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A B S T R A C T   

With the accelerated rate of urbanization, reasonable identification of urban functional zones has been 
increasingly important to urban development. In this study, we used OpenStreetMap and point of interest data 
combined with the classification standard of urban construction land, to identify the urban functional zones. In 
addition, Landsat 8 remote sensing images were utilized to retrieve land surface temperature, and the random 
forest algorithm was used to evaluate the contribution of different types of urban functional zones to the urban 
thermal environment. The results showed that the land surface temperature along Hunhe River in the central 
area of Shenyang gradually decreased. The temperature was high in the center of the experimental area and low 
in the north and south. Furthermore, in the main city zone of Shenyang, single functional zones accounted for 
65.71% of the total study area, whereas mixed functional zones accounted for 34.29%. Among the various types 
of urban land, public service facility land contributed the most to the urban thermal environment with an impact 
of 21.65%, followed by residential, industrial, and commercial service facility lands, with impacts of 19.89%, 
18.44%, and 17.58%, respectively. Additionally, the impact of road traffic land was 14.92%, whereas that of 
green square land was the lowest at 7.51%, 14.14% lower than that of public service facility land.   

1. Introduction 

Since the Industrial Revolution, urbanization has become an 
increasing trend worldwide. Urbanization refers to the process of 
transfer of the human living environment and social activities from the 
countryside to the city. Its main characteristics are massive flow of the 
rural population to cities and continuous expansion of urban spaces [1]. 
In the process of urbanization, the rapid increase of urban population 
and constant replacement of underlying natural urban surfaces by arti-
ficial surfaces have caused disordered expansion of urban land. This 
process causes variations in urban surface energy balance, resulting in 
the urban heat island effect [2–5]. The increased urban heat island effect 
causes, the urban thermal environment to deteriorate gradually, which 
not only affects the quality of urban human settlement and daily outdoor 
activities of residents, but also is closely related to urban energy con-
sumption, ecosystem operation, vegetation phenology, and sustainable 
urban economy [6–9]. Therefore, qualitative and quantitative research 

on urban thermal environment issues is crucial for mitigating the urban 
heat island effect and thereby reducing health risks to humans [10]. 

The existing studies on the urban thermal environment focus mainly 
on the following aspects: formation and distribution characteristics of 
the urban thermal environment, driving mechanisms and influencing 
factors, and simulation and prediction [11–13]. Multi-faceted research 
on the urban thermal environment is important for understanding the 
urban climate, optimizing urban planning, and improving urban man-
agement and control mechanisms. The influencing factors of the urban 
thermal environment include spatial structure characteristics, land 
use/land cover, and landscape patterns [14–16]. During the process of 
urban expansion, the spatial structure is constantly changing, and the 
increase in building density hinders regional ventilation and the process 
of heat release [17]. Moreover, the urban surface cover has changed due 
to the transformation of land use types; natural landscapes have been 
replaced by artificial landscapes on a large scale, continuously 
increasing the roughness of the underlying urban surface. This leads to a 
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decrease in the surface heat capacity and a higher heating rate in the city 
than in the surrounding areas [18]. In addition, the process of urbani-
zation destroys the balance of the urban landscape pattern, leading to a 
decrease in the vegetation and water areas, which causes a reduction in 
evaporation and transpiration and affects the adjustment of regional 
temperature [19]. 

Although previous studies have described the spatial pattern and 
influencing factors of the urban thermal environment, the relationship 
between the urban thermal environment and its internal functional or-
ganization has not yet been established. Especially, the degree of in-
fluence of different urban functional zones on the thermal environment 
has not been explored. Urban functional zone refers to regional func-
tional differentiation caused by the concentration of large amounts of 
similar human activities on limited urban land because of the influence 
of many factors such as nature, economy, history, and society in the 
process of urbanization [20,21]. The urban functional zones, which are 
constantly changing with social and economic development, are closely 
related to urban transportation, economy, and ecology [22–24]. 
Therefore, Therefore, it is important to optimize the urban functional 
structure by studying the influence of different urban functional zones 
on the urban thermal environment to help build a harmonious living 
environment [25,26]. This study was conducted in Shenyang City, 
China. We analyzed the spatial pattern of the urban thermal environ-
ment by adopting the random forest (RF) method to quantitatively study 
the contribution of different urban functional zones to it. 

