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Land use conversion increases network complexity and stability
of soil microbial communities in a temperate grassland
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Soils harbor highly diverse microbial communities that are critical to soil health, but agriculture has caused extensive land use
conversion resulting in negative effects on critical ecosystem processes. However, the responses and adaptations of microbial
communities to land use conversion have not yet been understood. Here, we examined the effects of land conversion for long-term
crop use on the network complexity and stability of soil microbial communities over 19 months. Despite reduced microbial
biodiversity in comparison with native tallgrass prairie, conventionally tilled (CT) cropland significantly increased network
complexity such as connectivity, connectance, average clustering coefficient, relative modularity, and the number of species acting
at network hubs and connectors as well as resulted in greater temporal variation of complexity indices. Molecular ecological
networks under CT cropland became significantly more robust and less vulnerable, overall increasing network stability. The
relationship between network complexity and stability was also substantially strengthened due to land use conversion. Lastly, CT
cropland decreased the number of relationships between network structure and environmental properties instead being strongly
correlated to management disturbances. These results indicate that agricultural disturbance generally increases the complexity and
stability of species “interactions”, possibly as a trade-off for biodiversity loss to support ecosystem function when faced with
frequent agricultural disturbance.
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INTRODUCTION
Land use conversion, largely due to agricultural expansion, has
considerably impacted ecosystem structure and function [1, 2].
Grasslands often have deep, rich soils that support increased soil
carbon, making them targets for conversion for agricultural
cultivation [3]. Temperate grasslands in the central U.S. have
undergone one of the greatest anthropogenic transformations
with habitat conversion greatly exceeding habitat protection [4].
From 2008 to 2012, roughly 77of new croplands in the U.S. were
originally grasslands [5], and in the Southern Great Plains, these
new croplands replaced approximately 11,000 km2 of grasslands
with winter wheat (Triticum aestivum L.) alone [6], the dominant
crop in this area. This extensive ecosystem conversion has resulted
in significant declines in soil health, which also includes the effects
on the soil biota and biotic processes [7].
Soil microorganisms are essential for providing many ecosystem

services needed for agricultural production, but they are also very
sensitive to land use changes and management disturbances [8].
Numerous studies examining the responses of microbial commu-
nities to agricultural land use and management consistently
showed that increasing land use intensification significantly
decreased microbial community diversity and shaped microbial

community composition [9–11]. In addition, these studies also
revealed that land use conversion substantially changed intrinsic
soil properties such as soil moisture, pH, and nutrient status, all of
which are known to further affect microbial community dynamics
[12–14]. While many types of agricultural management exist,
tillage is one of the most common practices that causes the
largest disturbance and has led to the greatest degradation of soil
ecosystems [15]. Tillage physically disturbs the soil, breaks down
soil structure, causes nutrient loss [15, 16], and leaves the soil
more vulnerable to climatic differences resulting in more
perturbation to soil microbial communities. While previous studies
have been valuable for describing the impact of agriculture on
community composition, diversity, and the role of biotic and
abiotic factors in shaping communities, few have investigated the
associations among soil microorganisms which are likely more
important to the functioning of complex ecosystems [17].
Individual populations of microbial species do not exist alone,

but instead interact to form complex microbial communities
[18, 19], and these interactions represent a crucial dimension of
microbial community ecology. The widely used method of
ecological network analysis has proven to be a powerful tool to
examine the associations and organization of microbial
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communities [19–21]. It also provides a way to study community
complexity and stability [22, 23], and serves as a basis to quantify
the contribution of microbial interactions to ecosystem functions
and services. The topological features of these networks have
been shown to change with environmental conditions [24–26]
and can be used to reflect the ability of the ecosystem to respond
to such changes [27]. Recently, studies have investigated the
associations of complex microbial systems in response to
anthropogenic activities, including groundwater pollution [24],
deforestation [26], nitrogen addition [28], and climate warming
[22], but the effects on network associations due to converting
native land for long-term cropland is still largely unknown. Yet, it is
expected that the introduced disturbances will significantly affect
the assembly and overall composition of the soil microbial
community [29], emphasizing the importance of preserving biotic
interactions that are equally at risk as individual species of
extinction due to anthropogenic disturbances [30].
For these reasons, we set out to understand whether and how

native land use conversion for long-term cropland affects the
complexity and stability of soil microbial community networks by
examining the temporal dynamics of soil microbial communities in
native tallgrass prairie (TGP) and conventionally tilled (CT) winter
wheat site in the U.S. Southern Plains in El Reno, Oklahoma. While
previous studies from this area have shown that land use and
sampling time impact bacterial abundance [31] and bacterial
community diversity and composition [32] with increased manage-
ment intensification having the greatest impact, it is not clear if the
network dynamics of the microbial communities will be similarly
affected. In this study, we aimed to address: (1) how does land use
conversion from the native ecosystem to cropland impact the
complexity and stability of the molecular ecological networks
(MENs) over time? (2) does land use conversion from the native
ecosystem to cropland change the relationship between the
complexity and stability of the MENs?, and (3) are the relationships
between complexity and stability of the MENs with environmental
factors altered due to land use conversion and management
practices? We hypothesized that increasing habitat disturbance
under cropland would increase the complexity of species associa-
tions resulting in a more complex and stable network.

