatively strong correlations (|r| > 0.3) 
appeared only for wheat residue return, amount of organic manure amendments, CAE, and rate of microbi-
al maintenance respiration. Responses of simulated soil enzyme pools were similar to the responses of the 
simulated soil living microbes because the enzyme production was modeled as a constant faction of living 
microbial biomass (Equation 12). In addition, simulated soil enzyme pools were positively correlated with 
enzyme production rate and negatively correlated with enzyme decay rate (P < 0.01; Table 3).

Figure 6.  Sensitivity of SOC change, soil heterotrophic respiration (CO2 flux), living microbes, and enzyme pool to changes in selected parameters, with (left 
column) ±20% variation in initial soil organic matter (SOM) stock, maximum SOM decomposition rate, and microbial physiology parameters (V20%), and (right 
column) ±50% variation in initial SOM stock, maximum SOM decomposition rate, and microbial physiology parameters (V50%). Parameters are defined in 
Tables 1 and 2. The variable outcomes are more sensitive to parameters with higher sensitivity index values (i.e., they are more important) than to parameters 
with lower sensitive index values.
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3.3.  Sensitivity of SOC Change, CO2 flux, and Soil Microbial and Enzyme Pools

The most sensitive factor controlling the average annual SOC change was the amount of manure amend-
ments, although the simulated SOC changes were also strongly regulated by the maximum decomposition 
rate of humus and microbial physiological parameters, primarily CAE, FMICtoDOC, and enzyme production 
and decay rates under the typical changes in FMPs and ±20% variations in SOM properties and microbial 
physiology (Figure 6a). The simulated CO2 fluxes from soil heterotrophic respiration were predominant-
ly controlled by the rate of C input from manure amendments or wheat residue return at the study site 
(as demonstrated by high sensitivity index values for manure amendments and fraction of residue return, 
Figure  6c). The simulated soil living microbial and enzyme pools were largely regulated by both the C 
input rate from manure amendments or residue return and microbial physiology (Figures 6e and 6g). The 
microbial physiological parameters exerting relatively large impacts were CAE and RMicrobeMaintenance for the 
simulated living microbial pool and REnzymeProduction, REnzymeDecay, and CAE for the simulated enzyme pool.

Increasing the variations of the initial SOM stock, maximum SOM decomposition rate, and microbial phys-
iology noticeably increased their influences on the simulated SOC changes as well as soil living microbial 
and enzyme pools. In comparison with the C input rate, CAE and RMicrobeMaintenance exerted larger impacts on 
the simulated soil living microbial pools and CAE, RMicrobeMaintenance, REnzymeProduction, and REnzymeDecay exerted 
larger impacts on the simulated soil enzyme pools (Figures 6f and 6h). However, their influences on the 
simulated SOC changes were similar to or smaller than the amount of manure amendments (Figure 6b). In 
addition, increasing the variations of these parameters only slightly increased their influence on simulated 
CO2 fluxes from soil heterotrophic respiration (Figures 6c and 6d). Therefore, as expected, C input from or-
ganic manure or crop residue played an important role in regulating SOC change and CO2 flux, even under 
the conditions with relatively large variations in SOM properties and microbial physiology.

4.  Discussion
4.1.  Model Performance

In this study, we developed a microbe-driven SOM decomposition model based on a traditional biogeo-
chemical model, DNDC, and then investigated the impacts of FMPs, SOM, and microbial physiology on 
SOC changes and CO2 fluxes from soil heterotrophic respiration. The developed model provides a frame-
work to predict SOC changes and CO2 fluxes by explicitly simulating both microbial regulations, impacts of 
plants, and common FMPs on soil C cycling.