2. Literature review 

2.1. Research scale 

According to Oke T.R., the current quantitative research on the 
spatial distribution and influencing factors of urban thermal environ-
ment can be divided into meso-scale, local-scale and micro-scale in the 
spatial dimension [27]. Urban thermal environment research at 
different scales has different research objects and characteristics. 
Meso-scale research is suitable for exploring the spatial distribution of 
the thermal environment in urban planning areas, built-up areas, and 
central areas [28,29]. Local-scale research is more suitable to explore 
different spatial thermal environments, thermal comfort and anthropo-
genic heat in various urban functional areas or various land-use com-
binations [30–32]. The micro-scale focuses on the regional microclimate 
of urban built-up land, open spaces, and street canyons [33,34]. 

Reasonable classification of complex urban spaces is an important 
prerequisite for thermal environment research. Due to the addition of 
human activity data in the zoning process, urban functional zones 
effectively portray the relationship between people and land. Therefore, 
this study identifies the functional zones in the study area based on the 
local scale and explores the influence of urban functional zones on the 
heterogeneity of urban thermal environment distribution. 

2.2. Data 

This study uses land surface temperature (LST) to characterize the 
urban thermal environment. LST is an important variable used to 
characterize the land surface changes and the spatiotemporal pattern 
and influencing factors of the urban thermal environment [35]. With the 
development of remote sensing technology, the LST acquisition methods 
of LST have improved significantly. Compared with the traditional 
ground observation, remote sensing data has the advantages of conve-
nient acquisition, low cost, and simultaneous coverage of a large area 
[36]. According to the spatial resolution setting of the satellite sensor, 
there are different retrieval methods, such as the single-window algo-
rithm [37,38], split-window algorithm [39,40], multi-angle algorithm 
[41], and hyperspectral algorithm [42,43]. The single-window algo-
rithm proposed by Qin Zhihao et al. [44] has a high retrieval accuracy 
and has been widely applied. In this study, the Landsat 8 OLI/TIRS 

image data was used to quantitatively invert the LST by using the 
single-window algorithm. 

Traditional methods of urban functional zones identification use 
statistical data for analysis or expert scoring, which is highly subjective 
and results in inaccurate results. Recently, remote sensing technology 
has been widely used [45], and has demonstrated a great capability in 
depicting land parcels based on physical characteristics. However, it is 
not effective in identifying the spatial interaction between areas of 
human activity and their various functions [46]. Therefore, this study 
used road network data to divide the study area, combined the point of 
interest (POI) data representing human activities to identify urban 
functional zones, and attempted to combine human activities within 
urban functional space. 

2.3. Method 

To study the urban thermal environment, different methods are 
available based on different scales. In meso-scale research, the changes 
of urban net radiation, heat storage, sensible heat and latent heat are 
depicted by the spatial variability morphological characteristics, such as 
human activities, land use, and landscape patterns [47]. Micro-scale 
research focuses on the properties within the city, such as building 
forms and impervious surfaces. The influence of the surrounding 
microenvironment on the urban thermal environment is analyzed using 
simulation methods [48]. The research methods at the local-scale play a 
substantial role in the field of urban thermal environment research and 
have undergone continuous improvement and optimization. To explore 
the influence of different driving factors on the urban thermal envi-
ronment, regression analysis such as the ordinary least squares model is 
commonly used [49]. These traditional regression methods ignore the 
spatial dependence of the data. To solve this problem, spatial regression 
models have been widely used [50,51]. The spatial regression model 
combines the attribute data with its position through spatial relationship 
and estimates the heat conduction and thermal interaction on the urban 
surface. However, because of the nonlinear relationships of the urban 
thermal environment, a machine learning model, the RF is applied. In 
this study, the RF algorithm was used to quantify the contribution of 
different urban functional zones to the urban thermal environment. 

In summary, previous studies have analyzed the spatial pattern of the 
urban thermal environment and its related factors at different scales by 
using diverse indicators and methods, which laid a good foundation for 
subsequent research. However, the impact of the urban internal func-
tional structure on the urban thermal environment has not been 
explored. Therefore, this study aimed to (1) examine the spatial het-
erogeneity of the thermal environment, (2) explore the spatial structure 
by identifying urban functional zones, and (3) study the specific impact 
of urban functional zones on the urban thermal environment. The results 
of this study provide urban planners and relevant department managers 
with insights for urban planning and management on how to optimize 
the urban functional structure to improve the urban thermal 
environment. 