RESULTS AND DISCUSSION
Overall characteristics of the constructed molecular ecological
networks
Molecular ecological networks were constructed for each sampling
month resulting in 19 networks per land use (Fig. 1a, Fig. S1) [18]. In
general, the empirical MENs were significantly different from the
random MENs (Table S1). The overall topological properties
(Table S1) revealed that the degrees of distribution (i.e., connectiv-
ity) fitted well with the power-law model with R2 values for CT
wheat (0.75–0.95) and the native TGP (0.72–0.85), indicative of scale-
free networks (Supplementary Text B). Networks also exhibited
small-world properties with average path lengths (geodesic
distance, GD) ranging from 3.3 to 8.3 for CT wheat and from 3.2
to 10.4 for the native TGP. The short path length between nodes
enables efficient, rapid communication between network members
and allows disturbances to spread quickly through the network for
swift reactions [18], which is critical for responding to environmental
changes. In addition, properties such as modularity can also be
important for minimizing the impacts of disturbance by containing
the disturbance and damage at a local level [33]. Modularity values
for CT wheat and the native TGP were significantly greater (p= 0.04
and p < 0.001, respectively) than the corresponding modularity
values for the randomized networks and the relative modularity was
> 0, which is evidence of modular networks. Together, the
architecture of these networks enables efficient communication
between network members, which has important implications for
microbial community dynamics in response to land use conversion.

Importance of “biotic interactions” in shaping molecular
ecological networks
Although biotic interactions are a key part of regulating community
assembly and disassembly [34], theoretically the observed species
co-occurrence patterns in the MENs could also be largely due to
environmental filtering and dispersal limitation [35]. Yet, it remains
challenging to disentangle these mechanisms and determine the
importance of biological interactions in ecological community
assembly [36]. Therefore, we used multiple methods, such as CCA-
based variation partitioning analysis (VPA) and the link test for
environmental filtering and dispersal limitation (LTED) [22], to
determine the relative contributions of these ecological processes
to species co-occurrence in the MENs. While CCA results indicated
that soil and climate variables had a significant (p ≤ 0.05) impact on
the networked microbial communities (Supplementary Text C), VPA
showed that over half of the variation (57.5%, Fig. 2a) could not be
explained by the measured environmental variables (i.e., environ-
mental filtering effect), and distance between samples only had a
noticeable effect (14.9%) when considering interaction with soil
properties. LTED suggested similar results of minor contributions (<
1% of links on average) from environmental filtering considered
taxon-taxon-environmental covariates using the network correla-
tion cutoff (Fig. 2b). When the correlation threshold (|r|) was
lowered, links due to taxon-taxon-environment covariates increased
in the CT wheat on average, but were still relatively minimal
(2.1–20.0%). Additionally, dispersal limitations impacted less than
5% of links (Fig. 2c) in the networks on average (p ≤ 0.05, r > 0)
based on LTED, and only 1.14 and 0.81% of the links on average
were considered significant strong correlations (p ≤ 0.05, r ≥ 0.5) due
to dispersal limitations. Collectively, these results indicated that
biotic interactions could be the major driver shaping MENs in this
study. Nevertheless, soils are highly heterogenous environments
making it exceptionally difficult to determine the involvement of
unmeasured environmental variations, especially in agriculturally
managed systems which are rapidly fluctuating environments [8].
For this reason, the estimated “biotic interactions” via co-
occurrence-based analyses should be at most considered putative
biotic interactions [22] as well as interpreted with great caution [37].

Networked community structure
The next critical question was how land use conversion impacted
the composition and structure of the MENs. The number of ASVs
used for network construction was on average 39% greater in the
native TGP than CT wheat, and the resulting constructed networks
were 24% larger. By contrast, 43% of ASVs made it into the
constructed CT wheat networks compared to 34% of ASVs in the
native TGP networks. Also, when considering ASVs in large
modules (≥10 nodes), 72% of the nodes were in large modules in
the CT wheat networks compared to 63% of nodes in the native
TGP networks. Together, these results suggested that the CT
wheat microbial taxa might associate more closely with each other
than those of the native TGP.
The composition of the networked microbial communities

significantly differed between the CT wheat cropland and the
native TGP (Supplementary Text D). The two clusters representing
CT wheat cropland and the native TGP communities were
separate from each other as shown by principal coordinate
analysis (Fig. S2a). Similarly, three non-parametric dissimilarity
analyses (MRPP, ANOSIM, and Adonis; Table 1) confirmed that the
networked microbial communities significantly (p= 0.001) dif-
fered by land use as well as sampling time. The diversity under CT
wheat land use was lower for both the whole and networked
communities. Meanwhile, compared with the whole community,
the biodiversity of the networked microbial communities sig-
nificantly (p < 0.001) decreased by more than half (0.27–0.47 for CT
wheat and 0.27–0.45 for the native TGP) as measured by richness,
phylogenetic diversity, and effective number of species from
Shannon index. This suggests there might be a substantially
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reduced species pool from which the networked communities
could draw (Fig. S2b). Management intensification and the
resulting environmental changes likely acted as a deterministic
filtering factor generating dynamic changes to the microbial
communities and their network structure, which agreed with
previous studies showing that land use strongly impacted
microbial community structure [14, 38, 39].

