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a b s t r a c t

Rubber (Hevea brasiliensis) plantations are one of the most important economic forest in tropical area.
Retrieving leaf area index (LAI) and its dynamics by remote sensing is of great significance in ecological
study and production management, such as yield prediction and post-hurricane damage evaluation. Thir-
teen HJ-1A/1B CCD images, which possess the spatial advantage of Landsat TM/ETM+ and 2-days tempo-
ral resolution of MODIS, were introduced to predict the spatial–temporal LAI of rubber plantation on
Hainan Island by Nonlinear AutoRegressive networks with eXogenous inputs (NARX) model. Monthly
measured LAIs at 30 stands by LAI-2000 between 2012 and 2013 were used to explore the LAI dynamics
and their relationship with spectral bands and seven vegetation indices, and to develop and validate
model. The NARX model, which was built base on input variables of day of year (DOY), four spectral bands
and weight difference vegetation index (WDVI), possessed good accuracies during the model building for
the data set of training (N = 202, R2 = 0.98, RMSE = 0.13), validation (N = 43, R2 = 0.93, RMSE = 0.24) and
testing (N = 43, R2 = 0.87, RMSE = 0.31), respectively. The model performed well during field validation
(N = 24, R2 = 0.88, RMSE = 0.24) and most of its mapping results showed better agreement (R2 = 0.54–
0.58, RMSE = 0.47–0.71) with the field data than the results of corresponding stepwise regression models
(R2 = 0.43–0.51, RMSE = 0.52–0.82). Besides, the LAI statistical values from the spatio-temporal LAI maps
and their dynamics, which increased dramatically from late March (2.36 ± 0.59) to early May (3.22 ± 0.64)
and then gradually slow down until reached the maximum value in early October (4.21 ± 0.87), were
quite consistent with the statistical results of the field data. The study demonstrates the feasibility and
reliability of retrieving spatio-temporal LAI of rubber plantations by an artificial neural network (ANN)
approach, and provides some insight on the application of HJ-1A/1B CCD images, and data and methods
for productivity study of rubber plantation in future.

� 2014 Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote
Sensing, Inc. (ISPRS).
1. Introduction

Rubber trees (Hevea brasiliensis), widely planted hardwood
genus in tropical areas, are important suppliers of natural rubber
and wood. Cultivation of rubber trees is of great economic sig-
nificance and has a profound effect on the local ecosystems. For
example, Hainan Island, the largest rubber cultivation base in Chi-
na, grew about 4.4 � 105 ha of rubber trees in 2010, occupying
13.8% of the total land area of the island and forming the largest
artificial ecosystem there (Chen et al., 2007; Ju-sheng and Ru-
song, 2003; Chen J. et al., 2010; Mo, 2010). Rubber trees are gener-
ally planted 5–8 m apart in rows and 3–4 m in spacing and have a
rotation length of typically 30–40 years. They have an immature
stage (non-productivity) of about 7 years. Great structural changes
of the canopy of the trees not only occur during their life cycle, but
also in each season because rubber trees present deciduous behav-
iors in northern parts of the tropics. Precise temporal and spatial
estimation of leaf area index (LAI), which is typically defined as
one half the total leaf area per unit ground surface area
(Jonckheere et al., 2004), is very important for scientists in their
understanding and modeling gas-vegetation exchange processes
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such as photosynthesis, evaporation and transpiration, rainfall
interception, carbon flux and nutrient cycle (Chen et al., 2004;
Chen and Cihlar, 1996; Jensen et al., 2011; Maass et al., 1995;
Soudani et al., 2006; Zheng and Moskal, 2009), and is also critical
for production management.

Previous studies have incorporated LAI as important parameters
for modeling the photosynthesis, respiration and dry matter accu-
mulation of rubber trees (Hu et al., 1982; Xie, 2009; Xie et al.,
2010). The established models can be further used for research
on productive potential and yield prediction. In addition, LAI has
been found to be positively correlated with dry rubber production
(R2 = 0.71), and to be used to manage tapping intensity in the field
for higher rubber yield (Righi and Bernardes, 2008). The tapping
intensity is particularly important in production management.
Tapping with too high frequency would endanger the survival of
rubber trees, while too low frequency is not good for gaining high
yield of latex. Therefore, farmers might directly benefit from
adjusting the tapping intensity scientifically by monitoring the
LAI over a large area.

LAI may also serve as an important parameter in assessment of
post-hurricane (or typhoon, tropical cyclone) damage to rubber
plantations, which is particular important in China. About half of
the plantations are in Hainan and Guangdong provinces frequently
struck by hurricanes (Yu et al., 2006; Zhang K. et al., 2010)). As rub-
ber tree is a labor-intensive crop with high output value, accurate
post-hurricane damage assessment is helpful for farmers to obtain
reasonable compensation from both the government and the
insurance company (Fu and Zhang, 2010; Zhang, 2011). The canopy
size and its density level are key parameters in evaluating post-
hurricane damage since they directly determine the wind pressure
of rubber plantations (He and Huang, 1987). The modification of
canopy during the hurricane may be related with the fundamental
biophysical parameter of LAI, and could be identified from moder-
ate or high spatial resolution images. For example, Aosier et al.
(2007) found LAI to be an important index for extraction of fallen
trees from Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) images.

However, the LAI dynamics is still unknown for rubber planta-
tions, either on a site-specific or regional scale. The emergence of
remote sensing has significantly improved the LAI estimation on
a large scale (Fassnacht et al., 1997; Zheng and Moskal, 2009),
and numerous studies have been performed to retrieve the LAI of
coniferous forests (Berterretche et al., 2005; Chen et al., 2004;
Sprintsin et al., 2011; Tian et al., 2007), broadleaf forests (le
Maire et al., 2011), croplands (González-Sanpedro et al., 2008)
and mixtures of vegetation types (Fang and Liang, 2005; Gray
and Song, 2012; Jensen et al., 2011; Soudani et al., 2006). However,
few studies have been conducted to deal with rubber trees. One of
the main problems of applying optical remote sensing technology
to rubber plantations is the constant presence of clouds and cloud
shadows in the tropical area (Wang et al., 1999). Medium- and
high-resolution satellites typically have longer revisit intervals of
about two weeks or longer, making it very difficult to acquire an
image at a fixed time and in a specific region from a specific satel-
lite. The MODIS can re-visit the same place once two days, but it is
difficult to use it to monitor the changes of the small and medium-
sized rubber plantations due to its relatively low spatial resolution
(Soudani et al., 2006). In addition, it is difficult to use multi-source
satellite data because of the differences in the spectral and spatial
characteristics of the sensors (Soudani et al., 2006).