3. Study area and methodology 

3.1. Study area 

Shenyang, the capital of Liaoning Province, is in Northeast China and 
lies between 122◦25′9′′E, 41◦11′51′′N and 123◦48′24′′E, 43◦2′13′′N. It is 
a megacity and the core of the Shenyang metropolitan area which is 
under construction. Shenyang has a temperate semi-humid continental 
climate, with an average annual temperature of 6.2–9.7 ◦C and annual 
precipitation of 600–800 mm. Influenced by the monsoon, the precipi-
tation is concentrated in summer. Further, as the temperature varies 
considerably, four distinct seasons are observed. As the political, eco-
nomic, and cultural center as well as the transportation hub of the 
Northeast, Shenyang covers a total surface area of over 12,948 km2. By 
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2020, the registered population of Shenyang was 7622 million, of which 
the urban population was 6202 million and the county (city) population 
was 1420 million. The study area comprised the central area of She-
nyang, including five subdivisions (Dadong, Huanggu, Shenhe, Tiexi, 
and Heping), Yuhong District, Shenbei New District, Hunnan District, 
and Sujiatun District. The above-mentioned nine administrative districts 
are highly urbanized, so the most comprehensive functional zones that 
can reflect the characteristics of Shenyang’s urban surface thermal 
environment to a certain extent are necessary. The specific extent and 
topographic features shown in the digital elevation model (DEM) of the 
selected study area is shown in Fig. 1. 

3.2. Data sources and preprocessing 

Landsat 8 OLI_TIRS image data (downloaded from the official web-
site of the United States Geological Survey (USGS)) was used to retrieve 
information on LST. Considering the acquisition time of urban POI data 
and the quality of remote sensing images, the Landsat 8 image data on 
August 7, 2020 was selected, with an orbit number of 119 and a line 
number of 31. The satellite passed over the territory of the at approxi-
mately 10:28 a.m., while the cloud cover was less than 5%. The coverage 
area of the image included the study area and neighboring cities and 
counties. 

This study utilized the road network (OpenStreetMap) and POI data 
to identify the urban functional zones. The road network data were 
obtained from the official website of OSM, which is currently the most 
popular platform that provides volunteered geographic information 
(VGI) [52]. The road network data included basic spatial information 
such as latitude and longitude, as well as information on attributes such 
as road names, road types, maximum driving speeds, and one-way 
streets. The POI data were obtained using the Amap API open data 
platform (accessed in April 2021). This study collected a total of 255,000 
pieces of data for the study area comprising name, category, address, 
geographic coordinates, and other attributes (Table 1). 

Firstly, meteorological parameters such as temperature, relative 
humidity and atmospheric pressure as the satellite transited the study 
area, were obtained from the historical weather query network (mip. 
lishi.tianqi.com). The Level 1T products of Landsat8 images were 

geometrically corrected based on terrain, and radiometric calibration 
and atmospheric correction operations were performed. As there were 
numerous messy, interrupted, and repeated lines in the OSM data, it was 
necessary to extend, delete and check the topology of the OSM road 
network data prior to conducting the analysis. The processed road 
network data were then converted into surfaces to generate irregular 
grids. Finally, a script was written and the crawling granularity was set 
to 0.05 to crawl the POI data in the study area using the Amap API. There 
were many types of POI data, and some existed in crossover situations; 
hence, operations such as elimination and completion, coordinate con-
version, and avoidance of duplication were required. Moreover, the POI 
data were reclassified into six categories based on the national con-
struction land classification standard (GB 50137-2011) and the national 
economic industry classification, each of which include several sub- 
categories. Table 2 lists the specific classifications. 

3.3. Methodology 

This study retrieved the LST of the central area of Shenyang on 
August 7, 2020, using Landsat8 images. The weights of various POI data 
in different research units were calculated to determine the functional 
type of each research unit. Finally, the RF algorithm was used to eval-
uate the contribution of various urban functional zones to the urban 
thermal environment in each research unit. The research technology 
roadmap is provided in Fig. 2. 

Fig. 1. Location of the study area (Shenyang, China). (a) Location of the Liaoning Province in China (b) Location of the study area in the Liaoning Province (c) The 
digital elevation model (DEM) of the study area. 

Table 1 
Data source and description.  

