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The objective of this study was to investigate the changes in cropland areas as a

result of water availability using Moderate Resolution Imaging Spectroradiometer

(MODIS) 250 m time-series data and spectral matching techniques (SMTs). The

study was conducted in the Krishna River basin in India, a very large river basin

with an area of 265 752 km2 (26 575 200 ha), comparing a water-surplus year

(2000–2001) and a water-deficit year (2002–2003). The MODIS 250 m time-series

data and SMTs were found ideal for agricultural cropland change detection over

large areas and provided fuzzy classification accuracies of 61–100% for various

land-use classes and 61–81% for the rain-fed and irrigated classes. The most mixing

change occurred between rain-fed cropland areas and informally irrigated

(e.g. groundwater and small reservoir) areas. Hence separation of these two classes

was the most difficult. The MODIS 250 m-derived irrigated cropland areas for

the districts were highly correlated with the Indian Bureau of Statistics data, with

R2-values between 0.82 and 0.86.

The change in the net area irrigated was modest, with an irrigated area of

8 669 881 ha during the water-surplus year, as compared with 7 718 900 ha during

the water-deficit year. However, this is quite misleading as most of the major

changes occurred in cropping intensity, such as changing from higher intensity to

lower intensity (e.g. from double crop to single crop). The changes in cropping

*Corresponding author. Email: m.gumma@cgiar.org, or muraligk5@gmail.com

International Journal of Remote Sensing
ISSN 0143-1161 print/ISSN 1366-5901 online # 2011 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/01431161003749485

International Journal of Remote Sensing

Vol. 32, No. 12, 20 June 2011, 3495–3520

D
ow

nl
oa

de
d 

by
 [

IR
R

I 
In

te
rn

at
io

n 
R

ic
e 

R
es

ea
rc

h 
In

st
itu

te
],

 [
M

ur
al

i K
ri

sh
na

 G
um

m
a]

 a
t 2

2:
32

 2
8 

Ju
ne

 2
01

1 

mailto:gumma@cgiar.org
mailto:muraligk5@gmail.com
http://www.tandf.co.uk/journals


intensity of the agricultural cropland areas that took place in the water-deficit year

(2002–2003) when compared with the water-surplus year (2000–2001) in the

Krishna basin were: (a) 1 078 564 ha changed from double crop to single crop,

(b) 1 461 177 ha changed from continuous crop to single crop, (c) 704 172 ha

changed from irrigated single crop to fallow and (d) 1 314 522 ha changed from

minor irrigation (e.g. tanks, small reservoirs) to rain-fed. These are highly signifi-

cant changes that will have strong impact on food security. Such changes may be

expected all over the world in a changing climate.

1. Introduction

The water availability in river basins changes in response to inter-annual fluctuations

in water supply, especially in a changing climate. In the Krishna River basin in India

these changes are prominent due to erratic monsoon rainfall, resulting in significant

fluctuations in water availability for irrigation over time. Major canal irrigation

schemes in the upper reaches of the Krishna basin often suffer from inequitable
distribution of water due to overuse in head reaches, which is partly caused by

farmers’ preferences for water-intensive crops like rice and sugar cane (Bhutta and

Van der Velde 1992, Gaur et al. 2008). Thus, the development activities upstream

combined with inter-annual variations in rainfall can cause shortages in water supply

downstream. Priority in allocation is often given to urban areas and industry, which

can exacerbate the supply shock to irrigated command areas during water-deficit

years. How these shortages, both temporary and chronic, are distributed over the

command area will determine their net impact on agricultural production, equity and
farmers’ livelihoods. Spatial and temporal analysis of actual water supply in different

parts of the irrigation project can identify how and where to improve the performance

of an irrigation scheme (Gorantiwar and Smout 2005) and hence improve water

availability. Variability in water supply is also linked with the issue of equity, and

the spatial uniformity of water supply can be expected to change under different water

supply regimes (Gaur et al. 2008).

Census data on agricultural production provide a coarse view of how cropping

patterns change under fluctuating irrigation supply (Gaur et al. 2008). Satellite
imagery can provide detailed maps of where cropping patterns change significantly

in response to water availability (Thiruvengadachari and Sakthivadivel 1997).

Satellite imagery has been increasingly used to quantify the water use and productiv-

ity in irrigation systems (Thiruvengadachari and Sakthivadivel 1997, Bastiaanssen

and Bos 1999), but less frequently used to identify how irrigated command areas

change in response to variations in water supply.

Studies reporting the use of multi-temporal image data often include relatively few

dates, possibly due to a lack of cloud-free image availability, cost and processing
requirements (Knight et al. 2006). A basic multi-temporal approach is used with both

dry- and wet-season images, which provide more information on vegetation phenol-

ogy than is available with only one image (Varlyguin et al. 2001, Goetz et. al. 2004,

Knight et al. 2006). Vegetation phenology represents a potentially significant source

of land use/land cover (LULC) information (Reed et al. 1994, Senay and Elliott 2000,

Loveland et al. 2000).

Given the above background, the main objective of this research is to study changes

in agricultural land use in response to water availability in the Krishna River basin
between the years 2000–2001 (a water-surplus year) and 2002–2003 (a water-deficit

3496 M. K. Gumma et al.
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year) and to understand the change dynamics of irrigated areas due to fluctuating

water availability between the cropping years 2000–2001 and 2002–2003.

2. Study area

The Krishna basin (figure 1) is India’s fourth largest river basin and covers 265 752

km2 (26 575 200 ha) of southern India, traversing the states of Karnataka (116 247

km2), Andhra Pradesh (78 256 km2) and Maharashtra (71 249 km2). The basin is

relatively flat, except for the Western Ghats and some forested hills in the centre and

north-east. River Krishna originates in the Western Ghat mountains, flows east

across the Deccan plateau, and discharges into the Bay of Bengal. The Krishna has

three main tributaries that drain from the north-west, west and south-west (figure 1).