China launched two small environmental satellites named HJ-
1A and HJ-1B (HJ-1A/1B for short hereinafter) on September 6,
2008. They are sun-synchronous circular orbit satellites with an
orbital altitude of 649 km. The Wide View CCD Cameras (WVC)
instrument with dual camera configuration onboard HJ-1A/1B
have four bands including blue (0.43–0.52 lm), green
(0.52–0.60 lm), red (0.63–0.69 lm), and near-infrared (NIR,
0.76–0.90 lm) spectra, with the same the spectral ranges as the
first four bands of the Landsat TM/ETM+. The CCD imagery is
360 km in swath width and possesses the advantages of both Land-
sat and MODIS images, with 30 m spatial resolution and 2-day
revisit interval period, by constellation of the two satellites (Lu
et al., 2011). It has been widely used in estimating the LAI of winter
wheat (Chen X. et al., 2010; Zhang et al., 2011; Hu et al., 2012),
prairie (Sun et al., 2011), forest (Zhu et al., 2011), and rice (Li
et al., 2011; Zhang J. et al., 2010).).

This study was to explore the feasibility of using multi-tempo-
ral HJ-1A/1B CCD images to predict spatio-temoral LAI by the arti-
ficial neural network (ANN) approach. The ANN is theoretically
capable of handling the non-normality, nonlinearity and collinear-
ity data not dealt by statistical methods, and is simpler than the
radiative transfer equation based physical models (Houborg
et al., 2007; Walthall et al., 2004), and has been widely used for
multispectral and multi-temporal digital image classification (Li
and Fox, 2011; Murnion, 1996; Shupe and Marsh, 2004), biomass
and forest stand age extraction (Chen et al., 2012; Jensen et al.,
1999; Muukkonen and Heiskanen, 2005), and LAI estimation
(Bacour et al., 2006; Fang and Liang, 2003, 2005; Walthall et al.,
2004; Linna et al., 2009). Since the LAI of rubber plantation should
be nonlinear continuous time series if without serve natural disas-
ter disturbance, a commonly used time-serials ANN model, the
Nonlinear AutoRegressive networks with eXogenous inputs
(NARX), was selected in this study (Menezes and Barreto, 2008;
Pisoni et al., 2009; Siegelmann et al., 1997). The NARX model has
been used to predict the spatio-temporal change of snow cover
(Sauter et al., 2010) and time-serials LAI (Chai et al., 2012) with
MODIS data, and works very promising not only in single-pixel val-
ue retrieval but also in time-serials prediction.
2. Materials and methods

2.1. Study area

The experimental farm (19�300N, 109�290E) of Chinese Academy
of Tropical Agricultural Sciences (CATAS) is located in Danzhou
city, the largest rubber production base of Hainan Island, China
(Fig. 1). The topography of the farm is characterized by hilly pla-
teau with elevations of 130–200 m above the sea level. The sunny
and tropical weather with monsoons here are favorable for agricul-
tural development. The annual precipitation is about 1815 mm.
The rainy season (May–October) accounts for over 84% of the
annual total rainfall and witnesses frequent hurricane of various
scales. The solar radiation is strong in this area with annual average
sunshine of more than 2000 h and an annual average temperature
of 23.1 �C. The farm occupies 3299 ha of cropland, of which
1529 ha are rubber plantations.

A total of 30 rubber stands with areas ranging from 1.16 to
14.48 ha were randomly sampled. Eight of the 30 stands were used
for long-term monitoring by Danzhou Investigation & Experimen-
tal Station of Tropical Crop, Ministry of Agriculture, P.R. China. Four
clones including CATAS7-33-97, PR107, RRIM600 and CATAS7-20-
59 were selected. The stand age was 16.2 years by average, ranging
from 7 to 30 years. There were 7, 8, 7, 3 and 5 stands within the age
groups of <10, 11–15, 16–20, 21–25, >25 years, respectively. The
boundaries of sampling stands (stand digital map for short here-
inafter) were delineated on a 5.8 m multi-spectral image derived
from ZY3 satellite (Table 1). The ZY3 satellite was launched on Jan-
uary 9, 2012 and was the China’s first civilian high-resolution
stereo mapping satellite (http://www.cresda.com). The stand digi-
tal map was stored as shapefile format. The understory plant spe-
cies are mainly Piper sarmentosum Roxb., Ottochloa nodosa (Kunth)

http://www.cresda.com


Fig. 1. The location of study area and 30 rubber stands within the CATAS experimental farm, Danzhou, Hainan Island, China. The background was 5.8 m spatial resolution ZY3
image acquired on March 23, 2012 and was shown in band combination of R(4) G(3) B(2) with 2% linear stretch. The green patches were the exact location of the sampling
stands. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Satellite data set description, including path, row, acquisition date and time, solar elevation and azimuth angle (degree).

No. Satellite Sensor Path Row Date DOY Time Sun elevation Sun azimuth

1 HJ-1B CCD2 5 92 2012/03/23 82 11:04:23 58.00 305.57
2 ZY3 MUX 6 175 2012/03/23 82 11:20:25 61.74 307.99
3 HJ-1A CCD1 2 92 2012/04/24 114 11:08:00 67.25 286.47
4 HJ-1A CCD2 3 96 2012/05/01 121 10:52:48 64.63 272.95
5 HJ-1B CCD2 4 92 2012/05/03 123 11:00:05 64.34 277.98
6 HJ-1A CCD1 3 92 2012/05/09 129 11:09:02 68.40 274.95
7 HJ-1B CCD2 2 96 2012/05/14 134 10:55:04 64.67 264.63
8 HJ-1A CCD2 2 96 2012/07/11 192 10:50:16 64.13 256.52
9 HJ-1B CCD2 3 96 2012/07/13 194 10:52:56 63.84 257.25
10 HJ-1A CCD2 4 92 2012/07/15 196 10:55:47 64.97 264.07
11 HJ-1B CCD1 1 92 2012/10/04 277 10:55:04 54.87 312.55
12 HJ-1A CCD2 3 96 2012/10/13 286 10:46:59 51.69 310.02
13 HJ-1B CCD2 5 92 2012/11/22 326 10:50:53 41.90 321.33
14 HJ-1A CCD2 2 96 2012/12/01 334 10:41:48 40.71 322.86
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Dandy, Callipterisesculenta (Retz.) J. Sm. ex Moore et Houlst., Panicum
brevifolium L., Axonopus compressus (Sw.) Beauv., and Lophatherum
gracile Brongn.

2.2. Field data and satellite images

2.2.1. Field-LAI measurements
The Plant Canopy Analyzer (PCA) LAI-2000 (LICOR Inc., Lincoln,

NE, USA) was used to measure LAI. The LAI-2000 measured the gap
fraction P(h) in five zenith angles (h) with midpoints of 7�, 23�, 38�,
53� and 67� and calculated LAI based on Miller’s theorem. Actually,
the LAI obtained from the gap fraction measurements was effective
LAI (Chen and Cihlar, 1996), but hereinafter was referred as LAI for
short. Among the 30 stands, the data of 24 stands were used to
explore the general pattern of seasonal LAI and to build NARX
model (hereinafter referred as model-building stands), and the
data of the rest six stands were used for model validation (here-
inafter referred as model-validation stands). The measurement
for the model building stands was started in March 2012 and for
the validation stands was begun in August 2012. All the measure-
ments were conducted around 25th of every month and were end-
ed in February 2013.

