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Abstract
The tropical forest carbon (C) balance threatened by extensive socio-economic de-
velopment in the Greater Mekong Subregion (GMS) in Asia is a notable data gap and 
remains contentious. Here we generated a long-term spatially quantified assessment 
of changes in forests and C stocks from 1999 to 2019 at a spatial resolution of 30 m, 
based on multiple streams of state-of-the-art high-resolution satellite imagery and 
in situ observations. Our results show that (i) about 0.54 million square kilometers 
(21.0% of the region) experienced forest cover transitions with a net increase in for-
est cover by 4.3% (0.11 million square kilometers, equivalent to 0.31 petagram of 
C [Pg C] stocks); (ii) forest losses mainly in Cambodia, Thailand, and in the south of 
Vietnam, were also counteracted by forest gains in China due mainly to afforestation; 
and (iii) at the national level during the study period an increase in both C stocks and C 
sequestration (net C gain of 0.087 Pg C) in China from new plantation, offset anthro-
pogenetic emissions (net C loss of 0.074 Pg C) mainly in Cambodia and Thailand from 
deforestation. Political, social, and economic factors significantly influenced forest 
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1  |  INTRODUC TION

Tropical forests, as the largest terrestrial component of the global 
carbon (C) cycle (Bonan,  2008), store C of 247 Pg C (Saatchi 
et al.,  2011). Anthropogenic-influenced tropical forest cover tran-
sitions have numerous impacts on both biotic and abiotic systems, 
including biodiversity, terrestrial C storage, hydrology, and climate 
across local, regional, and global scales (Alkama & Cescatti,  2016; 
Baccini et al.,  2017; Brienen et al.,  2015; Erb et al.,  2018; Foley 
et al., 2005; Qin et al., 2019, pp. 2000–2017). As an important trop-
ical forest with large C stocks and biological richness, the Greater 
Mekong Subregion (GMS; Figure S1) is under considerable anthro-
pogenic threat (Davis et al., 2015) and it is a priority area for con-
servation policies (Namkhan et al.,  2021). Rapid socio-economic 
development (Leinenkugel et al., 2015), different land use policies 
(Davis et al., 2015; Hansen et al., 2020; Tong et al., 2020; Zeng, Estes, 
et al., 2018), and disturbances (Yin et al., 2020) across the GMS have 
resulted in substantial and rapid forest cover changes (deforestation, 
reforestation, and afforestation) over the last three decades (Davis 
et al., 2015; Pungkul et al., 2014; Tong et al., 2020).

Between 1990 and 2010, the GMS has recorded about 
8.01 × 104 km2 of forest loss (4.2% of the total land), with an av-
erage decreasing rate of 0.4% per year (Costenbader et al., 2015). 
For instance, during the first decade of this century, Laos People's 
Democratic Republic (Laos) and Cambodia had annual forest 
loss rates of 0.5% and 1.3%, these which are nearly four and 10 
times higher than the global average, respectively (Leinenkugel 
et al.,  2015). During 1990–2015, GMS's forest cover decreased 
by about 5.1%, which was characterized by high forest loss in 
Myanmar and Cambodia with annual deforestation rates of 
4.66 × 103 km2 year−1 (1.5%) and 2.19 × 103 km2 year−1 (2%) (Gritten 
et al., 2019; MacDicken, 2015), respectively. Similarly to other sub-
tropical regions, the GMS has been experiencing fast tree-cover loss 
owing to cropland expansion on hill slopes (Davis et al., 2015; Feng 
et al., 2021; Zeng, Estes, et al., 2018). In contrast, since 2000, woody 
vegetation cover in southern China has greatly increased (Brandt 
et al., 2018; Tong et al., 2018, 2020) as the results of China's govern-
ment policies to combat land degradation by afforesting open and 
short-vegetation lands (Tong et al., 2018, 2020).

Different studies indicated that the adequate forest manage-
ment and modern forest harvesting practices are a major influen-
tial way to change biomass C stocks and control terrestrial CO2 

cycles (Baccini et al., 2017; Chu et al., 2019; Kwon & Larsen, 2013). 
Quantitative evaluation of forest cover change and the associated 
CO2 storage change is critical for understanding the mechanisms 
behind the terrestrial CO2 cycles (Chu et al., 2019; Hui et al., 2017; 
Kwon & Larsen, 2013). Several methods for estimating spatiotempo-
ral patterns of forest cover change and related C stock and C seques-
tration dynamics have been implemented and evaluated by different 
studies (Baccini et al., 2017; Hui et al., 2017; Pungkul et al., 2014; 
Zeng, Estes, et al., 2018). The combination of modeling and remote 
sensing technologies has the potential for estimating forest cover 
change as well as monitoring forest C storage and sequestration 
dynamics at a wide coverage (Qin et al.,  2019, pp. 2000–2017). 
Remote sensing is the most efficient way to monitor land use and 
land cover (LULC) change over large1 areas (Hansen et al.,  2013). 
More and more freely available high-quality remote sensing data 
collected by a suite of state-of-the-art space-borne sensors (e.g., 
Landsat, Sentinel-1 and -2, MODIS, VIIRS, etc.) have been leading 
to improvement of algorithms for quantifying LC maps and forest 
dynamics from local to global scales (Hansen et al., 2013; Pungkul 
et al., 2014; Qin et al., 2019, pp. 2000–2017; Tang et al., 2021). It was 
proved that combining high-resolution remote sensing datasets with 
machine learning algorithms on high-performance cloud computing 
platforms, such as Google Earth Engine (GEE), can provide more ac-
curate LULC maps which is the profound of accurate quantification 
of forest cover change, associated C stocks, and understanding the 
processes of forest C sequestration dynamics (Bofana et al., 2020; 
Fortin et al., 2020; Kayiranga et al., 2016, 2018; Keenan et al., 2012; 
Tong et al., 2018; Zheng et al., 2017).