The climate is generally semi-arid, with some dry, sub-humid areas in the eastern delta
and humid areas in the Western Ghats. The annual precipitation varies widely in the

basin: decreasing gradually from 850–1000 mm in the Krishna Delta to 300–400 mm

in the north-west, then increasing to .1000 mm in the Western Ghats (figure 1), which

in the extreme western parts of the basin have annual precipitation as high as

1500–2500 mm. Most of the rainfall occurs during the monsoon from June to

October (table 1). But the biggest problem during water-deficit years is the amount

of water available for irrigation in dams and barrages. For example, one barrage had
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Figure 1. The Krishna River basin, India. The figure shows major reservoirs and the basin
areas in three Indian states (Note: River network extracted from Shuttle Radar Topographic
Mission 90 m digital elevation module (SRTM 90 m DEM), http://gcmd.nasa.gov/records/
GCMD_DMA_DTED.html).

NDVI, water use, agriculture, irrigation and land use 3497
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only 3.0063� 108 m3 of water during the water-deficit year of 2002–2003 compared to

1.06995 � 109 m3 during the water-surplus year of 2000–2001.

Cropping occurs in three seasons: Kharif, during the monsoon (June to mid-

December), Rabi, in the post-monsoon dry season (mid-December to March) and

the summer season (April and May). Irrigated areas may have double cropping of rice

and other grains, single cropping of sugar cane, chilli, cotton, fodder grass and, in
some areas of light irrigation, corn, sorghum and sunflower. Rain-fed crops include

grains (sorghum, millet), pulses (red and green gram, chickpea) and oilseeds (sun-

flower, groundnut).

Irrigation systems include major (.10 000 ha water-spread area), medium

(20–10 000 ha) and minor (,20 ha) command areas. Major canal irrigation schemes

occur along each of the three main tributaries in the upper basin, and along the main

stream in the lower basin and in the delta. One major hydroelectric project has a

limited irrigated command area (Srisailam), and several new projects have large
reservoir volumes but as yet small irrigated command areas (e.g. Alamatti, in figure 1).

Minor irrigated systems include small tanks, small riparian lift schemes and ground-

water irrigation. Groundwater sources include dug-wells, shallow tube-wells and deep

tube-wells.

3. Satellite data

3.1 Processing of satellite data

The Moderate Resolution Imaging Spectroradiometer (MODIS) data for the Krishna

River basin was downloaded from calibrated global continuous time-series mega-data

sets (see www.iwmidsp.org) composed from individual files from the NASA website

Table 1. Average rainfall at basin level. From 1999 to 2005, the year with highest rainfall was
2001–2002 (water-surplus year; 1109 mm) and that with the least rainfall was 2002–2003 (water-

deficit year; 984 mm). The normal rainfall was 1033 mm.

Average rainfall (mm)

Month

Normal
rainfall
(mm) 1999–2000 2000–2001a 2001–2002 2002–2003b 2003–2004 2004–2005

Jun 180 176 194 159 217 166 171
Jul 202 280 253 164 102 214 201
Aug 208 135 284 198 227 180 226
Sep 139 163 134 187 85 109 152
Oct 121 176 105 147 126 112 61
Nov 20 18 18 25 18 16 23
Dec 26 16 14 10 27 39 50
Jan 14 9 9 22 8 24 12
Feb 15 19 12 18 10 17 10
Mar 19 10 13 19 24 34 13
Apr 39 23 46 27 31 48 58
May 51 62 26 59 19 89 50
Annual

rainfall
1033 1087 1109 1034 894 1048 1027

awater-surplus year; bwater-deficit year.

3498 M. K. Gumma et al.
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(www.modis-land.gsfc.nasa.gov/). The MODIS 250 m two-band data (centred at 648

and 858 nm; table 2) collection five (MOD09Q1) were acquired for every eight-day

period during two crop-growing seasons: (a) June 2000 to May 2001 for a water-surplus
year and (b) June 2002 to May 2003 for a water-deficit year. Original MODIS data were

acquired in 12-bit (0 to 4096 levels), and were stretched to 16-bit (0 to 65 536 levels).

Further processing steps are described subsections in 3.2–3.4.

3.2 Cloud-removal algorithm

The Krishna basin, located at about 18� N, is subject to the influences of the oscillat-

ing Sub-Tropical Convergence Zone, which includes monsoonal activity from June to

September (Kharif season). It is during this part of the year that there is a significant

change in vegetation cover, rapid changes in dynamics of vegetation, and biomass

accumulation. It is also a period when cloud cover is more frequent. In order to retain
the highest possible number of time-series images, we: (a) retained all images with

,5% cloud cover and (b) developed a cloud-masking algorithm in order to eliminate

areas of cloud cover and retain the rest of the image in an unchanged form

(Thenkabail et al. 2005). Of the 46 images for the year 2000–2001, there were 16

images with 25–40% cloud cover. During 2002–2003, there were seven images with

cloud cover .25%. For these images, we used the cloud-masking algorithm described

in section 3.3 and eliminated the cloud-covered areas while retaining the cloud-free

areas. This resulted in retaining all 46 images during the water-surplus year and the
water-deficit year by eliminating parts of the image with cloud cover. It is important

to retain non-cloud areas, to get maximum temporal coverage.

3.3 Minimum reflectivity threshold for cloud removal

The minimum reflectivity of clouds in the MODIS bands 1 and 2 (b1 and b2) provided

the best separability in which cloud cover was removed. If the reflectance value in b1

was more than 18 (the cut-off value is arrived at by selecting several samples over

cloud patches throughout the basin), then the values in b1 were replaced with a null

value. When the b1 value was null then the corresponding value in b2 was replaced
with a null value. If the reflectance value in b1 was less than 18 then the corresponding

value in b2 was retained as it is. For further detailed description of cloud-removal

algorithms for MODIS refer to Thenkabail et al. (2005).

Table 2. MODIS 250 m two-band reflectance data characteristics used in this studya.

MODIS
Bandsa

Band width
(nm)

Band centre
(nm) Potential applicationb

1 620–670 648 Absolute land cover transformation, vegetation
chlorophyll

2 841–876 858 Cloud amount, vegetation land cover
transformation

Notes: Of the 36 MODIS bands, the two bands reported here are specially processed for land
studies. aMODIS bands are rearranged to follow the electromagnetic spectrum (e.g. blue band 3
followed by green band 4). bTaken from MODIS website (http://modis-land.gsfc.nasa.gov/).