Data type Resolution Time Data source 

Landsat8 OLI_TIRS 30 m 2020.08.07 United States Geological Survey 
Point of Interest 

Data 
– 2021.04 AMAP Data Open Platform 

Road Network 
Data 

– 2020 OpenStreetMap 

Vector Data – 2020 National Geomatics Center of 
China  
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3.3.1. LST retrieval 
The theoretical basis for retrieving the LST using remote sensing data 

comprises the heat radiation conduction equation quantified by Planck’s 
law. Based on the spatial resolution of the satellite sensor, the inversion 
method was classified into four categories: 1) algorithm based on the 
radiation conduction equation [53], 2) single-band algorithm [37,54], 
3) dual-band method (split window algorithm) [39], and 4) multi-band 
algorithm [55]. The 10th and 11th bands of Landsat8 are thermal 
infrared bands; however, owing to the high calibration uncertainty in 
the 11th band, the USGS does not recommend the split window algo-
rithm. Instead, it recommends a single-band algorithm based on the 10th 
band to retrieve the LST [56]. The algorithm derived by Qin et al. [44, 
57] based on the surface radiation conduction equation, that used the 
sixth band was used to retrieve the LST. Atmospheric correction was not 
required when using this algorithm. The single-window algorithm is also 
suitable for ETM+ and Landsat8 data. The equation is as follows: 

Ts ={a6(1 − C6 − D6)+ (b6(1 − C6 − D6)+C6 +D6)Tsensor − D6Ta} /C6

(1)  

where Ts is the brightness temperature of the sensor, Ta is the average 
temperature of the atmosphere, and a and b are the atmosphere function 
parameters. When the surface temperature was between 0 and 70 ◦C, c 
= -67.355351 and b = 0.458606. C and D are intermediate variables, 
which are calculated as follows: 

C= επ (2)  

D=(1 − π)[1+(1 − ε)]π (3) 

In equations (2) and (3), ε is the land surface emissivity and π is the 
total atmospheric transmittance from the ground to the sensor. 

3.3.2. Distribution of heat field levels 
Quantitative analysis of the intensity of the LST was performed to 

effectively characterize the spatial distribution of the urban thermal 
environment and to calculate the contribution of different types of urban 
functional zones to the urban thermal environment. Therefore, it is 
necessary to classify the LST. The classification methods were divided 
into the equal interval method and the mean-standard deviation 
method. The mean-standard deviation method performs better than the 
equal interval method by considering the spatial distribution and a 
detailed depiction of the urban thermal environment [58]. This method 
uses a combination of the mean value of the surface temperature and 
multiples of different standard deviations to classify the intensity of the 
surface thermal field. Table 3 presents the specific classification levels. 
Based on the order of temperature from low to high, the surface thermal 
field intensities were classified as Class I, Class II, Class III, Class IV, Class 
V, and Class VI. Subsequently, they were assigned values from 1 to 6, 
which were called "surface thermal field values" here [59] based on the 
classification. A quantitative analysis of the relative intensity of the 
surface thermal environment was performed based on the surface 
thermal field values. 

Table 2 
POI data classification.  

Primary 
classification 

Secondary classification Quantity Proportion 

Residential Business Residence, 
Accommodation Services 

12717 6.83% 

Industrial Corporations 20290 10.90% 
Commercial 

Service 
Facility 

Catering Services, Sopping Services, 
Domestic Services, Financial 
Insurance Services 

91976 49.40% 

Public Service 
Facility 

Public Utilities, Sports and Leisure 
services, Healthcare Services, 
Science, Education and Cultural 
Services, Government Agencies and 
Social Organizations 

43844 23.55% 

Green Square Famous Tourist Sites 1361 0.73% 
Road Traffic Transportation Facility Services, 

Access Facilities, Road Ancillary 
Facilities 

16013 8.60%  

Fig. 2. Research technology roadmap.  
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3.3.3. Urban functional zone identification 
According to Yuan et al. [60], the method of identifying urban 

functional zones combined with OSM and POI data is high accurate, and 
provides an important reference for the analysis of urban spatial struc-
ture and urban functional zones. Therefore, this method was used to 
identify the urban functional zones. 

First, OSM data were used to divide the city into different research 
units. After the topology correction for eliminating topological errors in 
the road network, the roads were divided into four levels, i.e., express-
ways and trunk roads comprised the first level, main roads comprised 
the second level, secondary roads comprised the third levels, and ter-
tiary roads comprised the fourth level. Subsequently, the buffer zones 
were generated. The established road spaces were then removed from 
the study area to generate independent research units bound by the 
roads. 