Improving the accuracy of ground-based data is critical to the
advancement of remote sensing application (Chen and Cihlar,
1996). Therefore, all measurements were taken under uniform or
near uniform clear diffuse skies at low solar elevation to prevent
the effect of direct sunlight on the sensor and to reduce light scat-
tering effect (e.g., for less than two hours after sunrise and before
sunset for sunny days). To avoid direct sunlight on the sensor,
the above-canopy (A) and below-canopy (B) readings were made
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in the opposite direction of the sun using a view gap of 45� in the
azimuthal plane. For each stand, two A reference samples with at
least 8 readings were quickly measured before and after the B
readings at a closed (300 m or less) open area, which was suffi-
ciently large so that no potential field view would be obstructed
(LI-COR, 1992). Based on the stand area, 24–36 B readings were
taken along the row diagonals of each stand by the same LAI-
2000 instrument. The intervals between two B readings ranged
from 5 to 10 m and at least two transects were performed to obtain
a representative measurement. All B readings were collected at a
minimum distance from the edges, about two times the maximum
tree height to avoid border effect.

2.2.2. Satellite Images
Thirteen successive HJ-1A/1B CCD images and one ZY3 MUX

multispectral image were obtained from China Centre for
Resources Satellite Data and Application (CRESDA). Images
obtained in February were not used because most rubber trees
shed their leaves. Table 1 lists the image acquisition and the illumi-
nation geometries. All the images were acquired around 11:00 AM,
but the angles of sun azimuth and zenith changed with seasons.
The different values of path and row indicated that the orbit of
HJ-1A/1B had a certain offset. All the CCD images were treated with
radiometric and geometric correction (level 2).

2.3. Data processing

2.3.1. Field-LAI processing
Computation of LAI was done using LAI-COR FV2200, which

allowed manipulation of LAI-2200 and LAI-2000 data (LI-COR,
2012). Although we tried to make sure all the measurements were
under ideal conditions, some data processing methods were still
used to reduce possible errors caused by the changing of the envi-
ronment. For each B reading of each stand, an A reading was deter-
mined by time-based linear interpolation between two associated
A samples. The assumption of linear variation of above-canopy
radiation with time at low solar angle elevation was verified for
a short time (less than 20 min) delay between two samples
(Soudani et al., 2006). The mean values of each A reference sample
were calculated and used to interpolate an A reading for each B
reading. Previous studies indicated that discarding two lowest
rings (47–58� and 61–74�) of LAI-2000 could improve LAI estima-
tion for broadleaf species (Olthof and King, 2000; Soudani et al.,
2006; Welles and Norman, 1991). Therefore, only the three upper
rings were used to compute LAI for the broadleaf rubber trees.

2.3.2. Satellite images pre-processing
The HJ-1B CCD2 image acquired on March 23, 2012 was re-pro-

jected into a UTM zone 49N and was geometrically corrected by
using 25 ground control points gathered throughout the image uti-
lizing features such as small ponds and road intersections. Nearest
neighbor resampling was used in all geometrical transformations
Table 2
Coefficients used for radiometric calibration of HJ-1A/1B CCD images.

Satellite Sensor B1 (0.43–0.52 lm)

HJ-1A CCD1 G 0.7696
L0 7.3250

HJ-1A CCD2 G 0.7435
L0 4.6344

HJ-1B CCD1 G 0.7060
L0 3.0089

HJ-1B CCD2 G 0.8042
L0 2.2219
to minimize the statistical properties change of the data sets. A sec-
ond order of polynomial transformation equation was used to re-
project the images with a root mean square error (RMSE) of less
than 0.5 pixels. The corrected image was further used as reference
image to register the rest images by the automatic registration uti-
lity of ENVI. The digital number (DN) values were converted to at-
sensor spectral radiance, Lsat (Wm�2 sr�1 lm�1), by radiometric
calibration, and were then converted into Top-Of-Atmosphere
(TOA) reflectance. The radiometric calibration of HJ-1A/1B CCD
images was made by using Eq. (1).

Lsat ¼
DN
G
þ L0 ð1Þ

where G (W�1m2 sr lm) was the calibration factor and L0 (Wm�2

sr�1 lm�1) was the calibration offset. The G and L0 were restored
in the corresponding header file and were presented in Table 2.

The conversion of at-sensor spectral radiance to exoatmospher-
ic TOA reflectance was performed by using Eq. (2)

q ¼ pLD2

Esun cos hs
ð2Þ

where the L was at-sensor radiance, D was the Earth-Sun distance in
astronomical units, Esun was the mean solar exo-atmospheric irradi-
ance, and h was the solar zenith angle. The D was varied with the
Day-Of-Year (DOY) and was retrieved from Chander et al. (2009)
according to the DOY of the image acquisition date. For HJ-1A/1B
CCD images, the Esun was presented in Table 3 (Zhu et al., 2011).
Since there was no well-accepted atmospheric correction model
available for HJ-1A/1B satellites, no atmospheric correction was
performed on HJ-1A/1B CCD images.

For ZY3 images, no geometric correction was performed
because its positioning precision was high. The radiometric
calibration was made by using Eq. (3).

Lsat ¼ G � DN ð3Þ

where the gain G (W�1m2 sr lm) was set at 0.2525, 0.2253, 0.1791
and 0.1942 for the spectral band of blue, green, red and NIR, respec-
tively (http://www.cresda.com). The conversion of spectral radiance
to exoatmospheric TOA reflectance was not performed because Esun

in Eq. (2) was not obtained.

2.3.3. Vegetation indices computation
Seven vegetation indices (VIs), which were frequently used for

LAI estimation, including Normalized Difference Vegetation Index
(NDVI), Simple Ratio (SR), Soil Adjusted Vegetation Index (SAVI),
second version of SAVI (SAVI2), Transformed SAVI (TSAVI),
Weighted Difference Vegetation Index (WDVI) and Enhanced
Vegetation Index (EVI), were computed using the following equa-
tions (Broge and Leblanc, 2000; Liang and Liang, 2003; Turner
et al., 1999).

NDVI ¼ qNIR � qred

qNIR þ qred
ð4Þ
B2 (0.52–0.60 lm) B3 (0.63–0.69 lm) B4 (0.76–0.90 lm)

0.7815 1.0914 1.0281
6.0737 3.6123 1.9028

0.7379 1.0899 1.0852
4.0982 3.7360 0.7385

0.6960 1.0082 1.0068
4.4487 3.2144 2.5609

0.7822 1.0556 0.9237
4.0683 5.2537 6.3497

http://www.cresda.com


Table 3
Mean solar exo-atmoshperic irradiance (Esun, Wm�2 lm�1) used for TOA reflectance calibration of HJ-1A/1B CCD images.