NDVI, water use, agriculture, irrigation and land use 3499
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3.4 Mega-data set

The data set was prepared by combining many bands of data of a study area taken on

different dates, forming a stack of single files referred to as a mega-file data cube

(MFDC). The MFDC data set has no limitation of size or dimension. The continuous

time-series analysis of MODIS data requires construction of MFDCs that involve

multiple bands of different dates in a single file. We created two MFDC maximum

value composite (MVC) normalized difference vegetation indices (NDVIs) for: (a) the

water-surplus year of 2000–2001 and (b) the water-deficit year of 2002–2003. Each

MFDC consisted of 92 bands (from 46 images per year, each of two bands; table 2).
Separate 46-band NDVI MFDCs were also composed for the water-surplus year and

the water-deficit year using the 92-band MFDCs of the respective years.

3.5 Field-plot data sets

Field-plot data were collected during 13–26 October 2003 from 144 locations (figure 2)

covering major cropland LULC classes. The data from the plots were collected from

precise locations where local agricultural extension officers provided local knowledge

and ensured that the data were collected from locations where same crops were grown
during 2000–2001 (the water-surplus year) and 2002–2003 (the water-deficit year). The

local experts also provided a cropping calendar and information on cropping intensity

Figure 2. Field-plot data point locations in the Krishna River basin. There are 144 field-plot
locations where data on crop types, cropping intensities, watering sources (irrigated vs. rain-
fed) and a number of other parameters (e.g. digital photos) were collected.

3500 M. K. Gumma et al.
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and per cent canopy cover for these locations from their recorded data for these years.

In addition, field-plot data from 482 other specific locations were collected based on

interviews with local farmers, covering a distance of 6500 km by road throughout the

basin, and marking manually on topographic maps (1:250 000). These data included

the crops grown during 2000–2001 and 2002–2003 as well as their intensity (whether
single or double crops). Further, the GeoCover 2000 (http://Zulu.ssc.nasa.gov/mrsid/,

Tucker et al. 2005) products were used as additional information on class

identification.

The MODIS data require a minimum sampling unit of 500 � 500 m2 for field-plot

validation. Very few locations in the basin fulfil this criterion due to its diverse land-

use pattern. The approach adopted was to look for contiguous areas of homogeneous

classes within which we could sample (Thenkabail et al. 2005). A large contiguous

information class constituted our sampling unit, within which we sampled a repre-
sentative area of 90� 90 m2. The emphasis was on maximizing the degree to which the

sample location represented one of the classes to determine the precise geographical

location of the pixel. Class labels were assigned in the field. Classes are flexible such

that a class can merge with a higher class or break into separate classes based on the

per cent land cover observed at each location.

The precise locations of the sample sites were recorded using a Garmin hand-held

Global Positioning System (GPS) receiver (Garmin (eTrex) 12 Channel GPS, Olathe,

KS, USA). The sample size varied from 5 to 25 samples for each major crop LULC
class. Though it is ideal to have at least 50 samples per land-use class (Congalton and

Green 1999), this was not feasible due to limited resources. The LULC classes which are

more vulnerable to sample size are rain-fed cropland, range land and groundwater-

irrigated areas, and rain-fed combinations. Class labels were assigned in the field.

At each of the 144 locations the following data were recorded for the years 2000–2001

and 2002–2003, based on interviews with local agricultural extension officers:

l LULC classes: levels I, II and III, Anderson approach;

l Land cover types (per cent cover): trees, shrubs, grasses, built-up, water, fallow

lands, weeds, different crops, sand, rock and fallow farms;
l Crop types: for Kharif, Rabi and summer seasons;

l Cropping pattern: for Kharif, Rabi and summer seasons;

l Cropping calendar: for Kharif, Rabi and summer seasons;

l Irrigated, rain-fed, supplemental irrigation at each location;

l 311 digital photos of the 144 locations were ‘hot-linked’ using Arcview software

(Redlands, CA, USA) to ensure geographically located photos appear at click of

a mouse.

The data thus obtained were organized in Arc Geographical Information System

(ArcGIS) format, ER Mapper 7.1, and ERDAS (Earth Resources Data Analysis

System) Imagine 9.2 (Norcross, GA, USA) compatible formats with accompanying

metadata that can be overlayed over the MODIS image data (figure 2). In the 482
observation locations, only data on crop types and cropping intensities were gathered.

3.6 Rainfall and discharge data

Monthly rainfall data for the years 2000–2001 and 2002–2003 (table 1) were obtained

from: (a) the Bureau of Economics and Statistics, Andhra Pradesh, (b) the Directorate

of Economics and Statistics, Karnataka and (c) the Department of Agriculture,

NDVI, water use, agriculture, irrigation and land use 3501
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Maharashtra. Data on the discharge volume at Prakasam Barrage were collected

from the Irrigation Department, Andhra Pradesh (table 3).

4. Methods

4.1 Methodology for mapping irrigated areas using MODIS 250 m

A comprehensive methodology for mapping irrigated areas using MODIS 250 m data

was developed (figure 3; also see Thenkabail et al. 2005). The MODIS images (MOD09

product) are already provided as surface reflectance values (Thenkabail et al. 2005). The

following protocol was followed in developing and implementing the methods.

4.1.1 Unsupervised classification. Unsupervised classification using Interactive

Self-Organizing Data Analysis Technique cluster algorithm (ISODATA in ERDAS

Imagine 9.2TM) followed by progressive generalization (Cihlar et al. 1998) was used

on 46-band MODIS 250 m NDVI MFDCs constituted for: (a) the water-surplus year

of 2000–2001 and (b) the water-deficit year of 2002–2003. The classification was set at

a maximum of 40 iterations and a convergence threshold of 0.99. In all, 40 classes were

generated for the water-surplus year as well as for the water-deficit year. Use of

unsupervised techniques is recommended for large areas that cover a wide and
unknown range of vegetation types, and where landscape heterogeneity complicates

identification of homogeneous training sites (Achard and Estreguil 1995, Cihlar

2000). Identification of training sites is particularly problematic for small, hetero-

geneous irrigated areas.