Second, various types of POI point data were connected to these 
research units. The POI point density of each urban functional area was 
calculated based on the POI point quadrat density method. The quadrat 
density [61–63] refers to the ratio of the number of POI data falling into 
the research unit divided by the area of each independent unit. The 
equation is as follows (unit: piece/km2): 

f (s)=
n
s

(4)  

where f(s) is the quadrat density, n is the number of POI data in each 
sample square, and s is the area of a sample square. 

When identifying the urban functional zones, if the density value of a 
certain type of POI point in a certain unit accounted for 50% or more of 
the total density value, this unit was a single functional zone. Further-
more, if there were two types of POI points in a certain unit accounting 
for 20–50% of the total density value, this unit was a mixed zone of the 
two types of POI. Moreover, if the density value of all types of POI in a 
certain unit was zero, such a unit was deemed to be a no-data area, 
whereas the rest of the units were defined as mixed functional zones. 

3.3.4. Statistical analysis 
First, to calculate the contribution of each urban functional zone to 

the LST, zonal statistics analysis was used to count the number of 
functional zones in the study area (Table 5). Second, a one-way analysis 

of variance (ANOVA) was performed between the various functional 
zones and the LST to estimate the variation of the LST among different 
urban functional zones. 

Third, the RF algorithm was used to evaluate the contribution. The 
RF algorithm is a newly emerging and highly flexible machine learning 
algorithm, which is widely used in regression and classification [64]. 
This algorithm integrates multiple trees through an ensemble learning 
method, a large branch of machine learning [65], and collects the results 
by randomly selecting features from each decision tree, finally adopting 
majority voting or averages according to each specific problem with the 
results in the form of stable and accurate predictions [66]. The algorithm 
has many advantages, such as simple implementation, high accuracy, 
and strong resistance to overfitting [67]. 

4. Results 

4.1. Spatial distribution of the surface thermal environment in Shenyang 

In this study, we used Landsat 8 OLI_TIRS images to retrieve the LST 
of the central area of Shenyang on August 7, 2020 based on the single- 
window algorithm, the results of which are shown in Fig. 3. The study 
area is dominated by plains. Previous studies have shown that in areas in 
which the ground was relatively flat, the temperature observed at the 
weather observation station was closely related to the true LST, and 
could compare with the LST retrieved from satellite data on the pixel 
scale. The actual temperature observed at the meteorological station 
when the Landsat8 satellite passed the study area on August 7, 2020 was 
considered the true value. The root mean square error (RMSE) of the 
retrieved LST in the study area was less than 1k, which showed that the 
result of the LST retrieval was considered reliable. 

Fig. 4 shows the results of using the mean-standard deviation method 
to classify the surface thermal field. The average surface temperature 
was 28.39 ◦C, and the standard deviation was 6.04 ◦C. The estimated 
temperatures of Huanggu district, Dadong district, the southern part of 
Yuhong district, Heping district, the northern part of Tiexi district and 
the western part of Shenhe district were higher than those of other areas. 
Generally, the surface temperature in the central area of Shenyang 
decreased gradually to the north and south of the Hunhe River. The 
average thermal field level in the north of the Hunhe River was higher 
than that in the south. 

The number of LST levels were counted to quantitatively indicate the 
relative intensity of the surface temperature, the results of which are 

Table 3 
Usage of mean-standard deviation method to divide land surface thermal fields.  

LST 
Level 

Assignment Meaning LST Range 

Class I 1 Low-temperature zone TS < μ − std 
Class II 2 Secondary moderate- 

temperature zone 
μ − std ≤ TS < μ −
0.5std 

Class III 3 Moderate-temperature zone μ − 0.5std ≤ TS≤μ 
Class Ⅳ 4 Secondary high-temperature 

zone 
μ < TS ≤ μ + 0.5std 

Class Ⅴ 5 High-temperature zone М + 0.5std < TS ≤ μ 
+ std 

Class Ⅵ 6 Extreme high-temperature zone TS > μ + std 

Note: TS is the inversion value of the LST, μ is the average value of the LST in the 
experimental area, and std is the standard deviation of the LST.  

Table 4 
Statistics of land surface temperature levels.  