Satellite Sensor B1 B2 B3 B4

HJ-1A CCD1 1914.324 1825.419 1542.664 1073.826
CCD2 1929.810 1831.144 1549.824 1078.317

HJ-1B CCD1 1902.188 2833.626 1566.714 1077.085
CCD2 1922.897 1823.985 1553.201 1074.544
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SR ¼ qNIR

qred
ð5Þ

SAVI ¼ qNIR � qred

qNIR þ qred þ L
ð1þ LÞ ð6Þ

SAVI2 ¼ qNIR

qred þ b
c

ð7Þ

TSAVI ¼ cðqNIR � cqred � bÞ
cqNIR þ qred þ cbþ Xð1þ c2Þ ð8Þ

WDVI ¼ qNIR � cqred ð9Þ

EVI ¼ 2:5� qNIR � qred

qNIR þ 6� qred � 7:5� qblue þ 1
ð10Þ

where qblue, qred, and qNIR were the reflectance values of blue, red,
and NIR spectral bands of HJ-1A/1B CCD, respectively. The L was a
canopy background adjustment factor set at 0.5 (Soudani et al.,
2006), and c and b were the slope and intercept, respectively, of
the soil line. X was the adjustment factor to minimize the soil noise
set at 0.08 (Liang and Liang, 2003). The slope and intercept of soil
line were determined from the red-NIR spectral space of each image
following the method published by Fang and Liang (2003). The VIs
layers and four spectral bands were stacked for subsequent
analysis.

2.3.4. Spectral feature of rubber stand extraction
The mean value of each stand, instead of the mean value of

3 � 3 pixels window centered at each sampling point (Chen and
Cihlar, 1996; Foody et al., 2001), was extracted from each image.
The mean stand value was used due mainly to the following con-
siderations. Firstly, the mean value could represent the reflectance
level of the whole stand because rubber trees were simultaneously
transplanted in each stand and were managed with same measures
during their life cycle. Secondly, a 3 � 3 pixels window in HJ-1A/1B
CCD image meant that the stand contained at least one square area
of 1 ha. Therefore, the mean value had stronger adaptability in
dealing with small or thin stands that did not meet this
requirement.

The stand digital map was used to create regions of interest
(ROIs), and further used for extracting pixel values. Since the
boundary pixels might be contaminated by roads and windbreak
forest, the pixels of the first and last lines, the head and tail pixels
of the remaining lines in each ROI were removed (Chen et al.,
2012). Some inner-stand outlier pixels, which came from extreme-
ly ruined spots such as continuous break of trunks or missing of
trees due to the frequent hurricane disturbance, should also be
removed. Ideally, pixels from highly homogeneous rubber stands
might have similar values in each spectral band, while pixels from
the extremely ruined spots could exhibit quite different values.
Therefore, outlier pixels could be identified in a sorted pixel order.
In this study, only percentile values of pixels in each ROI that in
four spectral bands all are within (0.05, 0.95) were used. The filter
of boundary pixels or inner-stand outlier, however, was not per-
formed for small stands if the filtered pixels were smaller than a
threshold value (4 was used here). All the processes were finished
by an Interactive Data Language (IDL) and ENVI based programs
(http://www.exelisvis.com/).

2.3.5. Field data processing and regression analysis
Statistical analysis was performed on the field LAI of model-

building stands and the mean LAI of these stands was used to
explore the general pattern of seasonal LAI of rubber plantation.
For each image, a corresponding field LAI was determined by linear
interpolation from the two closest field data based on the DOY of
the image acquisition date and field campaign. The interpolation
might greatly reduce the error caused by phenological change, par-
ticularly in spring and summer when leaf development was very
fast. The basic relationship between interpolated LAI and red, NIR
and VIs for each image was firstly analyzed by calculating Pearson’-
s correlation coefficients (r) and examining their scatter plots.
Then, the multiple stepwise regression was used alternatively to
build LAI prediction models in SPSS (http://www-01.ibm.com/soft-
ware/analytics/spss/) by using input variables of four spectral
bands and seven VIs. The regression-LAI for each image was subse-
quently compared with the results predicted by NARX model.

2.4. The NARX neural network

The NARX is a recurrent dynamic network, with feedback con-
nections enclosing several layers of the network. The NARX model
has been demonstrated to be well suited for modeling nonlinear
systems, especially time series (Beale et al., 2011). Moreover, some
important qualities of the NARX have also been reported, such as
its more effective learning process, faster convergence and better
generalization than other neural networks (Diaconescu, 2008; Lin
et al., 1996). The NARX model can be expressed in Eq. (11) (Chai
et al., 2012; Siegelmann et al., 1997)

yðtÞ ¼ f ðyðt�1Þ;yðt�2Þ; . . . ;yðt� iÞ;uðtÞ;uðt�1Þ;uðt
�2Þ; . . .uðt� jÞÞ ð11Þ

where the next value of the dependent output signal y(t) is
regressed on the previous of the output signal, i.e.
y(t � 1), . . ., y(t � i), and the current and previous value of an exoge-
nous input signal, i.e. u(t), u(t � 1), . . ., u(t � j). The i and j are the
input and output order, and f is a nonlinear function. The architec-
ture of NARX model is shown in Fig. 2 (Chai et al., 2012). The left
two rectangles colored dark gray is tapped delay line (TDL). The
input signals enter the TDL and pass through N � 1 delays. The out-
put of the TDL is an N-dimensional vector made up of the current
and previous input signals. The number of delays in the TDL for
the input variable u is j and for the output variable y is i.

The data structures of both u and y for the NARX model are in
the form of a continuous time-series sequence as shown in Eq.
(12) (Chai et al., 2012).

u ¼ f½u1� ½u2� � � � ½ut �g
y ¼ f½y1� ½y2� � � � ½yt�g

�
ð12Þ

where the elements of u and y, i.e. [uk] and [yk], respectively, are the
values collected at a given time point k (1 6 k 6 t). By configuring
the TDL in advance such as fixing the value of i and j in Eq. (11) with

http://www.exelisvis.com/
http://www-01.ibm.com/software/analytics/spss/
http://www-01.ibm.com/software/analytics/spss/


Fig. 2. Architecture of the NARX configured with TDLs.
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the input data, the NARX model can be established for time-serials
forecasting.
2.4.1. Constructing potential model-building data sets
Since the LAI is changed with seasons, the DOY, together with

the four spectral bands and seven VIs were considered as potential
exogenous inputs (u), and the interpolated field LAI for each image
was the outputs (y). There are 24 model-building stands and 13
successive HJ-1A/1B CCD images. Therefore, the potential exoge-
nous inputs [uk] and outputs [yk] in Eq. (12) are of the forms of
Eq. (13).