Differences in complexity of MENs
To determine how land conversion for long-term cropland
affected microbial network complexity, we closely examined
several network topological properties. Based on 22 different
network topological properties, the microbial MENs under CT

wheat land use displayed noticeable variation in network structure
compared to the native TGP over the 19-month sampling period
(Fig. 1b; Figure S1). Network size (p= 0.001, W= 73) and
modularity (M; p < 0.001, W= 5.5) significantly decreased under
CT wheat, while average connectivity (avg K; p= 0.001, W= 219),
connectance (con; p < 0.001, W= 345), and average clustering
coefficient (avg CC; p= 0.077, W= 242) strongly increased under
CT wheat (Fig. 1c, Table S1). The majority of the native TGP
network topological properties remained stable over the 19-
month sampling period compared to CT wheat cropland proper-
ties that had observable temporal variations. Furthermore, the
relative modularity (how modular a network is as compared with
the mean expected modularity, RM) of MENs was calculated as it is

Fig. 1 Temporal dynamics of soil microbial networks. a Visualization of soil microbial networks. Difference of molecular ecological networks
(MENs) due to land conversion represented by single tallgrass prairie (TGP) MEN since was relatively stable over sampling time. The other
networks depict temporal differences of MENs for the conventional till (CT) wheat land use. Large modules with ≥10 node are shown in
different colors, and smaller modules are shown in gray. Colors are not conserved between networks. Visual representations of all CT networks
are found in Fig. S1. b Twenty-two network topological parameters were used for principal component analysis (PCA) to show differences in
overall network properties over 19-month sampling period. Sampling times groups by season. c Temporal changes of select network
topological parameters, including links, average K, and Modularity. Red circles represent networks under CT wheat land use and blue squares
represent native TGP (control) land use. The dashed red line represents the mean of the properties for CT wheat land use.
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considered more meaningful for comparing modularity across
networks (Supplementary Text E). The RM was significantly greater
(p= 0.05) under CT wheat compared to the native TGP. These
results indicated that MENs under CT wheat were on average
more complex and experienced substantially more temporal
variation, which coincided with and was likely due to the
management (Fig. 1c) that occurred under CT wheat land use.
Variations in the structure of the microbial MENs could affect

the network organization principles (i.e., modularity). Networks
under CT wheat consisted of 189 large modules (modules with
≥10 nodes) accounting for 34.4–91.2% of the node in each MENs
while the native TGP networks had 430 large modules totaling
52.4–71.1% of the networked nodes (Table S1). Between CT wheat
and the native TGP, there were no preserved modular pairs
(Table S3). In short, preserved module pairs are modules that
contain a significantly large proportion of shared nodes when two
modules in different networks are compared [20]. The native TGP
also did not have any preserved module pairs over the sampling
period in comparison with 67 preserved module pairs for CT
wheat, suggesting that CT wheat land use resulted in greater
similarities in module identity.
Differences in network complexity could also impact the role of

individual members within the network with the identity of the

keystone nodes differing between land uses (Supplementary
Text D). The roles of each node were classified based on the
within-module connectivity (Zi) and among-module connectivity
(Pi) [18]. A total of 433 and 637 module hubs were identified for
the CT wheat and the native TGP networks (Table S4–S7),
respectively. The CT wheat networks also consisted of 38 network
hubs and 456 connectors. However, the native TGP networks had
no network hubs and only one connector for all networks.
Together, module hubs, network hubs, and connectors are
considered keystone nodes or nodes that play critical roles in
shaping network structure [40] and drive community composition
regardless of their abundance. Of the 1226 unique ASVs that acted
as keystone nodes among all MENs, only 18 (1.5%) were found to
be shared between both land uses. Additionally, of the keystone
nodes within each land use, 17.7% acted as keystones in two or
more of the CT wheat networks compared to only 3.8% in the
native TGP networks. Taken together, CT wheat land use altered
the roles of members within the networks and resulted in a
greater number of temporally preserved keystone nodes.
Although the microbial community was more diverse and the

networks were larger under the native TGP land use, the resulting
networks were less complex, suggesting that greater diversity
does not necessarily mean greater complexity [41]. This

Table 1. Significance tests of the networked communities between conventional till (CT) wheat and native tallgrass prairie (TGP) land use.

Dataset Factor MRPP ANOSIM Adonis

δ p value r p value F p value

All Field 0.579 0.001 0.943 0.001 182.6 0.001

Month 0.693 0.001 0.144 0.001 2.156 0.001

TGP Month 0.457 0.001 0.726 0.001 4.043 0.001

CT Wheat Month 0.533 0.001 0.443 0.001 3.778 0.001

Three different permutation tests were performed (MRPP, ANOSIM, and Adonis) on the basis of Bray–Curtis distance.
Bold values indicated significant p values.

Fig. 2 The relative contributions of different ecological processes to the observed network links. a Variation partitioning analysis (VPA)
based on significant (p ≤ 0.01) CCA model for networked microbial community. Soil category includes soil temperature, soil water content
(SWC), soil pH, topsoil nitrate (NO3

-), ammonia (NH4
+), soil organic matter (OM), and available phosphorus (AP). Climate category includes