LST Level Meaning Quantity Proportion 

Class I Low-temperature zone 4093 0.10 
Class II Secondary moderate-temperature zone 100741 2.48 
Class III Moderate-temperature zone 636829 15.68 
Class IV Secondary high-temperature zone 2851240 70.20 
Class V High-temperature zone 468854 11.54 
Class VI Extreme high-temperature zone 15 0  

Table 5 
Surface temperature distribution in different types of urban functional zone.  

Functional zone type n x ± s F P 

Road 26 32.32 ± 4.22 3.006 <0.05 
Industrial 190 32.04 ± 4.94 
Industrial-Road 4 32.23 ± 2.90 
Industrial-Public 52 33.52 ± 3.66 
Public 217 34.30 ± 4.24 
Public-Road 18 33.19 ± 3.48 
Public-Green square 4 30.70 ± 6.99 
Residential 102 34.54 ± 4.46 
Residential-Road 6 33.68 ± 1.05 
Residential-Industrial 89 32.56 ± 3.89 
Residential-Public 64 34.19 ± 4.64 
Residential-Commercial 35 34.00 ± 2.96 
Green square 11 31.49 ± 4.32 
Commercial 299 32.75 ± 4.09 
Commercial-Road 6 33.01 ± 5.25 
Commercial-Public 120 32.88 ± 4.95 
Commercial-Green square 2 32.26 ± 5.74 
Comprehensive Functional Area 41 32.89 ± 5.60 

Note: n is the number of units corresponding to the functional zones, x is the 
average value of the surface temperature, and s is the standard deviation of the 
surface temperature.  
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shown in Table 4. The surface thermal field levels of the central area of 
Shenyang were mainly concentrated in the moderate-temperature, sec-
ondary high-temperature, and high-temperature zones. Here, the high- 

temperature zones accounted for more than 80% of the total area. 
Simultaneously, there was a considerably low distribution of the low- 
temperature and extreme high-temperature zones. 

4.2. Identification of the spatial structure of Shenyang 

To identify the urban functional zones, 1286 independent units in the 
central area of Shenyang were obtained. Then, the quadrat density of 
various types of POI data in each independent unit was calculated; the 
results are shown in Fig. 5. Commercial service facility land including 
single commercial service facility land, and commercial-public mixed 
land, was the most widely distributed, accounting for 44.36% of the 
total area; moreover, it was evenly distributed within the study area. 
Public service facility land and industrial land followed next, accounting 
for 32.62% of the total area. Public land was mainly distributed in the 
center of the study area, whereas industrial land was mainly distributed 
outside the second ring road of Shenyang. Residential land which 
accounted for 20.36% of the total area and was, mainly distributed in 
the center of the study area. 

4.3. Spatial interaction between various urban activity environments and 
the surface thermal environment in Shenyang 

To explore the impact of various urban activities on the surface 
thermal environment, a one-way ANOVA was conducted between the 
various functional zones and the urban surface temperature of the study 
area. The variance analysis showed a significance >0.05, indicating that 
the variance was homogeneous and could be utilized. The significance of 
the variance analysis was set to P < 0.05. Thus, a P value of <0.05 
indicated the existence of significant differences between different 
functional areas and urban surface temperatures. Table 5 lists the results 
of the specific analysis. Public service facility, residential, commercial 
service facility, and road traffic lands had a higher impact on the surface 
thermal environment than industrial and green square lands. 

To further quantify the impact of different functional zones on the 
urban surface temperature, the RF algorithm was used to evaluate the 
contribution of various human activities to the urban thermal environ-
ment (Table 6). The RF algorithm is characterized by its high efficiency 
and flexibility, relatively accurate classification accuracy, and strong 
anti-noise ability [68]. To obtain the optimal parameters of the RF 
model, the grid search tool GridSearchCV was used to determine the best 
parameters to achieve the optimal classification performance. The pa-
rameters are as follows: n_estimators = 127, bootstrap = True, criterion 
= ’entropy’, max_features = 6, min_samples_leaf = 1, min_samples_split 

Fig. 3. LST in Shenyang.  

Fig. 4. Spatial distribution of LST levels in Shenyang.  

Fig. 5. Recognition results of functional zones in downtown Shenyang.  
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= 2. The best average accuracy obtained using the grid search method 
based on the ten-fold cross-validation is 0.872. For different urban 
functional zones formed by various human activities, the highest impact 
on the surface thermal environment was contributed by public service 
facility land followed by residential land, industrial land, commercial 
service facility land, road traffic land, and green square land in that 
order (Table 6). 