The 40 classes obtained from the unsupervised classification were merged using

rigorous class-identification and labelling protocols (described below; see also

Thenkabail et al. 2005), field-plot data (previously described) and GeoCover mosaics

of Landsat imagery from 1990 to 2000 (Tucker et al. 2005).

4.1.2 Class identification and labelling. Class identification and labelling is a step-

by-step process described in detail in subsections 4.1.2.1–4.1.2.4.

Table 3. Discharge at Prakasam barrage (total canals þ surplus)
during the water-surplus year (2000–2001) when compared with the

water-deficit year (2002–2003).

Discharge (�106 m3)

Month 2000–2001 2002–2003

Jun 618.04 103.50
Jul 1383.08 531.52
Aug 4599.45 802.66
Sep 1325.81 694.50
Oct 1215.16 640.45
Nov 921.82 500.17
Dec 566.11 101.92
Jan 509.06 55.73
Feb 558.07 61.02
Mar 623.01 1.47
Apr 375.64 61.78
May 144.20 52.85
Average 1069.95 300.63

3502 M. K. Gumma et al.
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4.1.2.1 Class spectra generation. Class spectra were generated using unsupervised

ISOCLASS k-means classification (Tou and Gonzalez 1974) using the MODIS NDVI

MVC 250 m mega-file data (figure 4). The 46-layer NDVI stack, generated from the

mega-data set was classified using unsupervised classification with 40 classes initially.

Figure 3. Overview of the methodology for mapping irrigated areas using MODIS data.

NDVI, water use, agriculture, irrigation and land use 3503
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The signature file was used to plot the signature of each LULC class over time. This

NDVI signature indicates the profile of vegetative intensity.

The time-series NDVI plots (e.g. figure 4) are ideal for understanding the changes

that occur: (a) within and between seasons, and (b) between classes (e.g. irrigated vs.

rain-fed). Figure 4 shows the distinct differences between an irrigated and a rain-fed

Figure 4. Class spectral signatures of unsupervised classes derived using a MODIS 250 m
MFDC for: (a) the water-surplus year (2000–2001) and (b) the water-deficit year (2002–2003).

3504 M. K. Gumma et al.
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class. Irrigated areas have much higher NDVI and are double-cropped (two crops in a
calendar year). In contrast, the rain-fed crops have significantly lower NDVI and are

limited to one crop per year. Further, through climatic data, it was known that 2002

was one of the worst drought-affected years (table 1). This led to a near failure of rain-

fed crops and the impact can be seen in one season on irrigated crops, where they had

a much shorter growing season compared to the normal year of 2000–2001 (figure 4).

4.1.2.2 Ideal spectra creation. Continuous time-series satellite sensor data enable

the creation of ideal spectra for various land-use themes, such as irrigated areas, rain-

fed areas, classes within irrigated areas and classes within rain-fed areas (figure 4).

Ideal spectral signatures for LULC classes have been extracted from MODIS time-
series data using representative field-plot samples. A total of 144 ground truth (GT)

points and 110 ideal pure signatures were collected (see figure 5). These data were

streamlined in digital form for classification inputs and these have been made avail-

able online via the International Water Management Institute Data Storehouse

Pathway (IWMIDSP) site (www.iwmidsp.org).

Ideal signatures (figure 5) were selected based on large continuous areas with single

cropping, including major irrigated crops in the Krishna basin like rice, sugar cane,

cotton, chilli and maize, and rain-fed crops like bajra, sorghum and sunflower.

4.1.2.3 Spectral matching techniques. Spectral matching techniques (SMTs) match

the class spectra derived from classification with the ideal spectra derived from the

Figure 5. Ideal spectral signatures for irrigated classes. Ideal spectral signatures are obtained by
first having precise knowledge of crop characteristics from precise geographic location and then
developing spectral signatures of the same using a MODIS 250 m MFDC.
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mega-file data cube based on precise knowledge of crops from specific locations

(Thenkabail et al. 2007; figure 6).

Spectral signature matching techniques are traditionally developed for hyperspec-

tral data analysis of minerals (e.g. Homayouni and Roux 2003, Thenkabail et al.

2004a, b, 2007, 2009a, b). Time-series data, such as the monthly MODIS NDVI data,

are similar to hyperspectral data, with 12 months in time-series data replacing 12

bands in hyperspectral data. These similarities imply that the SMTs, applied for
hyperspectral image analysis, also have potential for application in identifying agri-

cultural land-use classes from historical time-series satellite imagery.

4.1.2.4 Google Earth imagery and GEOCOVER imagery. The Google Earth appli-
cation (http://earth.google.com/) provides increasingly comprehensive image cover-

age of the globe at very high resolution (sub-metre to 30 m), allowing the user to zoom

into specific areas in great detail, from a base of 30-m-resolution data, based on

GeoCover 2000. Geocover imagery (Tucker et al. 2005) is the most comprehensive

coverage of the planet at 30 m or better resolution imagery. In this study, Google

Earth and Geocover data were used for: (a) identifying and labelling the classes and

(b) overlaying the classified output on Google Earth to verify the classes (figure 7).

Figure 6. The SMT for grouping similar classes. The class spectral signatures (derived using
unsupervised classification) are matched with ideal spectral signatures (derived from ideal
spectral data bank; figure 5) in order to group and identify classes as illustrated for the irrigated
class in this figure.
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4.2 Resolving the mixed classes

In the class identification and labelling process, a few classes mixed with other classes.

These were resolved by using the following methods:

4.2.1 Decision tree algorithms. Decision tree algorithms (DeFries et al. 1998) use

factors such as NDVI, band reflectivity and thermal temperatures to identify and

label a class and/or resolve a mixed class. A rule-based decision tree algorithm for
NDVIs of classes will help group distinct classes together (figure 8) and label them.