average rainfall and average air temperature. Details of the CCA model can be found in Supplementary Table 8. b and c Analyses using the
Link Test for Environmental filtering or Dispersal limitation (LTED). b The links in the molecular ecological networks (MENs) were tested with
the 12 soil and climatic variables at the network correlation cutoff (St= 0.96) and a lower correlation threshold cutoff of |r | ≥ 0.8. In short, if a
link between two taxa was caused by their covariation with environmental conditions, strong correlations between each taxon and the
responsible environmental variable should be observed. c If dispersal limitation simultaneously affects the abundance distribution of two
species across space, the abundances of both species are expected to covary with spatial distance. Therefore, assuming dispersal limitation
was the only factor governing community assembly, the further away the sampling locations, the larger difference in the observed species
abundances. For a pair of linked nodes in a network, it was tested whether significant (p ≤ 0.05, r > 0), and significant strong positive (p ≤ 0.05,
r ≥ 0.5) correlations were observed simultaneously between the pairwise distance among sampling locations, and the difference in their
relative abundance among samples based on Pearson correlation.
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observation could arise for various reasons. For example, tallgrass
prairies harbor greater aboveground plant species diversity (i.e.,
combination of several C3 and C4 species), providing more diverse
nutrient and energy sources for the belowground microbial
communities compared to croplands where nitrogen fertilizers
provide the majority of the nutrients [42]. Therefore, the more
diverse environmental nutrient and energy may support the
microbial community instead of supplies through complex species
interactions [41]. Another potential explanation could be greater
functional redundancy due to higher microbial biodiversity in
tallgrass prairies. Microbes often interact through function/
metabolite preference [43], and higher diversity and functional
redundancy of the microbial community reduces reliance on a few
taxa and provides more opportunity for microbes to generate
relationships within neighborhoods (i.e. modules). This could lead
to greater modularity, reduced complexity, and the lack of
persevered module pairs and keystone taxa as observed under
native land use. In addition, the greater modularity in native land
use is likely linked to stronger niche differentiation [44, 45] as the
soils in native tallgrass prairies are generally a more hetero-
geneous and disconnected habitat compared to soils that are
mixed by tilling creating a more homogeneous soil structure.

Impacts on the stability of MENs
To determine whether and how land use conversion affected
MENs stability, multiple stability indices were calculated based on
simulations and empirical data. First, robustness or the resistance
to node loss [46] of the MENS was calculated by simulating species
extinction. Under random species loss (Fig. 3a), the MENs had
significantly higher robustness (p < 0.001, W= 317) under CT
wheat land use than the native TGP. When five module hubs were
targeted for removal (Fig. S5a), there was no significant difference
(p= 0.246, W= 221) in robustness. Yet, when 50% of module hubs
were removed (Fig. 3a), robustness of the MENs was significantly
greater (p < 0.001, W= 361) under CT wheat land use than the
native TGP. Second, the vulnerability or the maximum decrease in
efficiency when a single node was deleted from the network [47]
was significantly lower (p < 0.001, W= 47) under CT wheat land
use (Fig. 3b). Third, while the temporal invariability of the
community composition [48] was greater (p < 0.001, W= 6825)
under the native TGP based on consecutive monthly comparisons
(Fig. S5b), more of the same nodes were present under CT wheat
than the native TGP when any two pairs of networks were
compared (p= 0.02, W= 53.5; Fig. 3c). This held true for
comparisons up to any six networks (p < 0.005). The compositional
stability and node persistence strongly correlated under both CT
cropland (p < 0.001, rho= 0.94) and the native TGP (p < 0.001,
rho= 0.89; Fig. 3d), but the slope was significantly greater
(p < 0.001) under CT wheat. The constancy (inverse of temporal
variations) of nodes (Figure S5e) was greater (p= 0.001) under the
native TGP land use, while the constancy of links (Fig. S5f) was
greater (p < 0.001) under CT wheat land use. Overall, the
networked CT wheat microbial community was more stable and
consistent over time with significantly more shared nodes
between networks, conserved modules, and conserved keystone
nodes compared to the native TGP land use (Supplementary
Text E). Nevertheless, for the whole community, CT wheat had a
much lower number of overlapping ASVs than the native TGP
when comparing any two sampling times (Fig. S5c), indicating low
retention of species over time in the species pool for the
networked CT wheat to draw from. Similar to macroorganisms
[49, 50], land use conversion can cause biotic homogenization of
microbial communities [26, 51], which leads to greater similarity of
communities over time and/or space [52]. This could be a cause
for concern if biotic homogenization is a result of the loss of
endemic taxa as these taxa tend to have unique traits, and
homogenization of these traits likely alters ecosystem function
and reduces ecosystem resilience [49, 53].

Significant correlations were detected between network stability
and network complexity that differed with land use. Overall,
robustness, compositional stability, and node persistence signifi-
cantly (p ≤ 0.05) positively correlated with several network complex-
ity indices under CT wheat (Fig. 3e), while only robustness had
significant positive correlations with network complexity for the
native TGP (Fig. S5d). Consistently, network stability indices under
CT wheat significantly positively correlated with nodes, average
connectivity, and relative modularity. Network vulnerability had a
significant negative relationship with the majority of network
complexity indices for CT wheat compared to no significant
correlations for the native TGP. This was further supported by
SEM analysis which showed a significant negative relationship
between complexity and vulnerability (Fig. 4c). In general, native
TGP land use conversion for CT wheat cropland enhanced the
relationship between network stability and complexity. For an
ecological system, relationships between complexity and stability
often have important functional implications [54, 55]. Greater
complexity could produce differential effects on stability creating a
more resistant [56, 57] but less resilient system [58]. Hence, while
the CT cropland developed stable ecological networks after many
years of cultivation, the networks also heavily rely on interactions to
maintain stability, potentially leaving the networks vulnerable to
cascade effects [59], which could disrupt these interactions (i.e.
complexity) and the network stability.