5. Discussion 

5.1. Quantitative measure of spatial distribution of the urban thermal 
environment 

This study carried out a quantitative measurement of the urban 
thermal environment by inverting the LST and thus revealed the spatial 
pattern of the urban thermal environment. Previous studies have shown 
that the spatial distribution of the urban thermal environment is related 
to the changes in impervious surfaces [68,69], changes in land use/land 
cover [70–72], urban landscape patterns [73–76], urban expansion [77, 
78], and vegetation and water bodies [79–81]. However, the spatial 
variation of the urban thermal environment based on urban functional 
zoning has not been studied in detail. In this study, the OSM and POI 
data were combined to identify the urban functional zones, which could 
eliminate land use data to detect the internal thermal environment of 
different functional units. In this study, the Landsat8 OLI_TIRS image 
data were used to invert the LST of the study area, and the 
mean-standard deviation method is used to classify the LSTs, a quanti-
tative measurement of the urban thermal environment. The results 
provide a new perspective for studying the spatial variation of the urban 
thermal environment, and references for regional functional zoning and 
urban planning. 

5.2. Contribution of different urban activity environment to the urban 
thermal environment 

The results showed that the contribution of different urban func-
tional zones to the urban thermal environment varied significantly. 
Previous studies have focused on the impact of land use/cover changes 
on the urban thermal environment. Land use/cover plays an important 
role in the changes of the environmental and sustainable development, 
and its change is a dynamic process. Studies have shown that land use/ 
cover has a significant impact on urban heat island intensity. Farmland 
and forest can help cities to cool down; the cooling effect of farmland 
and forests is related to their distribution and composition [82]. How-
ever, the previous studies did not consider the influence of human ac-
tivities on the thermal environment. Therefore, this study explored the 
impact of urban functional zones, which were divided based on human 
activities, on the urban thermal environment. 

Research results showed that the land used for public service facil-
ities had the highest contribution to the thermal environment as it 
constituted 21.65% of the total land. The contribution of residential, 
industrial, and commercial service facility lands to the thermal envi-
ronment was less than that of public service facility land, constituting 
19.89%, 18.44%, and 17.58%, respectively. According to Gao et al. 
[67], the average LST of industrial and manufacturing, and commercial 

and business facility lands in Wuhan was higher than that of adminis-
tration and public services, and residential lands. However, the opposite 
conclusion was reached in this study. The reason for this phenomenon 
might be due to the following. On the one hand, Wuhan was a city with a 
high proportion of heavy industry in 2013, and its industrial heat pro-
duction was very serious. Although Shenyang was once a city of heavy 
industry, in response to the national policy of ecological environment 
construction, it completed the industrial transformation of heavy in-
dustry and employment adjustment by 2020. The proportion of the 
secondary sector has been decreasing, and the proportion of the tertiary 
sector has been increasing there. On the other hand, the time of datasets 
selected in this study were all post 2020, while the datasets used by Gao 
et al. were collected in 2013. During this period, COVID-19 was 
rampant, so people’s lifestyle affected by the policy was considerably 
different to previously. Therefore, the heat generated by the flow of 
people on public service facility land represented by public facilities and 
health care services increased significantly. In addition, because of the 
anti-epidemic policy, people consciously reduced unnecessary outings, 
which led to higher anthropogenic heat in residential areas than over a 
normal period. Meanwhile, industrial production and commercial ac-
tivities were shutdown to some extent during the COVID-19 period, 
resulting in a significant decline in anthropogenic heat. 

5.3. Limitations 

There are some limitations in this study that need further discussion 
and resolution. First, urban functional zoning is affected by many fac-
tors, including physical geography, social economy, and human activ-
ities. The OSM and POI data used here only help to study the division of 
urban functional zones based on transportation networks and human 
activities. Hence, to obtain more accurate classification results, more 
open datasets, high-resolution remote sensing images that can represent 
urban spaces, and statistical data to describe population movements 
should be added in the future. Second, owing to the lack of datasets, the 
time series of the spatial variation of the urban thermal environment 
based on functional zoning was not included in the analysis. Therefore, 
in the future, time series analysis will be incorporated, such as the dif-
ferences in the contribution of urban functional zones to the urban 
thermal environment in different seasons or the evolutionary law of the 
contribution of urban functional zones to the urban thermal 
environment. 