4.2.2 Spatial modelling. When classes continued to be mixed, in spite of the various

methods and techniques discussed in previous subsections we adopted the
Geographical Information Systems (GIS) spatial modelling approaches to resolve

classes. This involved taking a mixed class and applying spatial modelling techniques

such as overlay, matrix, recode, sieve and proximity analysis (ERDAS Imagine 9.2)

based on the theory of map algebra and Boolean logic (Peuquet and Marble 1990,

Tomlin 1990, Tomlinson 2003). Spatial data layers used include precipitation zones,

elevation zones and tree-cover categories. Any one or a combination of these data

layers usually helped to separate the mixed classes.

4.2.3 Masking and reclassification. In spite of the rigorous class identification

process described in the above subsections, there were often ‘mixed’ classes.

Typically, the unresolved classes were split up into 5–10 or more sub-classes

Figure 7. Class identification and labelling using Google Earth imagery. The Google Earth
very high resolution imagery (sub-metre to 4 m) was used to supplement the information we
have from field campaigns, ideal spectra and other sources to help identify and label classes.
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(depending on the extent of area and complexity) and the class identification and

labelling process as described previously was repeated (figure 3).

4.2.4 Land use/land cover (LULC) system. A standardized hierarchical classifica-

tion scheme (Klijn and Udo de Haes 2004, Thenkabail et al. 2009a) was adopted. This

enabled obtaining classes at different levels which could be ‘cross walked’ (Torbick

et al. 2006). The ‘cross walk’ procedure shows how the classes are aggregated or
disaggregated. This allows an aggregated class to be tracked to determine which

disaggregated classes were combined to form it or vice versa. All classes were

named using a standard class-naming protocol (Thenkabail et al. 2009b). When

multiple analysts provide class names, the standardized class-naming protocol is

very useful (Thenkabail et al. 2009b).

4.2.5 Accuracy assessment. The accuracy assessment was carried out using the

equations of Congalton and Green (1999):

Aia ¼
ðIFPCIAÞ
ðTIFPÞ 100% (1)

Ec ¼
ðNIFPIAÞ
ðTNIFPÞ 100% (2)

Eo ¼
ðIFPNIAÞ
ðTIFPÞ 100% (3)

where Aia is the accuracy of irrigated area classes (%), Ec the errors of commission for

the irrigated area class (%), Eo the errors of omission for the irrigated area class (%),

Group A11
< 0.2 ( Jan–Dec )

and > 0.15 ( Jul–Sep )
and < 0.18 ( Jul–Aug )
classes 164, 229, 246

Group A21
< 0.2 ( Jan–Dec)

and < 0.15 ( Jul–Sep )
and > 0.1 (Jun–Sep )

and < 0.13 (Jul–
Aug ) classes 178

Group A1
< 0.2 ( Jan–Dec )

and > 0.15 ( Jun–Sep )

Group A2
< 0.2 (Jan–Dec )

and < 0.15 ( Jun–Sep )
and > 0.1 ( Jun–Sep )

Group B2
> 0.4 ( Jan–Dec )

and > 0.8 ( Jul–Aug )

Group A

<0.2 ( Jan–Dec )

Group B

<0.4 ( Jan–Dec )

Group C

> 0.4 ( Jul–Aug )

and < 0.4 ( Sep–Jun )NDVIGroup A22
<0.2 ( Jan–Dec )

and < 0.15 ( Jun–Sep )
and > 0.1 ( Jun–Sep ) and

> 0.13, < 0.14 ( Jul–
Aug ) classes 212, 249,

250

Group A23
< 0.2 ( Jan–Dec )

and < 0.15 ( Jun–Sep )
and > 0.1 ( Jun–Sep ) and

> 0.14 ( Jul–Aug )
classes 208, 237, 244

Group B11
> 0.4 ( Jan–Dec ) and > 0.8

( Jul– Aug ) and < 0.5 ( Mar )
classes 36, 37,  43, 46–49, 51,

54, 56, 58, 60, 64, 67, 69

Group B12
> 0.4 ( Jan–Dec ) and > 0.8

( Jul– Aug ) and > 0.5 ( Mar )
classes 7, 9, 15, 19, 22, 29,

31, 32, 39

Group B31
> 0.4 ( Jan–Dec ) and < 0.815 ( Jul ) and
> 0.5 ( Jan ) and < 0.65 ( Dec ) classes 5,

16, 21, 25–27, 34, 38, 40,
41, 57, 59, 65, 74

Group B3
> 0.4 ( Jan–Dec ) and < 0.815 ( Jul ) and

> 0.5 ( Jan ) and > 0.65 ( Dec ) classes 10,
12, 14, 17, 20, 24

Group B2
> 0.4 ( Jan–Dec )
and < 0.81 ( Jul )

and < 0.5 ( Jan–Mar )
classes 35, 44, 62, 63,

72, 76, 77, 79, 86,
89, 92, 98

Group B3
> 0.4 ( Jan–Dec )

and < 0.8 ( Jul ) and
> 0.5 ( Jan )

Group A12
< 0.2 ( Jan–Dec )

and > 0.15 ( Jul–Sep )
and > 0.18, < 0.19

( Jul–Aug )
classes 217, 240

Group A13
< 0.2 ( Jan–Dec )

and > 0.15 (Jul–Sep )
and > 0.19 ( Jul–Aug )

classes 166, 193, 225, 234

Group A3
< 0.2 ( Jan–Dec ) and

< 0.1 ( Jan–Sep )
classes 222, 227, 239

Group A4
< 0.2 ( Jan–Dec ) and >0.14

( July–Aug ) and < 0.15 ( Sep )
and > 0.11 ( Oct ) classes 195,

198, 210

Group A5
< 0.2 ( Jan–Dec ) and
> 0.1 (Jul–Aug ) amd
< 0.11 ( Sep ) classes

190. 248

Group C1
> 0.4 ( Jul–Aug )

and < 0.4 ( Sep–Jun )
and < 0.2 ( Nov–Dec )
classes 196, 207, 218

Group C2
> 0.4 (Jul–Aug )

and < 0.4 ( Sep–Jun )
and > 0.2 ( Nov–Dec )

and > 0.22 ( Nov )
classes2, 113, 169, 171,

177,181

Group C3
> 0.4 (Jul–Aug )

and < 0.4 ( Sep–Jun )
and >0.2 ( Nov–Dec )

and < 0.22 ( Nov )
classes 175, 184, 187, 197,

207, 209, 226

Figure 8. Decision tree algorithms. A rule-based decision tree algorithm to resolve and group
a wide array of classes using NDVI threshold by writing a rule-base as illustrated.
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IFPCIA the irrigated field-plots classified as irrigated areas (number), TIFP the total

irrigated field-plots (number), NIFPIA the non-irrigated field-plot points classified

as irrigated area (number), TNIFP the total non-irrigated field-plots (number) and

IFPNIA the irrigated field-plots classified as non-irrigated areas (number).