The model was evaluated against the observed NEE and long-term SOC changes from the two winter wheat 
fields. In comparisons with the field observations, the model generally captured the magnitudes and sea-
sonal dynamics of the daily NEE at the OK wheat field (Figure 3). In particular, the incorporation of the 
microbial processes on SOM decomposition and DOC uptake appreciably improved DNDC's simulation of 
the peak CO2 fluxes induced by the wheat residue return (Figure 3) primarily because the modified model 
can capture priming effects of wheat residue inputs by explicitly simulating microbial activity (Blagodatsky 
et al., 2010), while the original DNDC could not simulate the priming effects due to missing relevant mi-
crobial dynamics. The R values between the improved DNDC's simulations and observations of daily NEE 
values were 0.78 and 0.82 in the first and second rotational years, respectively, and were higher than the 
corresponding values of 0.70 and 0.77 calculated based on simulations from the original DNDC. The im-
provements in the model's performance in simulating CO2 fluxes highlight the importance of representing 
key microbial mechanisms for simulating seasonal dynamics of CO2 fluxes from agricultural ecosystems. 
However, we note that adding the new processes also introduced new parameters that are not well-enough 
constrained by literature values and require calibration. Our parameter calibration was based only on long-
term SOC simulations from the Rothamsted winter wheat NPK treatment, not the OK winter wheat field.

The modified model also captured the differences of the SOC changes under the three treatments with 
different C and N inputs at the Rothamsted site (Figure 2), suggesting that the microbe-driven SOM de-
composition model can be used to quantify the long-term SOC changes for the studied winter wheat fields. 
However, the performance of simulating long-term SOC dynamics by the modified model is similar to that 
of the original DNDC in simulating SOC changes of the same fields (Li et al., 1994; Smith et al., 1997), even 
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though the original version is equipped with first-order kinetics to simulate SOM decomposition. Both the 
original and modified models captured the differences of SOC change among the different treatments. The 
RRMSE values (5%–8% among the treatments) calculated using the simulations from the modified DNDC 
were comparable with the RRMSE (7%–8%) based on the original DNDC simulations. Therefore, the incor-
poration of the microbial processes and activities on SOM decomposition in this study did not considerably 
improve the model's performance in capturing the observed SOC changes over decadal to century time 
scales. This may be because any missing microbial processes and activities of long-term SOM decomposi-
tion could be compensated by calibration of the SOM decomposition rates.

We note some discrepancies between the modeled results and field measurements. The modified DNDC 
model over-predicted CO2 release rates following the wheat residue incorporation and slightly under-pre-
dicted CO2 release rates in August and September in 2016 at the OK site. The over-predictions of the 
CO2 release rates may have resulted from over-predictions of either litter availability or microbial growth 
and activity following the wheat residue incorporation, causing DNDC to predict relatively higher litter 
decomposition rates, DOC availability, and subsequently CO2 production and release. Over-predicting in-
itial litter decomposition could reduce the litter availability in the following August and September, and 
therefore be partially responsible for the under-predicted CO2 release rates. The model also under-estimated 
CO2 release rates in May and June in 2015. The under-estimations of the CO2 fluxes could be due to un-
der-estimation of wheat autotrophic respiration considering that soil heterotrophic respiration would be 
low because there was no wheat residue incorporation or tillage during this period. Further studies, and 
additional years of field observations, are needed to better explain the discrepancies between the simula-
tions and observations. In addition, it should be noted that there are uncertainties in the eddy covariance 
measurements of NEE due to uncertainties associated with the instrument, source heterogeneity, gap-fill-
ing, and the turbulent nature of the transport process (Mauder et al., 2013; Richardson et al., 2006). These 
measurement uncertainties can also contribute to discrepancies between simulated and measured NEE. For 
example, random measurement errors were estimated from around 20%–80% of the NEE values at several 
croplands (Mauder et al., 2013; Richardson et al., 2006). These measurement uncertainties are larger than 
the discrepancies between the simulated and measured annual total NEE in this study.

4.2.  Impacts on Soil Carbon Dynamics

The model predictions under different scenarios quantified the sensitivity of SOC change and CO2 flux from 
soil heterotrophic respiration to changing FMPs, microbial physiology, and SOM property. In general, the 
simulations demonstrated that SOC changes were largely regulated by the C input from manure amend-
ments and the soil CO2 fluxes were predominantly controlled by the C inputs through manure amendments 
and wheat residue return (Figure 6). Simulated SOC changes were strongly correlated with the manure 
amendments, and simulated soil CO2 fluxes were strongly correlated with C input rates through wheat 
residue return across the simulated scenarios (Table 3). These results are consistent with previous studies 
that have highlighted the importance of FMPs in controlling SOC change and CO2 fluxes in agricultural 
ecosystems (e.g., McLauchlan, 2006).