6. Conclusions 

As the effects of urban heat islands are becoming more severe, 
quantitative research on the impact of various urban functional zones on 
the urban thermal environment helps to effectively reflect the impact of 
various human activities on the formation of urban heat islands. Landsat 
8 data were used to retrieve the surface temperature of the study area 
along with OSM and POI data to quantitatively identify urban functional 
zones. The heterogeneity of the spatial distribution of the urban thermal 
environment was studied based on functional zoning. The main con-
clusions of this study were as follows:  

(1) The surface temperature of the study area was mostly distributed 
in the moderate-temperature zone, secondary high-temperature 
zone, and high-temperature zone. The number of urban land 
units considering these three thermal field levels accounted for 
97.22% of the total study area. Additionally, the secondary 
moderate-temperature zone accounted for 2.48% of the total 
area. Moreover, there was almost no distribution of the low- 
temperature and extreme high-temperature zones. The areas 
with higher temperatures included Huanggu district, Dadong 
district, the southern part of Yuhong district, Heping district, the 
northern part of Tiexi district and the western part of Shenhe 
district. Overall, the surface temperature in the central area of 

Table 6 
The contribution of different urban functions to the urban thermal environment.  

Urban Function Type Contribution to the Surface Thermal Field 

Public 21.65% 
Residential 19.89% 
Industrial 18.44% 
Commercial 17.58% 
Road 14.92% 
Green square 7.51%  
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Shenyang decreased gradually in both, the northern and southern 
directions along the Hunhe River, and the average thermal field 
level in the north of the Hunhe River was higher than in the south.  

(2) Commercial service facilities were most widely distributed in the 
central urban area of Shenyang, followed by industrial and public 
service facility lands, whereas residential land accounted for a 
relatively small proportion. Further, single functional zones 
accounted for 65.71%, whereas the land with two or more 
functions accounted for 34.29% of the total study area.  

(3) Among the various types of urban land, the highest to the lowest 
impacts on the surface thermal environment were contributed by 
public service facility, residential, industrial, commercial service 
facility, road traffic, and green square lands in the order. The 
specific contributions are 21.65%, 19.89%, 18.44%, 17.58%, 
14.92%, and 7.51%. As various constructions contribute more 
than 90% to the urban thermal environment, governments, 
planning departments and other relevant units should plan land 
use rationally, and improve the urban thermal environment by 
increasing the green space to realize sustainable urban 
development. 

CRediT authorship contribution statement 

Yang Chen: Data curation, Software, Writing – original draft, 
Writing – review & editing. Jun Yang: Writing – review & editing, 
Methodology, Conceptualization. Ruxin Yang: Writing – review & 
editing, Data curation. Xiangming Xiao: Writing – review & editing. 
Jianhong (Cecilia) Xia: Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The authors would like to acknowledge all colleagues and friends 
who have voluntarily reviewed the translation of the survey and the 
manuscript of this study. This research study was supported by the 
National Natural Science Foundation of China (grant nos. 41771178 and 
42030409), the Fundamental Research Funds for the Central University 
(grant no. N2111003), the Second Tibetan Plateau Scientific Expedition 
and Research Program (STEP) (grant no. 2019QZKK1004), and the 
Innovative Talents Support Program of Liaoning Province (Grant No. 
LR2017017). 

References 

[1] L. Bertinelli, D. Black, Urbanization and growth, J. Urban Econ. 56 (2004) 80–96, 
https://doi.org/10.1016/j.jue.2004.03.003. 

[2] Y. Li, S. Schubert, J.P. Kropp, D. Rybski, On the influence of density and 
morphology on the Urban Heat Island intensity, Nat. Commun. 11 (2020) 2647, 
https://doi.org/10.1038/s41467-020-16461-9. 

[3] X. Zhang, Y. Sun, Investigating institutional integration in the contexts of Chinese 
city-regionalization: evidence from Shenzhen–Dongguan–Huizhou, Land Use Pol. 
88 (2019), 104170, https://doi.org/10.1016/j.landusepol.2019.104170. 

[4] X. Li, Y. Zhou, G.R. Asrar, M. Imhoff, X. Li, The surface urban heat island response 
to urban expansion: a panel analysis for the conterminous United States, Sci. Total 
Environ. 605–606 (2017) 426–435, https://doi.org/10.1016/j. 
scitotenv.2017.06.229. 
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