½uk� ¼

DOYk1 DOYk2 � � � DOYkn

B1k1 B1k2 � � � B1kn

..

. ..
. ..

. ..
.

EVIk1 EVIk2 � � � EVIkn

2
66664

3
77775

½yk� ¼ LAIk1 LAIk2 � � � LAIkn½ �

8>>>>>><
>>>>>>:

ð13Þ

where k ð1 6 k 6 13Þ is the given time point, n is the sampling
stands set at 24.
2.4.2. Determination of input variables
Some redundant variables should be removed before entering

the final model since there are 12 potential exogenous input vari-
ables. Determinate the inputs of an ANN model is always a difficult
work, here we select variables based on performance testing. Every
possible variable combination from the [uk] by gradually adding
input variables was used to build NARX testing models. In addition
to fixing the neurons of hidden layers at 10, the training para-
meters of the testing model were same as those of the final model
described in Section 2.4.3. Each testing model was trained for
50 times, and the correlation coefficients (r) between the observed
and predicted LAI and RMSE for each training were recorded. The
mean value of r and RMSE, standard deviation, minimum and max-
imum value of RMSE for each testing model were compared. The
top two best models with lowest mean RMSE or highest mean r
for each number of inputs were identified. The adding of variable
was stopped when the mean performances of the top two best
models increased very slightly. The most promising variable com-
binations in these best testing models were selected to build the
final NARX model. Base on the testing, the DOY, B1, B2, B3, B4
and WDVI were selected to build the final NARX model.
2.4.3. Determination of training parameters
The NARX model was built in MATLAB (http://www.math-

works.com). The training data of [uk] and [yk] were randomly divid-
ed into independent training, validation and testing sets at a ratio
of 0.75:0.15:0.15, respectively. The training data set was used to
compute the gradient and update the network weights and biases,
while the validation data set was used to monitor the error during
the training process. After the training process, the test data set
error was used to test the training. The training was stopped when
the correlation coefficients between each data set and its predic-
tion were consistent. By considering the inaccessibility of the
experimental data and the usability and flexibility of the model,
the i and j for the TDLs of u and y were both set to 1 (Fig. 2). There-
fore, Eq. (11) can be simplified to the form of Eq. (14).

yðtÞ ¼ f ðyðt � 1Þ;uðt � 1Þ;uðtÞÞ ð14Þ

where for the mapping function, y(t) was LAI(t) and u(t) was
[DOY(t); B1(t); B2(t); B3(t); B4(t); WDVI(t)].

The NARX model was set to a two-layered architecture. Before
entering the network, the inputs were standardized and a sigmoidal
transformation function was used to calculate the activation of each
hidden neuron. In the hidden layer, 13 neurons were used based on
performance testing of adding neurons. In order to improve the
training speed, the Levenberg–Marquardt backpropagation algo-
rithm was adopted in the training (Beale et al., 2011).

Based on Eq. (14), the exact map of LAI(t � 1), which is always
unknown in advance, is needed when mapping LAI(t) over large
area with the NARX model. In our study, the LAI(t � 1) over the
study area for the first image on 23/03 (hereinafter referred as
LAI(0323)) was determined by the best regression results from
HJ-1A CCD and ZY-3 MUX images. The 5.8 m ZY3 regression-based
LAI was resampled into 30 m spatial resolution by the nearest
neighbor methods. However, the estimation errors on LAI(0323)
would be augmented and propagated when it was used to predict
LAI(t) with the well-trained NARX model, which was built based on
accurate field LAI. This problem was particularly more serious
when the prediction accuracy of LAI(0323) was low. Therefore,
an auxiliary testing criterion was used to find a strong error-toler-
ant NARX model during the training process. The testing was car-
ried in three steps: (1) using best regression-based LAI(0323) as
inputs to predict LAI of next date (here is 24/04, and referred to this
LAI as LAI(0424)) with the training model; (2) extracting LAI of the
model-building stands from LAI(0424); (3) calculating correlation
coefficients and RMSE of the predicted LAI with field LAI. The NARX
model that possessed the best training performance and its
prediction results corresponded well with LAI(0424) was finally
selected.
2.4.4. Model performance evaluation
Direct validation and model comparison were conducted to

evaluate the performance of the NARX model. The field data of
the six validation stands, which began their measurement in
August 2012, were used to validate the model. The DOY, B1, B2,
B3, B4 and WDVI of the model-validation stands from the images
of 04/10, 13/10, 22/11 and 01/12 were used to construct [uk]. The
interpolated field LAIs of the four images were used to build [yk].
The model comparison was performed by respectively comparing
the NARX-based LAI of all the sampling stands with the corre-
sponding stepwise regression-based LAI. The same method
described in Section 2.3.4 was used to extract the regression-
and NARX-based LAI of each stand from the prediction maps. The
scatter plots, coefficient of determination (R2) of the observed LAI
against predicted LAI and RMSEs were used to evaluate model per-
formance and to find areas of poorer prediction.

http://www.mathworks.com
http://www.mathworks.com
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2.4.5. Temporal LAI mapping
In a previous study, we derived a high precision map of rubber

plantation (30 m spatial resolution) over Danzhou region by inte-
gration of Phased Array type L-band Synthetic Aperture Radar
(PALSAR) with multi-temporal Landsat imagery (Dong et al.,
2013). An area of 512 � 512 pixels centered on CATAS experimen-
tal farm from this map was used for temporal LAI mapping. During
the mapping, the NARX output LAI(t) was used as input parameter
to predict the LAI of next date. Based on our measurement, the LAI
of rubber plantation is unlikely less than 0.5 and greater than 7,
therefore pixel value outside (0.5, 7) were strictly removed. In
addition, pixels with LAI value below 2th percentile and above
98th percentile were masked out to eliminate errors that were
caused by misclassification and the model itself. Statistics analysis
was conducted on each spatio-temporal LAI map and the descrip-
tive results compared with the statistics data of the field LAI.

3. Results

3.1. The temporal variation of field-LAI

The lowest LAI was found in late February with a mean value of
1.18 ± 0.69 (Fig. 3). A quick increase of LAI was observed in March
Fig. 3. The temporal variation of mean LAI of the model-building stands at the
CATAS experimental farm, Hainan Island, China. The error bars is the standard
deviation.