5. Results and discussion

5.1 LULC fractions

Each agricultural land-use class mapped using the SMTs is a combination of several

land cover types (see table 4). For example, in table 4(a) cultivable areas dominate in

class 6 (84.4%) but there are other land cover types including 1.5% trees, 1.1% shrubs,

2.9% grass and 3.7% others, the last including fallows, weeds, rocks and built-up
lands. In these cultivable areas, cotton was the predominant crop, whilst rice and

grains were the next most commonly seen crops. Accurate estimation of various

thematic areas was obtained by joining classes as follows (see table 4):

Class 6 cultivable land ¼ ðClass area of class 6Þ � ðCultivable land cover %Þ
¼ 21 208 � ð84:4=100Þ ¼ 17 921 km2: (4)

Using the same approach, there was 86 699 km2 (sum of areas of classes 5–8 in table

5(a)) net irrigated area in 2000–2001, and 77 189 km2 (sum of areas of classes 5–8 in

table 5(b)) net irrigated area in 2002–2003, including surface water.

5.2 LULC maps and area statistics

Nine exactly similar classes were mapped for the water-surplus year (2000–2001;
figure 9(a) and table 5(a)) and the water-deficit year (2002–2003; figure 9(b) and

table 5(b)). The spectral characteristics of these classes are shown in figure 10(a)

(water-surplus year) and10(b) (water-deficit year).

Classes were identified based on field-plot data, including GPS-referenced digital

images and field observations. The LULC area in the Krishna River basin for

2000–2001(table 5(a)) was: water bodies 1.9% of the total area, shrub lands mixed

with range lands and fallows 24.5%, rain-fed agriculture 22.2%, rain-fed þ ground-

water irrigation 11.3%, minor irrigation, including tanks and small reservoirs, 8.0%,
classes with surface irrigation by canal 19.6% and forest 8.4%.

The LULC area in the Krishna River basin for 2002–2003(table 5(b)) was: water

bodies 1.0%, shrub lands mixed with range lands and fallows 28.1%, rain-fed agri-

culture 17.4%, rain-fed þ groundwater irrigation 22.0%, minor irrigation, including

tanks and small reservoirs, 7.6%, classes with surface irrigation by canal 10.2% and

forest 8.6%.

By using spectral signatures, this study identified major changes in groundwater-

irrigated areas and rain-fed areas in the major command areas, demonstrating the
usefulness of spectral matching techniques. The results show that there was a marginal

decrease in the total irrigated area (including surface water and groundwater areas) of

the Krishna basin from 2000–2001 (86 698 km2) to 2002–2003 (77 189 km2). The

increase in the groundwater-irrigated area from 2000–2001 (22 789 km2) to 2002–2003

(35 268 km2) in contrast to the decrease in the surface-water-irrigated area from

2000–2001 (63 909 km2) to 2002–2003 (41 921 km2) was very significant as a result

of lower water storages in the reservoirs in the water-deficit year (2002–2003).

NDVI, water use, agriculture, irrigation and land use 3509

D
ow

nl
oa

de
d 

by
 [

IR
R

I 
In

te
rn

at
io

n 
R

ic
e 

R
es

ea
rc

h 
In

st
itu

te
],

 [
M

ur
al

i K
ri

sh
na

 G
um

m
a]

 a
t 2

2:
32

 2
8 

Ju
ne

 2
01

1 



T
a

b
le

4
.

D
is

tr
ib

u
ti

o
n

o
f

la
n

d
co

v
er

ty
p

es
fo

r
ea

ch
la

n
d

u
se

p
ro

v
id

in
g

a
n

u
n

d
er

st
a

n
d

in
g

o
f

su
b

-p
ix

el
fr

a
ct

io
n

s
fo

r
th

e
n

in
e

fi
n

a
l
cl

a
ss

es
in

th
e

K
ri

sh
n

a
R

iv
er

b
a

si
n

(I
n

d
ia

):
(a

)
d

u
ri

n
g

th
e

w
a

te
r-

su
rp

lu
s

y
ea

r
(2

0
0

0
–

2
0

0
1

)
a

n
d

(b
)

d
u

ri
n

g
th

e
w

a
te

r-
d

ef
ic

it
y

ea
r

(2
0

0
2

–
2

0
0

3
).

F
ra

ct
io

n
o

f
v

eg
et

a
ti

o
n

co
v

er
(%

)

L
U

L
C

A
re

a
(k

m
2
)

N
T

re
es

S
h

ru
b

s
G

ra
ss

O
th

er
s

O
p

en
C

ro
p

s
M

a
jo

r
cr

o
p

s

(a
)

C
la

ss
1

:
W

a
te

r
b

o
d

ie
s

5
1

7
6

–
–

–
–

–
–

–
C

la
ss

2
:

S
h

ru
b

la
n

d
s

m
ix

ed
w

it
h

ra
n

g
e

la
n

d
s

6
5

2
2

3
1

5
6

.7
2

4
.3

6
.9

1
4

.2
8

.6
3

9
.3

G
ra

in
s,

o
il

se
ed

s
C

la
ss

3
:

R
a

n
g

e
la

n
d

s
m

ix
ed

w
it

h
ra

in
-f

ed
1

0
4

4
1

3
3

0
.7

1
.0

2
2

.0
1

9
.1

1
5

.1
4

2
.2

G
ra

in
s,

o
il

se
ed

s,
p

u
ls

es
C

la
ss

4
:

R
a

in
-f

ed
a

g
ri

cu
lt

u
re

5
9

1
2

2
1

7
4

.8
5

.0
9

.9
8

.7
4

.9
6

6
.8

R
ic

e,
g

ra
in

s,
o

il
se

ed
s,

p
u

ls
es

C
la

ss
5

:
R

a
in

-f
ed
þ

g
ro

u
n

d
w

a
te

r
3

0
1

4
6

2
5

2
.1

1
.3

3
.4

7
.1

1
0

.6
7

5
.6

R
ic

e,
o

il
se

ed
s,

p
u

ls
es

,
g

ra
in

s,
co

tt
o

n
,

ch
il

li
C

la
ss

6
:

M
in

o
r

ir
ri

g
a

te
d

(l
ig

h
t/

ta
n

k
)

2
1

2
0

8
6

1
.5

1
.1

2
.9

6
.3

3
.7

8
4

.5
C

o
tt

o
n

,
g

ra
in

s,
o

il
se

ed
s,

ri
ce

C
la

ss
7

:
Ir

ri
g

a
te

d
,

co
n

ti
n

u
o

u
s

cr
o

p
2

7
1

8
7

1
0

2
.7

2
.0

1
.7

2
.3

2
.4

8
8

.9
S

u
g

a
r

ca
n

e,
fo

d
d

er
g

ra
ss

,
ch

il
li

,
co

tt
o

n
C

la
ss

8
:

Ir
ri

g
a

te
d

,
d

o
u

b
le

-c
ro

p
ri

ce
,

ch
ic

k
p

ea
2

4
8

8
4

2
2

1
.7

3
.7

1
.9

2
.8

2
.2

8
7

.6
R

ic
e,

g
ra

in
s,

p
u

ls
es

C
la

ss
9

:
F

o
re

st
s

2
2

3
6

1
1

2
6

0
.2

1
1

.2
3

.0
2

.7
1

.6
2

1
.3

T
ea

k
,

co
ff

ee
,

a
re

ca
n

u
t,

ri
ce

B
a

si
n

to
ta

l
2

6
5

7
5

2
1

4
0

1
0

.0
6

.2
6

.5
7

.9
6

.1
6

3
.3

(b
)

C
la

ss
1

:
W

a
te

r
b

o
d

ie
s

2
5

3
2

–
–

–
–

–
–

–
C

la
ss

2
:

S
h

ru
b

la
n

d
s

m
ix

ed
w

it
h

ra
n

g
e

la
n

d
s

6
4

2
9

3
2

8
1

.0
3

4
.0

5
.6

1
8

.4
1

0
.2

3
0

.8
G

ra
in

s,
o

il
se

ed
s

C
la

ss
3

:
R

a
n

g
e

la
n

d
s

m
ix

ed
w

it
h

ra
in

-f
ed

1
0

4
0

6
1

1
4

.8
5

.0
9

.9
1

5
.8

8
.7

5
5

.8
G

ra
in

s,
o

il
se

ed
s,

p
u

ls
es

C
la

ss
4

:
R

a
in

-f
ed

a
g

ri
cu

lt
u

re
4

6
2

0
2

2
2

0
.7

1
.0

2
.0

6
.2

1
.8

8
8

.3
R

ic
e,

g
ra

in
s,

co
tt

o
n

,
ch

il
li

,
o

il
se

ed
s,

p
u

ls
es

,
v

eg
et

a
b

le
s

C
la

ss
5

:
R

a
in

-f
ed
þ

g
ro

u
n

d
w

a
te

r
5

8
4

8
8

1
6

2
.1

1
.3

1
8

.4
1

0
.8

7
.1

6
0

.3
R

ic
e,

o
il

se
ed

s,
p

u
ls

es
,

g
ra

in
s,

co
tt

o
n

,
ch

il
li

C
la

ss
6

:
M

in
o

r
ir

ri
g

a
te

d
(l

ig
h

t/
ta

n
k

)
3

3
7

8
8

1
9

1
.5

1
1

.1
6

.9
3

.7
6

.3
7

0
.5

C
o

tt
o

n
,

g
ra

in
s,

o
il

se
ed

s,
ri

ce
C

la
ss

7
:

Ir
ri

g
a

te
d

,
la

te
si

n
g

le
cr

o
p

2
0

1
9

6
1

6
6

.7
2

.0
8

.7
1

2
.8

1
1

.3
5

8
.5

S
u

g
a

r
ca

n
e,

fo
d

d
er

g
ra

ss
,

ch
il

li
,

co
tt

o
n

C
la

ss
8

:
Ir

ri
g

a
te

d
,

d
o

u
b

le
-c

ro
p

ri
ce

,
ch

ic
k

p
ea

6
9

9
1

2
2

1
.7

1
.6

2
.2

2
.8

1
.8

8
9

.9
R

ic
e,

g
ra

in
s,

p
u

ls
es

C
la

ss
9

:
F

o
re

st
s

2
2

8
5

5
6

5
0

.7
1

2
.2

3
.0

1
0

.2
2

.7
2

1
.2

T
ea

k
,

co
ff

ee
,

a
re

ca
n

u
t,

ri
ce

B
a

si
n

to
ta

l
2

6
5

7
5

2
1

4
0

8
.7

8
.5

7
.1

1
0

.1
6

.2
5

9
.4

N
o

te
:

N
is

n
o

o
f

sa
m

p
le

p
o

in
ts

.

3510 M. K. Gumma et al.

D
ow

nl
oa

de
d 

by
 [

IR
R

I 
In

te
rn

at
io

n 
R

ic
e 

R
es

ea
rc

h 
In

st
itu

te
],

 [
M

ur
al

i K
ri

sh
na

 G
um

m
a]

 a
t 2

2:
32

 2
8 

Ju
ne

 2
01

1 



Figure 9. The final nine agricultural cropland classes and other LULC classes for: (a) the
water-surplus year (2000–2001) and (b) the water-deficit year (2002–2003).
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5.3 Accuracy assessment

A qualitative accuracy assessment was performed to check if the irrigated area would be

classified as irrigated or not without checking for crop type or type of irrigation. The

accuracy assessment was performed using field-plot data, to derive a robust

Figure 10. The MODIS NDVI spectral signatures of the nine agricultural cropland and
LULC classes for: (a) the water-surplus year (2000–2001) and (b) the water-deficit year
(2002–2003).