Interactions between complexity, stability, and the
environment
An important following question is whether the relationships
between the complexity and stability of the networks with the
environment are altered due to land use conversion. Soil microbial
communities are the most sensitive indicators of land use
conversion and disturbance often being altered by soil properties
[60], climate [61], land use intensity [62], and plant communities [63].
Land conversion for CT wheat land use resulted in less importance
of various environmental factors in shaping the networked
community structure than for the native TGP (Fig. 4a, Fig. S6). The
TGP networked community structure was strongly correlated to
most environmental factors. In comparison, the networked com-
munity under CT wheat was only strongly correlated with soil
temperature, soil pH, and nitrate. CT wheat land use and feasibly its
associated management also resulted in more negative correlations
between pairwise comparisons of environmental factors.
Similar to network community structure, environmental factors

played a less important role in influencing network complexity
and stability of CT wheat land use than of the native TGP. The TGP
network complexity and stability were influenced by multiple
environmental factors (Fig. 4b). Overall, organic matter (OM), air
temperature, and soil temperature had positive correlations with
network complexity, while nitrate negatively correlated with
complexity. Increases in soil water content (SWC) and ammonium
(NH4

+) decreased the TGP network stability by reducing node
persistence, composition stability, and increasing vulnerability.
The TGP received minimal management, including cattle grazing
and a prescribed burn, but no significant correlations were
detected. Likely, plant activity had a substantial influence on the
complexity and stability of the native TGP MENs as plants are
important to microbial community dynamics in natural ecosys-
tems due to the co-evolution of plant-microorganism interactions
[42]. Plant productivity interacts with all the factors important to
shaping the native TGP networks which in turn could, directly and
indirectly, affect microbial interactions. For instance, grasslands
are often nitrogen limited with the productivity of many plant
communities relying on nitrogen availability [64], and above-
ground net primary production in grasslands generally has a large
response to increased water availability [65]. This was further
supported by the decrease in stability during periods of active
vegetation growth under native land use.
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While nutrient content and water availability can act as robust
environmental filters to strongly select for microbial communities
[66, 67], management disturbance could be equally if not more
important to shaping microbial communities. Overall, the com-
plexity and stability of the MENs in the CT cropland were more
strongly correlated to management input (Fig. 4b). Summer-fallow
decreased network stability, while the frequent disturbance of
tillage, herbicide, and fertilizer input generally increased complex-
ity and stability. Meanwhile, frequent fertilizer use in CT wheat
cropland affects nitrogen (NH4

+) content which was important for

influencing CT wheat cropland network complexity [44, 68].
Similar results were observed for SEM with CT land use
significantly impacting soil properties, but only NH4

+ had a
significant direct impact on stability (Fig. 4c). Additionally, water
availability is frequently limited in areas where wheat is grown,
and summer-fallow wheat ecosystems generally have reduced
water use efficiency [65]. Thus, increased precipitation in the CT
cropland community might disrupt existing microbial associations.
Although land use and the changes in soil properties may have
changed the microbial community structure and diversity,

Fig. 3 Temporal dynamics of network stability. a Fold change in robustness measured by randomly removing 50% of taxa from each of the
empirical molecular ecological networks (MENs) and by removing 50% of module hubs from each of the empirical MENs. Robustness for each
timepoint was compared between conventional till (CT) wheat and native tallgrass prairie (TGP, control) land use using a two-sided t-test.
Significances are expressed as *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. b The network vulnerability of the empirical MENS measured by maximum
node vulnerability in each network. c The number of overlapping nodes under CT wheat and native TGP land use among different numbers of
networks (that is, orders). For example, for order= 2, the overlapping nodes were between any two pairs of networks; for order= 3, they were
among any three networks. d Relationship between compositional stability and node persistence for CT wheat and native TGP land use based
on linear regression (p < 0.001). Slopes (b) and adjusted r2 values shown. e Spearman correlations between network stability and network
complexity indices under CT wheat land use. Significant correlations (p ≤ 0.05) are shown in blue for positive correlations and green for
negative correlations. Inside the cells are the corresponding correlation coefficients. Non-significant correlations are shown in gray.
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repeated management disturbance in the CT cropland greatly
influenced the ecological networks, generating more complex and
stable MENs presumably because greater interactions are needed
for the microbial community to quickly respond to management
disturbances.

CONCLUDING REMARKS
Determining the extent of microbial associations and how they are
mediated by land use conversion and management disturbance is
a difficult issue to address and remains understudied. Our study
provides insights into the impacts of land conversion on microbial
ecological network dynamics. First, network features of the MENs
differed due to land conversion and these changes increased the
complexity of the MENs of the CT wheat cropland compared to
the native ecosystem. The increased complexity of CT wheat MENs
may have resulted from decreased microbial diversity, increased

biotic homogenization, and/or greater niche sharing related to the
more homogenous soil habitat of croplands than native land use;
while the increased temporal variability coincided with manage-
ment activity which was strongly temporally dependent. Second,
the stability of the MENs was also greater under CT wheat and had
an enhanced relationship with complexity. Similar results have
been observed under other disturbance scenarios with greater
network complexity contributing to greater stability [22]. Yet,
these types of communities tend to have greater susceptibility to
cascading biodiversity loss [69]. Third, our study showed that
while the MENs complexity and stability under native land use
were strongly influenced by various environmental factors,
disturbances in the form of different management inputs were
the driving force shaping complexity and stability of the MENs
under CT wheat land use.
Together, our results have several important implications on the