Table 4
Pearson’s correlation coefficients between LAI and red and NIR spectral band, and vegetat

No. Satellite Sensor Date B3 B4 NDVI

1 HJ-1B CCD2 23/03 �0.51* 0.75** 0.67*

2 ZY3 MUX 23/03 �0.55** 0.74** 0.71*

3 HJ-1A CCD1 24/04 �0.49* 0.62** 0.63*

4 HJ-1A CCD2 01/05 �0.56** 0.68** 0.63*

5 HJ-1B CCD2 03/05 �0.51* 0.71** 0.66*

6 HJ-1A CCD1 09/05 �0.34 0.60** 0.52*

7 HJ-1B CCD2 14/05 �0.37 0.63** 0.51*

8 HJ-1A CCD2 11/07 �0.28 0.67** 0.56*

9 HJ-1B CCD2 13/07 �0.10 0.64** 0.49*

10 HJ-1A CCD2 15/07 �0.28 0.64** 0.60*

11 HJ-1B CCD1 04/10 0.16 0.61** 0.43*

12 HJ-1A CCD2 13/10 0.26 0.80** 0.47*

13 HJ-1B CCD2 22/11 0.09 0.67** 0.41*

14 HJ-1A CCD2 01/12 0.24 0.77** 0.40*

* Correlation was significantly different at the 0.05 level (2-tailed).
** Correlation was significantly different at the 0.01 level (2-tailed). Twenty-four stand

then.
and April, reaching the mean values of 2.17 ± 0.63 and 2.96 ± 0.74,
respectively. However, in May, the rising of LAI slowed down but
still increased until it reached the maximum value of 4.02 ± 1.05
in late September. A slight decline of mean LAI was found in Octo-
ber (0.07), and a more obvious decrease was observed during
November (0.29), December (0.26) and January (0.26). The dramat-
ic fall of LAI was found in February, from 3.14 ± 0.88 to 1.18 ± 0.69,
faster than the foliation speed observed in March or April.
The standard deviation of LAI ranged from 0.63 to 1.05 during
the year.
3.2. LAI versus spectral bands and VIs of HJ-1A/1B CCD and ZY3 images

The Pearson’s correlation coefficients (r) between the LAI and
red, NIR and VIs of the 13 successive HJ-1A/1B CCD and the ZY3
images were presented in Table 4. The red band (B3) showed nega-
tive correlation with LAI (r = 0.49–0.56) before early May and tend-
ed to show very weak correlation since then. Good correlation
relationships were observed between the LAI and NIR reflectance
(B4) and the seven VIs for all the images. However, great difference
in correlation strength was found among these variables. The NIR,
WDVI, SAVI and TSAVI were highly correlated with field LAI with r
ranging from 0.51 to 0.80 for all the images. The NDVI, SR, SAVI2
and EVI showed close relationship with LAI before October but
weak correlation relationship with r around 0.45 (P < 0.05) since
then. The absolute values of correlation coefficients of NIR and
VIs for ZY3 were ranged from 0.71 to 0.74, slightly better than
those of the HJ-1B CCD images on 23/03.

The scatter plots of predicted LAI versus observed LAI for the
model-building stands on 23/03 by stepwise regression from HJ-
1B CCD and ZY3 MUX images were presented in Fig. 4. Moderate
accuracy prediction results were found for the two images, with
R2 of 0.57 and 0.54 and RMSEs of 0.43 and 0.41 for HJ-1B CCD
and ZY3 MUX image, respectively. In addition, underestimation
of LAI greater than 2.5 was observed for both the two images.
The LAI from HJ image was slightly better than results from ZY3
image, and therefore was used as input for both model training
and LAI mapping.
3.3. The training results of the NARX model

Fig. 5 shows the regression plots of the NARX output with
respect to model-building, validation and testing data and error
histogram. The performance of the model during the training
was fairly good, reaching R2 of 0.98, 0.93 and 0.87 and RMSEs
of 0.13, 0.24, and 0.31 for the data sets of training (N = 202),
ion indices derived from the 13 successive HJ-1A/1B CCD and one ZY3 images.

SR SAVI SAVI2 TSAVI WDVI EVI

* 0.68** 0.71** 0.66** 0.67** 0.70** 0.69**

* 0.71** 0.71** 0.71** 0.71** 0.74** �0.71**

* 0.63** 0.65** 0.64** 0.65** 0.64** 0.63**

* 0.64** 0.66** 0.64** 0.65** 0.67** 0.65**

* 0.68** 0.71** 0.69** 0.69** 0.72** 0.69**

* 0.52** 0.58** 0.56** 0.57** 0.60** 0.57**

* 0.53** 0.58** 0.53** 0.54** 0.59** 0.57**

* 0.60** 0.66** 0.60** 0.63** 0.67** 0.60**

0.54** 0.60** 0.56** 0.57** 0.62** 0.57**

* 0.63** 0.64** 0.63** 0.63** 0.65** 0.62**

0.46* 0.55** 0.47** 0.51** 0.57** 0.43*

* 0.49** 0.66** 0.45* 0.54** 0.69** 0.46**

0.45* 0.62** 0.45* 0.57** 0.64** 0.46*

0.45* 0.64** 0.45* 0.55** 0.70** 0.49**

s were used for calculation for images before August and 30 stands were used since



Fig. 4. Scatter plots of LAI on March 23, 2012 predicted by multiple stepwise
regression based on HJ-1B CCD and ZY3 MUX images.
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validation (N = 43) and testing (N = 43), respectively. The histogram
(Fig. 5d) indicated that the errors were slightly left skewed, but
overall were normally distributed. Slight underestimation of high
LAI and about six of obvious scatter points were observed during
the model validation and test (Fig. 5b and c).

3.4. Performance evaluation of the NARX model

The performance evaluation of NARX model was presented in
Fig. 6. Fig. 6a was the scatter plot of the predicted LAI versus
Fig. 5. Regression plots of the NARX model for the output with respect to (a) model bu
regression line and the dashed line is the one-to-one line.
observed LAI from the model-validation stands on 13/10, 22/11
and 01/12. The predicted LAI agreed well with the field measure-
ment and reached R2 and RMSEs of 0.88 and 0.24, respectively.
However, slight overestimation was observed for about half of
the model-validation stands.