Furthermore, in addition to the microbial physiology parameters, manure amendments and wheat residue 
return rates exerted large impacts on microbial activities (Figure 6; Blagodatskaya & Kuzyakov, 2013; Six 
et  al.,  2006). For example, the model predicted relatively low living microbial biomass under scenarios 
with low C inputs even though the microbial physiology parameters (e.g., high VMaxDOCuptake or CAE) were 
favorable for microbial growth. Although SOC changes were also regulated by parameters other than C in-
puts (e.g., CAE, FMICtoDOC, and VmaxHumus), particularly for the variations of ±50% of the baseline for these 
parameters, we note that the sensitivities depended on the variation ranges of the parameters (Figure 6). 
While the variations of FMPs were set to represent common changes in agricultural management, the ±50% 
variations for the microbial physiology might be overestimated for a specific cropland (i.e., the Rothamsted 
winter wheat field in this study). For example, the CAE was the most important microbial parameter regu-
lating the SOC change and CO2 flux (Figure 6) and the ±50% variation of the baseline value was generally 
larger than the CAE modifications investigated in the previous studies (e.g., Allison et  al.,  2010; Wang 
et al., 2013). Therefore, the importance of CAE in regulating the SOC change and CO2 flux under the ±50% 
variations might be overestimated. Based on the large impacts of FMPs in governing SOC change, CO2 
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flux, and microbial activities as predicted in this study and reported in other studies (e.g., Blagodatskaya & 
Kuzyakov, 2013; Böhme et al., 2005), we conclude that SOC dynamics might be largely regulated by FMPs 
in agricultural ecosystems, although microbes played a central role in decomposing SOM.

The model also predicted differential impacts on SOC changes and CO2 fluxes of different FMPs through 
incorporating processes to characterize these FMPs. For example, different responses of SOC changes and 
CO2 fluxes were predicted between the applications of FYM and wheat residue. Consistent with the field 
measurements at the Rothamsted site, the model simulated that most C inputs from wheat straw were re-
leased as CO2 fluxes and a larger fraction of added manure C was retained in the soil compared to C inputs 
from wheat straw (Figure 5; Johnston et al., 2009). As a result, the impact on simulated SOC changes of 
manure amendment was larger than the impact of wheat straw return (Figure 6). The predicted higher 
efficiencies of organic carbon retention by applying manure were primarily attributed to the different qual-
ities of organic matter. In comparison with the wheat straw, which had a C/N ratio of about 65, the organic 
manure had a lower C/N ratio of 12.5 (Table 2). Therefore, for a given amount of organic matter input, the 
model predicted more manure C converted into microbial biomass during decomposition due to lower N 
limitations for microbial growth, and thereby predicted more C retained in the soil derived from microbial 
death. In addition, the model partitions a fraction of manure into the humads pool (Li et al., 2012) that 
could be directly decomposed into the passive humus pool with low decomposition rates.

We note that microbial physiology may exert considerable impacts on SOC changes and soil CO2 fluxes. 
Simulated SOC increase rates tended to increase with increasing CAE and decreasing FMICtoDOC if the FMPs, 
SOM, and other microbial physiology parameters were not changed (Figure 5). Simulated SOC changes 
were positively correlated with CAE (P < 0.01) and negatively correlated with FMICtoDOC (P < 0.01) even 
under conditions with relatively large variations in C input (0.0–1.0 for fraction of returned crop residue, 
and 0–2,800 kg C ha−1 year−1 for organic manure input) (Table 3). In addition, the sensitivity of simulated 
SOC changes to changes in CAE or FMICtoDOC were comparable with that to changes in wheat residue return 
and manure application rate under the V50 scenarios (Figure  6b). Simulated annual CO2 fluxes tended 
to be lower in scenarios with higher FMICtoDOC and lower CAE if the other factors were not changed (Fig-
ure 5). Annual CO2 fluxes also significantly correlated with these two parameters under the V50 scenarios 
(Table 3), indicating appreciable impacts of microbial physiology on soil heterotrophic respiration in agri-
cultural ecosystems. These results are consistent with previous studies that have suggested the importance 
of microbial physiology in controlling SOC change and CO2 fluxes (e.g., Liang et al., 2019; Six et al., 2006; 
Wang et al., 2021). Furthermore, the enzyme production and decay rates exerted comparable impacts with 
manure amendments in regulating the SOC changes under ±50% variations in microbial physiology pa-
rameters (Figure 6). Therefore, the function of enzymes in catalyzing SOC decomposition is considerable, 
although the enzyme concentrations are very small compared to other C pools. These results highlight the 
central role of soil microbes in converting the C inputs to resistant SOC, and suggest that microbial physiol-
ogy and activities need to be considered when assessing SOC changes even in agricultural ecosystems where 
FMPs usually play a major role in controlling SOC dynamics.