impacts of land conversion and intensive management on soil

Fig. 4 Associations between network indices, environmental properties, and management. a Correlations of the networked community
structures (Bray-Curtis distance) and soil and climate properties for the conventional till (CT) wheat land use. Edge width corresponds to
Mantel’s r value and the edge color represents the statistical significance. Pairwise spearman correlations of the variables are shown with a
color gradient representing the correlation coefficients. b Spearman correlations between network stability and network complexity indices
under CT wheat land use and native tallgrass prairie (TGP, control) land use. Spearman’s rho for significant correlations is depicted in a color
gradient. The p-values of correlations are shown in the color squares expressed as *0.5 < p < 0.1, **p ≤ 0.01, ***p ≤ 0.001. Non-significant
correlations are shown in gray. c Structural equation model (SEM) showing the relationships among treatment, soil variables, sampling
distance, microbial diversity of MENs, and MENs complexity and stability. Blue and red arrows indicate positive and negative relationships,
respectively. Solid or dashed lines indicate significant (p ≤ 0.05) or nonsignificant relationships, respectively. Numbers near the pathway arrow
indicate the standard path coefficients. R2 represents the proportion of variance explained for every dependent variable. The model
parameters include p= 0.78 (large p-value indicates that the predicted model and observed data are equal, that is, good model fitting),
CFI= 0.99, SRMR= 0.008, and RMSE < 0.01. Native tallgrass prairie used as control and CT wheat cropland represents the treatment. Network
complexity represented by the complexity index average K, network stability represented by vulnerability, and network microbial diversity
represented by Shannon diversity index.
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microbial communities. On the one hand, comparable to
biodiversity, microbial ecological networks are also shaped by
land use and are temporally dynamic. Changes in network
structure could have important ecological consequences. For
example, frequent management disturbances stimulated dynamic
responses that led to greater complexity and stability of microbial
ecological networks, making the ecosystem potentially less
vulnerable to further disturbances. However, it remains unclear
how resilient the community and the links between microorgan-
isms would be to non-management related disturbances. On the
other hand, the negative impacts of biodiversity loss due to land
conversion could far exceed the positive effects of greater
complexity and stability of microbial networks, resulting in more
vulnerable ecosystems to both management and non-
management related disturbances. Considering the increasing
intensity of anthropogenic disturbances and environmental
changes, preserving both microbial biodiversity and “interactions”
could be vital to maintaining critical ecosystem functions.

MATERIALS AND METHODS
Study site and sampling strategy
This study included a native tallgrass prairie (64 ha) as the control site and
a conventionally tilled winter wheat field (20.5 ha) as the treatment site
located at the United States Department of Agriculture, Agricultural
Research Service (USDA-ARS), Grazinglands Research Laboratory (GRL) in El
Reno, Oklahoma, USA (35° 34.1’ N, 98° 03.6’ W). Both sites are included in
the Southern Plains site of the Long-Term Agroecosystem Research (LATR)
network [70, 71]. El Reno, Oklahoma, has a temperate continental climate
with summer months generally hot and dry and most rainfall occurring
during May-June and September-October. The average daily maximum
and minimum air temperature of the study sites were 23 ± 8.7 °C and
8.9 ± 6.4 °C, respectively, with an average total annual rainfall of 855 mm±
44.7 mm over a 30-year period (1980–2010) [72]. Detailed site descriptions
can be found in Supplemental Text A.
Soil samples were collected monthly from the native TGP and CT winter

wheat site from June 2017 to December 2018. To collect soil samples
representative of each field, eight soil samples were taken 20 meters apart
along a diagonal transect in each field. Each replicate soil sample consisted
of four pooled soil cores. In total, 304 soil samples were collected
consisting of eight replicates for individual sampling times for each field.
Soil samples were taken using a 2.5 cm-diameter soil probe at a depth of
0–15 cm. Soils were passed through a 2mm sieve to remove debris and
stored at −80 °C until analysis.

Soil properties and climate data
Weather data were collected from the Oklahoma Mesonet station (http://
www.mesonet.org/index.php/weather/local/elre) in El Reno (ELRE), Okla-
homa. The Mesonet tower is located on the native tallgrass prairie used in
this study (35° 32.9’ N, 98° 02.2’ W). Mesonet data included rainfall,
maximum air temperature, average air temperature, and minimum air
temperature. Soil chemical analyses were performed at the Oklahoma
State University Soil, Water and Forage Analytical Laboratory (https://
agriculture.okstate.edu/departments-programs/plant-soil/soil-testing/
publications.html). Tests included topsoil nitrate (NO3

-), soil organic matter
(OM), soil total nitrogen (TN), ammonium (NH4

+), and available phos-
phorus (AP). Gravimetric soil water content (SWC) and soil pH were
measured in the lab. The SWC was determined by oven drying for ≥24 h at
65 °C or until the weight no longer changed [73]. Soil pH was measured
with a pH meter using soil:water (w/v)= 1:5 [74]. Soil properties were
measured for seven of the 19 sampling times being representative of
different seasons over the study period. Soil properties were measured for
all eight replicates.