The comparison of the NARX predicted LAI with the results from
the stepwise regression for image of 03/05, 15/07, 04/10, 13/10 and
22/11 for all the sampling stands were presented in Fig. 6b–f,
respectively. The images of 03/05 and 15/07 were selected because
they possessed stronger correlation relationship with field LAI in
May and July, while the later three images (04/10, 13/10 and 22/
11) showed the weakest correlation relationship with the field
LAI among these images (Table 4). Before 13/10, the NARX-based
LAI presented good consistence with the observed LAI than the cor-
respond regression-based LAI. The R2 and RMSE were ranging from
0.54 to 0.58 and 0.47 to 0.71, and 0.43 to 0.51 and 0.52 to 0.82 for
the NARX models and regression models, respectively. However,
the results after 13/10 were unexpected, which the regression
models obviously showed better performance than the NARX mod-
els. The R2 and RMSE of the regression models were 0.56 and 0.66,
and 0.56 and 0.56 for image of 22/11 and 01/12, respectively. The
NARX models, however, held lower R2 of 0.23 and 0.39 and RMSE of
0.71 and 1.01 for the two days, respectively.
3.5. Model input testing

Since the LAI predictions from multivariate regression models
after 13/10 were obviously better than the NARX model (Fig. 6e
and f), an input testing for the NARX model was carried out to
explore some potential factors which affects the model prediction
accuracy. The regression-based LAI and NARX-based LAI on 13/10
was respectively used as LAI(t � 1) to predict LAI of 22/11 and
ilding, (b) validation, (c) testing data and error histogram (d). The solid line is the



Fig. 6. NARX model performance evaluation: validate with CATAS field data (a) and compared with results from stepwise regression model for image 03/05 (b), 15/07 (c), 04/
10 (d), 13/10 (e) and 22/11 (f), respectively.
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01/12, and their predicted results were presented in Fig. 7. The LAI
from regression-based inputs were compact and less biased along
the one-to-one line. The R2 and RMSE were 0.73 and 0.73, and 0.43
and 0.45 for the images 22/11 and 01/12, respectively. The NARX-
based output was biased on 22/11 but more scattered and biased
on 01/12, the R2 were 0.39 and 0.28, and RMSE were 0.71 and
0.98, respectively.

3.6. Temporal LAI of rubber plantation over CATAS experimental farm

Fig. 8 presents the spatio-temporal LAI maps of rubber
plantations over the CATAS area predicted by multiple stepwise
regression and the NARX model. The data in brackets were the
Fig. 7. Comparison of NARX output for images on 22/11 (a) and 01/12 (b) by respect

Fig. 8. Spatio-temporal LAI maps of rubber plantation over CATAS area (512 � 512 pixel
model with HJ-1A/1B CCD images. The LAI on 23/03 (a) was predicted by stepwise regre
model. The non-rubber pixels have been masked out. The descriptive statistics data
experimental farm.
contemporary statistics results from model-building stands
observed in the CATAS experimental farm. On 23/03, both the LAI
value and its spatial variation were small, having mean, minimum
and maximum values of 2.36 ± 0.59, 0.97 and 3.74, respectively. In
May, the mean LAI significantly increased, and reached its mean
value of 3.22 ± 0.64. An obvious increase of mean LAI and standard
deviation was observed on 15/07 (3.96 ± 0.91). Both the mean and
standard deviation of LAI reached their peak value on 04/10, having
mean and maximum values of 4.21 ± 0.87 and 6.58, respectively.
Later, the mean LAI began to decline and decreased to 3.96 ± 0.84
on 22/11. The mean, standard deviation and maximum LAI derived
from the prediction maps shared the same variation trend with the
data observed in the CATAS experimental farm.
ively using NARX-based LAI and Regression-based LAI of 13/10 as model inputs.

s, 30 m spatial resolution) predicted by multiple stepwise regression and the NARX
ssion and 03/05 (b), 15/07 (c), 04/10 (d) and 22/11 (e) were predicted by the NARX
in brackets was derived from field data of the model-building stands at CATAS
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4. Discussion

4.1. General pattern of temporal LAI of rubber plantations in Hainan
Island

The temporal variation of LAI (Fig. 3) was quite consistent with
the phenological change of rubber trees in Hainan Island. The low-
est LAI was observed in February (1.18 ± 0.69) mainly because
most rubber trees had shed their leaves. Rubber trees present
deciduous behavior with almost complete defoliation for about
2–3 weeks during wintertime, usually in February in Hainan
Island, due mainly to the decrease in air temperature and to annual
drought (Dong et al., 2013; Righi and Bernardes, 2008). They begin
their defoliation when the rainy season ends in October, but most
of the leaves are shed during February. Generally, the progress of
defoliation is closely related to stand age, but it also depends on
site conditions, such as the supply of nutrients, water, or others.
The standard deviation of LAI increased in the rainy season is
mainly because the young trees usually have more nutrients for
canopy development, while mid-age and old trees need more
nutrients for latex reproduction and therefore have slower speed
of canopy development.

The rubber trees in Hainan Island usually have three distinct
foliation periods, in March, May and August, of which the first
two periods develop about 80% of the total annual leaves (He
and Huang, 1987). If the lowest LAI in February is taken as a bench-
mark regardless of a few leaves still on the trees, the mean LAI by
the end of June (3.40) accounts for 78.17% of the annual maximum
LAI (4.02). This proportion is quite consistent with the results
reported by He and Huang (1987).

The change of LAI from October to January, however, did not fol-
low a trend of gradual decrease as expected. The mean decrement
of LAI during November (0.29) was obviously greater than that in
October (0.07) and slightly larger than that in December (0.26)
and in January (0.26). This was mainly caused by the disturbance
of the strong and late-forming typhoon Son-Tinh, which entered
the South China Sea and affected Vietnam and Hainan Island dur-
ing 26–31th of October 2012, a little later than the field measure-
ments that were made during 21–24th of the same month.
Although the Son-Tinh did not directly hit Hainan Island, the con-
tinuous stormy weather blew off many rubber leaves. This also
indicated that, in terms of post-hurricane damage evaluation, it
was of vital importance to intensively monitor the LAI of rubber
plantations.
4.2. Relationship between LAI and spectral bands and VIs

Compared with the seven VIs, the NIR showed the strongest
correlation relationship with LAI for all the HJ-1A/1B CCD images
(Table 4). In addition to explained by the strong reflection of
healthy green vegetation in NIR spectral band, the relative strong
energy in NIR for the HJ-1A/1B CCD image might also contribute
to the high correlation relationship. The WDVI, SAVI and TSAVI,
which have incorporated soil line parameters or adjusted factors
during calculation, had successfully eliminated both atmosphere
and canopy background variation to some degree, and therefore
were highly correlated with LAI (Liang and Liang, 2003). Although
the ZY3 MUX possessed high image quality than HJ-1A/1B CCD, its
correlation coefficients of LAI-NIR and LAI-VIs were slightly better
than those of the CCD images. In addition, no significant difference
between the regression-LAI for the two images was found. This
might be by explained by the fact that the average LAI was very
low in March. Therefore, the influence of understory vegetation
weakened their correlation strength. Generally, the strong correla-
tion relationship between LAI and spectral bands and VIs
throughout the year indicated that it was possible to predict the
LAI of rubber plantation by using some of the image-based
variables.

4.3. Spatio-temporal LAI of rubber plantation predicted by NARX
model

The NARX model developed by the field data of model-building
stands and 13 successive HJ-1A/1B CCD images was performed
very well. All the R2 of the predicted LAI versus observed LAI during
model training were greater than 0.87, and RMSEs were less than
0.31. However, about six of obvious scatter points were found dur-
ing model building (Fig. 5b and c). A carefully checking of the data
indicated that two of them were derived from field measurement
error, and four were from model prediction error. The slight under-
estimation for higher LAI (Fig. 5b and c) might be explained by the
decrease in reflectance response of overstory in the closed rubber
stands.