NDVI, water use, agriculture, irrigation and land use 3513
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understanding of the accuracies of the data sets used in this study. The field-plot data

were based on an extensive field campaign conducted throughout the Krishna basin

during Kharif season by the International Water Management Institute researchers and

consisted of 144 points.

Accuracy assessment provides realistic class accuracies where land cover is hetero-
geneous and pixel sizes exceed the size of uniform land cover units (see Gopal and

Woodcock 1994, Thenkabail et al. 2005, Biggs et al. 2006). For this study, we had

assigned 3� 3 cells of MODIS pixels around each of the field-plot points to one of six

categories: absolutely correct (100% correct), largely correct (75% or more correct),

correct (50% or more correct), incorrect (50% or more incorrect), mostly incorrect

(75% or more incorrect) and absolutely incorrect (100% incorrect). Class areas were

tabulated for a 3� 3-pixel (9 pixels) window around each field-plot point. If nine out

of nine MODIS classes matched with the field-plot data, then it was labelled abso-
lutely correct and so on (table 6).

The accuracies and errors of the LULC map were assessed based on intensive field-

plot data. The 140 field-plot data points reserved for accuracy assessment from the

Krishna basin field campaigns provided a fuzzy classification accuracy of 61–100%

for the various classes (table 6). The fuzzy accuracies were 61–81% for rain-fed and

irrigated classes with most of the intermixing occurring between two irrigated classes

or two rain-fed classes.

5.4 Comparisons with census data

The LULC area statistics of the Krishna basin districts were obtained from the

Bureau of Economics and Statistics, Andhra Pradesh, the Directorate of Economics

and Statistics, Karnataka, and the Department of Agriculture, Maharashtra. The

data were obtained at district level from the respective states. These data were

fractionalized based on the district-wise area covered in the Krishna basin for a

comparative study with the MODIS data. The fractionized statistics data were

compared with the MODIS data for the years 2001 and 2003. Most of the districts’
data matched with the MODIS data for the year 2003 as compared to 2001, and the

difference between the statistical data and MODIS data varied between -30% and

30% (figure 11).

5.5 Agricultural cropland change map

The changes in agricultural croplands in the water-deficit year (2002–2003) were

compared with those in the water-surplus year (2000–2001) for the entire Krishna

basin (figure 12 and table 7). The change in irrigated area was not highly significant
with an area of 8 669 881 ha during the water-surplus year, compared with 7 718 926

ha during the water-deficit year. However, major changes were observed in the

cropping intensity and pattern (e.g. from double crop to single crop; table 7) due to

changes in water availability in the Krishna basin. The changes were as follows:

l 1 078 564 ha changed from double crop (in 2000–2001) to single crop (in

2002–2003),

l 1 461 177 ha changed from continuous crop to single crop,

l 704 172 ha changed from irrigated single crop to fallow and

l 1 314 522 ha changed from minor irrigation (e.g. tanks, small reservoirs) to rain-

fed.
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Figure 11. Accuracy assessment and validation. The district-wise irrigated areas derived using
MODIS 250 m compared with agricultural census data for: (a) the year 2000–2001 and (b) the
year 2002–2003.
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Areas under continuously irrigated crops like sugar cane were converted to crops like

rice and maize (figure 12, class 1). Double-cropped areas were brought under single-

crop rice and pulses. Intensively irrigated areas including groundwater-irrigated areas

in 2000–2001 were under fallows in 2002–2003. Large areas under minor irrigation

changed to groundwater irrigation due to low rainfall. These changes clearly imply
heavily reduced food production in the Krishna basin during water-deficit years. The

results are specially relevant in a changing climate where there is a need for

Table 7. Agricultural cropland change response to water availability. The table shows how
the irrigated croplands changed from 2000–2001 (the water-surplus year) to 2002–2003 (the

water-deficit year).

Crop land change from 2000–2001 to 2002–2003 Area (ha)

Irrigation double crop to single crop 1 078 564
Irrigation continuous crops to irrigation single crop 1 461 177
Irrigation single crop to fallow 704 172
Minor irrigation to rain-fed 1 314 522
Other classes 22 113 683

Figure 12. Land-use change map from 2000–2001 (the water-surplus year) to 2002–2003 (the
water-deficit year). Most of the changes occurred in intensity (e.g. double crop in the water-
surplus year to single crop in the water-deficit year) as shown in the legend.
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adaptability. For example, it may be recommended to go for less water-consuming

crops during water-deficit years, which may enable growing crops over larger areas

thus helping the farming communities.

6. Conclusions

The study highlights the highly significant agricultural land-use changes that took

place as a result of inter-annual variations in water availability. The rain-fed and

irrigated areas were mapped with a fuzzy classification accuracy of 61–81% using

MODIS 250-m time-series images and SMTs. The MODIS-based irrigated cropland

statistics for the districts were highly correlated (R2 coefficient of determination value

of 0.82–0.86) with the Indian Bureau of Statistics-reported figures.
The study was conducted in the very large Krishna River basin in India, which has

an area of 265 752 km2 (26 575 200 ha). The changes in the water-deficit year

(2002–03) when compared with the water-surplus year (2000–2001) were of great

magnitude: (a) 1 078 564 ha changed to single crop (in 2002–2003) from double

crop (in 2000–2001); (b) 1 461 177 ha changed to single crop from continuous crop;

(c) 704 172 ha changed to fallow from irrigated single crop; (d) 1 314 522 ha changed

to rain-fed from minor irrigation (e.g. tanks, small reservoirs). The implication of

such changes on water use and food security will be significant. The study is especially
relevant in a changing climate where there is a need to see how changes occur in

croplands, their implications on water use, and strategies for adaptability to ensure

food security. The outcome of this research highlights the value of using MODIS

250 m time-series data and advanced methods like spectral matching techniques in the

study of agricultural cropland changes in large river basins.
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