Soil DNA extraction, amplicon sequencing, and analysis
DNA was extracted from 0.5 g of individual soil samples using an established
protocol involving bead mill and SDS lysis [75] combined with the MoBio
PowerSoil DNA isolation kit (MoBio Laboratories, a QIAGEN company,
Carlsbad, CA, USA). The quality of DNA was assessed based on 260/280 nm
and 260/230 nm absorbance ratios using a NanoDrop ND-1000 Spectro-
photometer (NanoDrop Technologies Inc., Wilmington, DE, USA). DNA

concentrations were quantified based on PicoGreen using a FLUOstar Optima
fluorescence plate reader (BMG Labtech, Jena, Germany). For microbial
community profiling, the V4 hypervariable regions of 16 S rRNA genes were
amplified using the common primer pair 515 F (5’- GTGCCAGCMGCCGCGG-
TAA-3’) and 806 R (5’- GGACTACHVGGGTWTCTAAT-3’). A two-step PCR
protocol was used and carried out in triplicate to minimize amplification
bias as previously described [76]. PCR products from triplicate reactions were
then pooled and quantified using PicoGreen. An equal amount of DNA for
each sample was further pooled and purified with Qiagen QIAqick gel
extraction kit. Sequencing was carried out on a MiSeq platform (Illumina Inc.,
San Diego, CA, USA) using a 2 × 250 pair-end format.
Raw amplicon sequencing data were processed through a pipeline (http://

zhoulab5.rccc.ou.edu:8080) by the Institute for Environmental Genomics at
the University of Oklahoma [25] to check read quality, demultiplex reads, and
remove primers. Reads were then processed using USEARCH-UNOISE3
[77, 78] which has been shown to have a good balance between resolution
and specificity for amplicon sequencing process [79]. Reads were merged as
suggested by USEARCH documentation for 2 × 250 pairs with longer
overlaps. Reads were quality filtered using 1 as the maximum expected
error threshold and unique reads identified. UNOISE3 was then used for ASV-
level denoising based on the default level minimum abundance. An ASV
table was generated and resampled to the same sequencing depth across all
samples (27,000 sequences per sample). Taxonomy was assigned using the
USEARCH suggested RDP v18 training set.

Network construction and characterization
Correlation networks using a Random Matrix Theory (RMT)-based approach
[17, 18, 22] were constructed for all individual sampling times resulting in a
total of 19 networks for each site using the Molecular Ecological Network
Analysis Pipeline (MENAP) available at the Institute for Environmental
Genomics, University of Oklahoma (http://ieg4.rccc.ou.edu/MENA/). RMT
distinguishes system-specific, nonrandom associations from random asso-
ciations and thus yields association networks that are robust to random
noise. Each of the networks was constructed independently, with nodes
representing ASVs and edges representing tentative association relation-
ships based on correlation between the abundance profiles of connected
nodes. To increase the reliability of the predicted association relationships,
only ASVs in at least six of the eight replicates were used for the network
construction. In short, ASV abundance data was centered-log-ratio
transformed to mitigate the effects of compositional bias [80, 81], and
Pearson correlations were used to calculate the correlation matrix followed
by an RMT-based approach [17, 18, 22]. In order to compare network
topologies under the same condition, a uniform cutoff value (St) was used to
generate microbial networks. The best cutoff value for all networks was
determined by a scheme based on the generalized Brody distribution [82].
Then, an adjacency matrix was generated, containing only the correlations
whose absolute values of coefficient (correlation strengths) were larger or
equal to St. Nodes in isolation after the cut (no correlation strength to other
nodes ≥St) were removed from the network. iDIRECT was further applied to
these networks to reduce the influence of indirect relationships [83].
The potential contributions of environmental filtering or dispersal

limitation in shaping network topology were tested. First, we determined
the importance of soil factors, climate variables, and spatial distance
between samples on the networked community structure using a CCA
model followed by VPA. Next, we used a publicly available pipeline using R
and Python 3 script [22] to detect taxon–taxon–environment co-variation
links [84] and links possibly caused by dispersal limitation. While such
analyses could provide insights on the relative importance of biotic
interactions in shaping MENs, it is still not possible to prove that the links
are truly due to biotic interactions. For this reason, MENs are best for
making relative comparisons between conditions or treatments [20, 85].
Therefore, this study focused on comparing network differences between
native land (TGP) converted for long-term cropland (CT wheat).
A total of twenty-two network topological indices were calculated using

the MENAP to characterize network topological structure [17]. We focused
on several indices, including nodes, the total number of links, average
connectivity (average links per node, avgK), average clustering coefficient
(the extent to which nodes are clustered, avgCC), average path distance
(geodesic distance, GD), connectance (the proportion of realized links in all
possible ones, Con), and modularity (M). All network properties were
calculated individually for each random network. To test the significance of
the constructed empirical MENs, 100 random networks corresponding to
each network were generated. The numbers of nodes and links in random
networks were constant, but link positions were rewired randomly so that
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the rewired network was comparable to the empirical network [86]. The
same suite of network topological properties was calculated with each
randomization. The means and standard deviations of these properties
from the 100 randomizations were calculated and compared with those
from the corresponding empirical MENs. Networks were visualized using
Cytoscape 3.8.2 [87].
Network size and connectivity considerably varied among the MENs

especially under CT wheat land use, and therefore relative modularity (RM)
was calculated. RM is considered to be more meaningful for comparing
modular structures across different networks by measuring how modular a
network is compared to the mean expected modularity [22, 88]. RM was
calculated as the ratio of the difference between the modularity of an
empirical network and the mean of modularity from the random networks
over the mean of modularity from the random network [88].
Each node was grouped into a topological role in the network based on

its within-module connectivity (Zi) and among-module connectivity (Pi)
[89]. As used in previous studies [20, 22, 90], nodes were classified as
network hubs (highly connected nodes within the entire network, Zi > 2.5
and Pi > 0.62), module hubs (highly connected nodes within the modules,
Zi > 2.5 and Pi <≤ 0.62), connectors (nodes that connect the modules,
Zi ≤ 2.5 and Pi > 0.62), and peripherals (nodes connected in the modules
with few links, Zi ≤ 2.5 and Pi ≤ 0.62). Module hubs, connectors, and
network hubs are referred to as keystone nodes [40, 91]