The validation of the model with the field data was performed
very well (R2 = 0.88, RMSE = 0.24). However, unlike the results of
the training, no underestimation for lower LAI but slight overesti-
mation of few stands was observed. This was mainly caused by the
obvious drop of mean LAI (0.29) after the typhoon Son-Tinh in late
October, while the model output was based on assumption that LAI
was nonlinear continuous time series. The comparison results in
Fig. 6(b–d) also indicated that NARX model was more stable and
robust than the corresponding stepwise regression models. How-
ever, the results after 13/10 were quite unexpected because the
regression-LAI obvious better than NARX-LAI. By carefully check-
ing, we found the image on 13/10 was slightly blurred and pos-
sessed significant higher value of red band reflectance than the
image of 04/10 and 22/11. The red reflectance should be relatively
low since the canopy of rubber plantation was very dense in Octo-
ber. Therefore, we suspect there was a uniform layer of mist over
the study area and finally led to a high value of red reflectance.
However, a significant high correlation relationship between LAI
and NIR (r = 0.80) was found under the unique weather (Table 4).
The better performance of regression-LAI on 13/10 indicated it
was more suitable for LAI mapping and finally was used to predict
the LAI of 22/11 and 01/12 with NARX model.

The application of the model over the CATAS area indicated that
the predicted results agreed well with the phenological change of
rubber trees (Fig. 8). The mean, standard deviation and maximum
value of LAI derived from the spatio-temporal LAI maps were con-
sistent with the statistical results of the corresponding field data
observed in the CATAS experimental farm. However, there were
still some inconsistent spatial variations for few stands on these
maps due to failed to obtain a highly accurate LAI map on 23/03.
Generally, the NARX model was seem to provide accurate esti-
mates of LAI of rubber plantation throughout the growing season,
and it was believed that this approach could be applied to a large
area for regional LAI mapping.

4.4. Uncertainty analysis and application prospect

Although majority of the predicted LAI from NARX model
(before 13/10) performed reasonable good performance, none of
them was significantly better than the corresponding regression-
LAI (i.e., Fig. 6b–d). We suspected that the main reason for this
was lack of accurate LAI map on 23/03 as model input during the
LAI mapping. Neither of the regression results from HJ-1B CCD or
ZY3 MUX were very satisfactory since the maximum R2 was 0.57
and the best RMSE was 0.41 (Fig. 4). We also have tried to build
a more accurate and robust NN-LAI model on 23/03, but failed
because there was only 24 field data available. However, the
NARX-LAI on 22/11 and 01/12 were greatly improved when a more
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accurate regression-LAI map on 13/10 was used (Fig. 7). The R2 for
the two days was greater than 0.73, and the RMSE was less than
0.45, far better than the results based on previous NARX output
LAI as model input. The input parameter testing indicated that it
was a vital step to improve the accuracy of LAI map for the first
image (LAI(t � 1)) in spatio-temporal LAI mapping by NARX model.
By doing this, we suggest to collect a large number of samples dur-
ing the first field campaign or to apply multi-source satellite data
to improve the overall LAI prediction accuracy for the first image.

In addition, special care should be taken when the NARX model
is applied to predict LAI of an area that suffers severe nature disas-
ters because the model is built mainly on the basis that the LAI was
nonlinear continuous times series. Slight overestimation of LAI was
found with CATAS validation data (Fig. 6a) due to the typhoon Son-
Tinh in late October, which give us a hint that additional errors
might be raised when LAI suddenly dropped due to natural
disasters.

The operational utilization of remote sensing techniques for
intensively monitoring the structural parameters of certain crops
is often constrained by the scarcity of successive high-resolution
images. Benefited from high temporal- and spatial-resolution of
the HJ-1A/1B CCD images, a high-precision LAI dynamic monitor-
ing NARX model for rubber plantation was successfully estab-
lished. The temporal resolution of satellite is particularly
important in the tropical area frequently covered with thick clouds,
which makes it more difficult to obtain cloud-free optical satellite
data there (Ricciardelli et al., 2008; Watmough et al., 2011). For
example, only one cloud-free ETM+ image was available for the
study area during 2012, but more than 10 good HJ-1A/1B CCD
images were obtainable. We believe that this approach is suitable
for monitoring parameters of different crops in other regions as
long as adequate field data and high-accuracy map of that para-
meter for the first image are available.
5. Conclusions

It is essential to understand the LAI dynamics of rubber planta-
tions and their relationship with satellite images for regional pro-
duction management, ecosystem process modeling and post-
hurricane damage evaluation. In this study, the temporal variation
of LAI of rubber plantation and their relationship with 13 succes-
sive HJ-1A/1B CCD images were studied, and a NARX model to pre-
dict temporal LAI over the area of CATAS Experimental Farm was
developed. The specific conclusions were as follows:

The temporal variation of LAI observed in the CATAS
experimental farm was quite consistent with the phenological
change of rubber trees in Hainan Island. The LAI was lowest in late
February (1.18 ± 0.69), but it quickly increased in March and con-
tinued to increase until late September (4.02 ± 1.05), and then it
began to decline. The LAI developed in the main foliation period
(March to June) accounted for 78.17% of the annual maximum LAI.

The NIR, WDVI, SAVI and TSAVI derived from HJ-1A/1B CCD
images were highly correlated with LAI for all the images
(r = 0.51–0.80, p < 0.01), while the NDVI, SR, SAVI2 and EVI showed
close relationship with LAI before October but weak correlation
since then. An NARX model was successfully developed by using
DOY, four spectral bands, WDVI and previous LAI result as inputs.
Very good agreements between the predicted and observed LAI for
model building (R2 > 0.87, RMSE < 0.31) and field validation (R2 -
= 0.88, RMSE = 0.24) were obtained. The application of the model
over the area of CATAS Experimental Farm also indicated that the
prediction results were quite satisfactory. Before the 13/10, all pre-
dictions derived from the NARX model showed better agreements
with the field data than the results from corresponding stepwise
regression models; despite that the key input parameter of the
NARX model was not very accurate in LAI mapping. Besides, the
LAI statistical values from the spatio-temporal LAI maps and their
dynamics were quite consistent with the statistical results of the
field data that observed in the CATAS experimental farm.

In brief, this study demonstrated a great potential in applying
HJ-1A/1B CCD images and the NARX model to retrieve the spatio-
temporal LAI of rubber plantations in Hainan Island, China. Howev-
er, obtaining an accurate LAI map in advance, by means such as
collecting a large amount of samples during the first field cam-
paign or aiding with multi-source satellite images, was a key step
in applying NARX model to monitor the LAI dynamics of rubber
plantations or other vegetation.
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