4.3.  Integrating Soil Microbial Dynamics Into Agricultural Ecosystem Models

Modeling microbial-mediated SOM dynamics in agricultural ecosystems is in an early stage, and much ad-
ditional work is required for a more complete framework of all of the processes involved. As shown in this 
and other studies (e.g., Bastian et al., 2009; Böhme et al., 2005; Bossio et al., 1998), microbial biomass and 
activity are strongly regulated by crop residue incorporation and other FMPs, which stresses the importance 
of correct simulations of crop dynamics and parameterization of FMPs when predicting responses of mi-
crobial activities to environmental changes and their influences on SOM decomposition and CO2 fluxes in 
agricultural ecosystems. However, most microbial models that investigate impacts of soil microbes on SOM 
turnover are based on static or prescribed C input (e.g., Abramoff et al., 2017; Schimel & Weintraub, 2003; 
Sulman et al., 2018). Therefore, biases and uncertainty in predicting SOM dynamics may result from ne-
glecting crop dynamics and associated changes in crop residue return. Furthermore, the impacts of FMPs 
on microbial and enzyme activities are large but highly uncertain (Burns et al., 2013). Therefore, further 
studies need to be performed to quantify how FMPs affect microbial dynamics, how this in turn affects veg-
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etation and SOM dynamics, and how the interactions among FMPs, soil microbes, crop growth, and SOM 
turnover are best incorporated into process-based biogeochemical models.

Another uncertainty in the DNDC model framework is the representation of SOM pools. The multiple SOM 
pools in DNDC were designed to empirically represent decay rates of a wide variety of organic matter com-
pounds, with the multiple SOM pool dynamics simulating overall actual SOM dynamics (Li et al., 1992a). 
The approach of multiple SOM pools is applicable for predicting SOC dynamics under varied FMPs (e.g., 
Figure 2; Li et al., 1994, 1997), and may be necessary for simulating SOM dynamics in agricultural ecosys-
tems where organic amendments and SOM consists of materials at various stages of decomposition and that 
have different characteristics (De Graaff et al., 2010; Lal, 2018). However, the pools based on decay rates are 
conceptual and difficult to relate to measurements (Schmidt et al., 2011), although this approach may be 
more informative than the model with a single SOC pool (e.g., Allison et al., 2010). In addition, the modified 
DNDC model presented here simplifies the processes of microbial and enzyme dynamics. For example, the 
model does not differentiate microbial communities responsible for SOM decomposition (i.e., it simulates a 
single microbial pool) in order to minimize the number of poorly constrained microbial parameters and to 
maintain the applicability of DNDC to agricultural ecosystems with a wide range of management practices. 
Further steps to incorporate microbial communities and responses of microbial and enzyme activities to 
substrate chemistry and microbial stoichiometry (Sinsabaugh et al., 2008) into mathematical models will be 
required for a complete model framework.

High uncertainty in parameters related to soil microbes and SOM decomposition were also detected. Sev-
eral new parameters were estimated by calibrating the simulations against the field observations of SOC 
changes under the NPK treatment due to a lack of specific parameter values (Table 1). Most of the calibrated 
parameters were comparable with published values. For example, the maximum rates of decomposition of 
various SOM pools and DOC uptake were within the reported variations (e.g., Wang et al., 2013). However, 
little information can be found for some parameters, such as the half-saturation constants in the Michae-
lis-Menten equations for calculating the decomposition of the SOM pools, because these parameters could 
be variable across different environmental conditions and are poorly constrained by observations (Moor-
head & Sinsabaugh, 2006). Evaluating the model against more observations of microbial activities and C 
dynamics from different locations and under different environmental conditions should help to constrain 
uncertain parameters. Furthermore, it is hard to estimate the plausible variations of the parameters related 
to soil microbes and SOM decomposition for a specific ecosystem or site (e.g., the winter wheat system in-
vestigated in this study). Insufficient constraints on the parameters suggest that further studies are required 
to identify plausible ranges for parameters regarding microbial dynamics and SOM decomposition, and 
how these parameters depend on environmental conditions. Our efforts incorporating microbial regula-
tions into a traditional biogeochemical model and investigating responses of SOC change and CO2 flux to 
varied FMPs, SOM, and microbial physiology provide critical guidance on identifying processes/parameters 
for which soil C stocks and CO2 fluxes are strongly sensitive.