Statistical analyses for network complexity comparisons
To evaluate the differences of MENs over time in both land uses, the 22
topological indices calculated for each empirical MEN were used for
principal component analysis using the ‘prcomp’ function in the stats
package in R [92]. The overall differences of network topological properties
between land uses were compared using a Mann–Whitney U test in the
stats package in R [92]. To examine differences in module composition,
Fischer’s exact test was performed to identify preserved module pairs in
networks [22] (1) under CT wheat land use or native TGP land use over
time and (2) between CT wheat and native TGP land use. P-values from the
exact tests were adjusted using the Bonferroni procedure within each
network. In short, if two modules in different networks consisted of large
proportions of shared nodes (adjusted p ≤ 0.05), they were considered
preserved module pairs [20]. The exact tests were performed in R with the
‘fisher.test’ function in the stats package, and p-value adjustment was done
with the ‘p.adjust’ function in the stats package in R [92].
In order to assess the differences of the networked communities under

CT wheat and native TGP land use, three non-parametric multivariate
analyses of dissimilarity were performed including MRPP, ANOSIM, and
Adonis based on Bray-Curtis distance using the R package ‘vegan’ [93] and
visualized using principal coordinate analysis (PCoA). Mantel tests were
also performed between networked community structures and soil and
climate variables using the R package ‘vegan’ [93]. The taxonomic
composition of the networked communities under CT wheat and native
TGP land use was analyzed at the phylum and class levels. Mann–Whitney
U tests were used to evaluate the changes in the average relative
abundance of each taxon due to land conversion.

Network stability analyses
To determine whether and how land use conversion affects the stability of
the constructed MENs, several indices were used to characterize network
stability. Detailed descriptions of the calculations can be found in
Supplementary Table 8.
Network stability based on simulation includes robustness and

vulnerability. The robustness of a MEN is defined as the proportion of
the remaining species in the network after random or targeted node
removal [46, 94]. For simulations of random removal, robustness was
measured when 50% of random nodes were removed from each MEN. For
simulations of targeted removal, robustness was compared when five
module hubs were removed and when half of the module hubs were
removed since the number of module hubs differed greatly between
networks. Vulnerability of each node measures the relative contribution of
the node to the global efficiency. The vulnerability of a network is
indicated by the maximal vulnerability of nodes in the network [17] and
the global efficiency of a graph was calculated as the average of the
efficiencies over all pairs of nodes. In ecological networks, efficiency
explains the ability to spread information within a network and is
important to determine how quickly the effect of biological/ecological
events spread to parts or the entire network [22].

Network stability based on empirical data includes node constancy, link
constancy, node overlap, node persistence, and compositional stability.
Constancy measures the temporal stability of species. It is defined as μ/σ,
where μ is the mean of abundance over time and σ is the standard
deviation [95]. The constancy of node i was calculated as μi/σi. The
abundance of species i at a certain time point was positive only if species i
was in the MEN at that time point. Otherwise, the abundance of species i
was considered zero for that time point and removed from subsequent
analyses. The average of all the node constancy values was reported.
Similar procedure was used to calculate link constancy. We let lij+= 1 if
nodes i and j were positively linked in a network, lij-= 1 if nodes i and j
were negatively linked in a network, and lij+= lij-= 0 if there was no link
between i and j [22]. Again, nonfinite values were removed from
subsequent analyses. The average of all the link constancy values was
reported. The number of overlapping nodes among multiple networks was
calculated following previous methods by Hui et al. [96] where the higher
numbers of overlapping nodes among networks indicated slower turnover
of species composition in the networks with time points being referred to
as “orders” [22]. The node persistence is defined as the proportion of
coexisting species (over the total number of species) at an ecological
regime [57]. Node persistence was calculated as the percentage of nodes
present in the network in consecutive monthly comparisons. The
compositional stability evaluates the change in community structure over
time [48]. The compositional stability for the networked microbial
communities was calculated using the sample × ASV matrix. If community
structure does not change, the stability index is equal to 1; while if
community structure is completely different among time points if stability
index is 0. Stability was addressed as consecutive monthly comparisons as
done with node persistence.
The overall differences in stability indices between CT wheat and native

TGP land use were determined using Mann–Whitney U test. The
relationship between node persistence and compositional stability for
each land use was tested based on Spearman correlation. Spearman
correlations were also used to associate soil properties, climate variables,
and management input with network stability and complexity indices. The
correlations with management data were calculated using Spearman’s
generalized equation due to repetitive values in the coded management
data. Structural equation modeling (SEM) was also performed to further
discern the environmental drivers on network stability and complexity
using the ‘lavaan’ R package. All reasonable pathways were included then
non-significant pathways were sequentially eliminated unless the path-
ways were biologically informative. Pathways were added based on the
residual correlations. The procedure was repeated until the model showed
sufficient fitting with the p values of χ2 test larger than 0.05 and the root
mean square error of approximation (RMSE) < 0.08 [97].

CODE AVAILABILITY
16S rRNA gene sequences were deposited to the Sequence Read Archive (SRA) under
the project accession number PRJNA954023. The R scripts and Python 3 scripts were
adapted from the publicly available code on GitHub at https://github.com/Mengting-
Maggie-Yuan/warming-network-complexity-stability with the identifier https://
doi.org/10.5281/zenodo.4383469.
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