5.  Conclusions
We developed a microbial-mediated SOM decomposition model, based on a biogeochemical model (DNDC), 
to simulate C dynamics in agricultural ecosystems. The model simulates decomposition of SOM and exter-
nal organic matter, soil respiration, and SOC formation by explicitly simulating microbial and enzyme dy-
namics and their controls on SOM decomposition, in addition to simulating impacts on C dynamics of cli-
mate, soil properties, crop, and common FMPs. The model was evaluated against field observations of NEE 
and SOC change in two winter wheat systems to assess its performance in predicting both CO2 fluxes and 
SOC changes. The model successfully captured seasonal variations of NEE and SOC changes under differ-
ent FMPs. The incorporation of microbial processes improved the model's performance in simulating peak 
CO2 fluxes induced by the wheat residue return primarily because the improved model captured priming 
effects of wheat residue inputs. We applied the model to investigate impacts of microbial physiology, SOM, 
and FMPs on soil microbial activity, SOC change, and CO2 fluxes. The results show that C input through 
crop residue or manure drove microbial activity and predominantly regulated the soil CO2 fluxes, and that 
manure amendment largely regulated SOC change. Microbial physiology also exerted considerable impacts 
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on the microbial activities, SOC changes, and soil CO2 fluxes, emphasizing the necessity of considering 
microbial physiology and activities when assessing soil C dynamics in agricultural ecosystems where FMPs 
usually play a major role in controlling soil C.

Appendix A:  Key Equations to Simulate SOM Decomposition, and Dynamics 
of Soil Organic Matter (SOM), Dissolved Organic Carbon (DOC), Dissolved 
Organic Nitrogen (DON), Soil Microbe Biomass, and Enzyme Amount
Appendix A1: Decomposition of SOM Pools

Decomposition of very liable litter

          
Litter _ Litter _

Litter _

Litter _max Enzyme ST
Litter _vl vl

vl

vlD V f T f W f
K vl� (A1)

Decomposition of liable litter

          
Litter _ Litter _

Litter _

Litter _max Enzyme ST
Litter _l l

l

lD V f T f W f
K l� (A2)

Decomposition of resistant litter

          
Litter _ Litter _

Litter _

Litter _max Enzyme ST
Litter _r r

r

rD V f T f W f
K r� (A3)

Total decomposition of litter

  Litter Litter _ Litter _ Litter _vl l rD D D D� (A4)

Decomposition of liable humads

          
Humads _ Humads _

Humads_

Humads_max Enzyme ST
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l

lD V f T f W f
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Decomposition of resistant humads

          
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Decomposition of humus

          
Humus Humus

Humus

Humusmax Enzyme ST
Humus

D V f T f W f
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The Arrhenius equation
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1 1exp
ref

Eaf T
R T T� (A8)

Impact of soil water on SOM decomposition

         3 2SW 2.8516 SW 1.4936 SW 1.7699 SW 0.0301f� (A9)

Impact of clay content on SOM decomposition

    0.471ST 0.5 Clayf� (A10)
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Appendix A2: Dynamics of SOM, DOC, and DON

Dynamics of litter pools

 Litter Litter
Litter Inputd D
dt� (A11)

Dynamics of humads pools
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Humads Death 1.0d F D

dt� (A12)

Dynamics of humus pool
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Dynamics of DOC pool
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Potential DOC uptake
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Actual DOC uptake
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Dynamics of DON pool
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Appendix A3: Dynamics of Soil Microbes and Enzyme

Dynamics of soil living microbes

  Microbe Microbe Enzyme
Microbe Growth Deathd P

dt� (A18)

Growth of microbial biomass
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Nitrogen demand for microbial growth
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Microbial maintenance respiration

 Maintenance Microbe Maintenance MicrobeM R� (A21)

Dissolved nitrogen

 DN DON MN� (A22)

Microbial mortality

  2
Microbe Microbe DeathDeath MicrobeR� (A23)

Enzyme dynamic

 Enzyme Enzyme
Enzymed P D

dt� (A24)

Enzyme production

 Enzyme EnzymeProduction MicrobeP R� (A25)

Enzyme decay

 Enzyme Enzyme Decay EnzymeD R� (A26)

Appendix B:  Definitions of Variables Listed in Appendix A

Variable Definition, unit

CAE Maximum microbial carbon assimilation efficiency

Clay Soil clay content, %

CNLitter, CNHumads, CNHumus, CNMicrobe, CNEnzyme C:N ratios of litters, humads, humus, soil microbes, and enzyme respectively

DLitter, DLitter_vl, DLitter_r, DHumads_l, DHumads_r, DHumus Decomposition rates of litters, very liable litter, liable litter, resistant litter, 
liable humads, resistant humads, and humus, respectively

DEnzyme Enzyme decay rate, h−1

DeathMicrobe Mortality of microbial biomass

DN Dissolved nitrogen, including both DON and mineral N

DOC Concentration of DOC, mg C g−1 soil

DOCLeaching DOC transferred out of soils through water leaching

DOCM DOC consumed through methanogenesis

DOCManure DOC input from organic manure

DOCN DOC consumed through denitrification

DOCRoot DOC input from root exudation

DOCUptake DOC uptake by microbes

DON Concentration of DON, mg N g−1 soil

DONLeaching DON transferred out of soils through water leaching

DONManure DON input through organic manure

DONRoot DON input through root exudation

DONUptake DON uptake by microbes

EaLitter_vl, EaLitter_l, EaLitter_r, EaHumads_l, EaHumads_r, EaHumus Activation energies in the Arrhenius equation for decomposition of very 
labile litter, labile litter, resistant litter, labile humads, resistant humads, 

and humus, respectively, KJ mol−1

FHumadsToDOC Fractions of decomposed humads that allocated to DOC
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Data Availability Statement
The DNDC model, model input files, and all data used in this study are archived at the figshare repository 
(https://doi.org/10.6084/m9.figshare.15131976.v2).
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Variable Definition, unit

FMICtoDOC Fraction of dead microbial biomass that allocated to DOC

GrowthMicrobe Growth of microbial biomass

Humads_l Concentration of labile humads, mg C g−1 soil

Humads_r Concentration of resistant humads, mg C g−1 soil

Humus Concentration of humus, mg C g−1 soil

InputLitter Litter input from crop residue

KLitter_vl, KLitter_l, KLitter_r, KHumads_l, KHumads_r, KHumus Michaelis half-saturation constant for decomposition of very labile litter, 
labile litter, resistant litter, labile humads, resistant humads, and humus, 

respectively, mg C g−1 soil

KDOC Michaelis DOC half-saturation constant for DOC uptake, mg C g−1 soil

O2E K Michaelis O2 half-saturation constant for DOC uptake, mmol cm−3

Litter_vl Concentration of very labile litter, mg C g−1 soil

Litter_l Concentration of labile litter, mg C g−1 soil

Litter_r Concentration of resistant litter, mg C g−1 soil

Microbe Concentration of soil living microbes, mg C g−1 soil

MN Soil mineral nitrogen

NDemand Potential N required for microbe growth

O2 Concentration of soil oxygen, mmol cm−3.

PEnzyme Enzyme production

R The gas constant, 8.314 J K−1 mol−1

RMicrobeMaintenance Rate of microbial maintenance respiration, h−1

RMicrobeDeath Microbial turnover rate, h−1

REnzymeProduction Enzyme production rate, h−1

REnzymeDecay Enzyme decay rate, h−1

SW Soil moisture in water- filled fraction of total porosity

T Soil temperature, °C

VmaxLitter_vl, VmaxLitter_l, VmaxLitter_r, VmaxHumads_l, VmaxHumads_r, VmaxHumus Maximum decomposition rate of very labile litter, labile litter, resistant litter, 
labile humads, resistant humads, and humus, respectively, at reference 

temperature, mg C (mg Enzyme C)−1 hr−1

VmaxDOCuptake Maximum uptake rate of DOC at a reference temperature of 20°C, mg C (mg 
microbe C)−1 hr−1
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