Many global satellite-based forest cover products and for-
est assessment products including the Food and Agriculture 
Organization-Forest Resources Assessment (FAO-FRA) reports, 
have been produced to indicate the state of forest change (i.e., total 
area, spatial distribution, and tree biodiversity) across country to 
global scales (Chen et al., 2020). However, several evaluation stud-
ies indicated that these global forest cover products are inconsis-
tent and even contradictory in some regions (Gardner et al., 2009; 
Hansen & DeFries, 2004, pp. 1982–99; Zeng, Estes, et al., 2018). For 
example, according to Song et al (Song et al., 2018), the global tree 
cover increased by 2.2 × 104 km2 from 1982 to 2016, the gross for-
est loss and gain both increased, with gain higher than loss; Hansen 
and DeFries (2004, pp. 1982–99) reported that global forest loss by 
2.3 × 106 km2 and gain by 0.8 × 106 km2 from 2000 to 2012; a forest 

cover change and C sequestration in the GMS, positively in China while negatively 
in other countries, especially in Cambodia and Thailand. These findings have impli-
cations on national strategies for climate change mitigation and adaptation in other 
hotspots of tropical forests.

K E Y W O R D S
anthropogenic carbon uptake/emissions, carbon sequestration, forest cover changes, the 
Greater Mekong Subregion, tropical forest
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loss of 1.3 × 106 km2 during 1990–2015 was reported by FAO-FRA; 
and a decrease in the tropical forest of 1.95 × 104 km2 during 1990–
2015 was reported by Keenan et al.  (2015). Most of the available 
forest cover change datasets are not accurate enough and are under 
debate (Chen et al., 2020). Considering the presented inconsistency 
in the exiting forest cover products in the study region, it is needed 
and very important to produce a 20-year series of land cover prod-
ucts over this region with higher resolution (30-m) and higher accu-
racy. Time series analysis using these high-resolution LC data would 
be an efficient way of providing temporally consistent assessment of 
LULC change (Tang et al., 2021).

The objective of this study is to map and quantify annual forest 
cover changes and related C sequestration dynamics at a 30-m spa-
tial resolution and to investigate the major forest cover transitions 
and their effects on C sequestration during the period 1999 to 2019. 
We derived annual maps of land cover, C stocks, and C sequestra-
tion at a 30-m resolution on the GEE platform mainly based on the 
Landsat 7 Enhanced Thematic Mapper plus (LT7 ETM+) and Landsat 
8 Operational Land Imagery (LC8 OLI) imagery data and ancillary 
data. To further study the impact of different forest cover transi-
tions on C uptake, we stratified forest management over the whole 
region into five different types (Table 1) and nine forest-related land 
cover trajectory types and LULC-based C pools (Tables S4 and S5). 
The classification was based on mapping the duration, magnitude, 
and direction of human-induced disturbances from annual forest 
probability time series data (during 1999–2019 and at a 30-m reso-
lution; see Section 2 for more details).

2  |  MATERIAL S AND METHODS

The methodological procedures used in this study were consecu-
tively classified into six categories and are comprehensively summa-
rized in Figure S3. All the processing steps were performed on the 
GEE cloud computing platform (Moore & Hansen, 2011) and ArcGIS 

software version 10.6 (Kayiranga et al.,  2018). For links of GEE 
scripts used in this study, see Data Availability Statement section.

We collected reference data covering the full period (1999–2019) 
by visual interpretation of Landsat time series and high-resolution 
images using a tool developed on GEE (https://xjtang.users.earth​
engine.app/view/sampl​e-inter​preta​tion). For each sample unit, the 
Landsat time series data were used to determine whether LULC 
change occurred. Combination of high-resolution Landsat images 
and images from Google earth were then used to determine the 
LULC types before and after the change.

2.1  |  LULC classification methods and classifier 
descriptions

To perform the classification processes, the random forest (RF) clas-
sifier (algorithm) was used to classify the designated six major LC 
classes (see the section of Training and Validation Sample Selection 
in Supporting Information and Table S3). The RF classifier is an en-
semble machine learning algorithm based on decision tree super-
vised classification method (Bofana et al., 2020; C. Liu et al., 2020). 
Based on a number of studies (Li et al., 2014; L. Liu et al., 2020; Nitze 
et al., 2012; Zheng et al., 2017), RF has the greater power and ca-
pabilities to process complex data with large dimensions (i.e., data 
noise and outfitting) and to provide the improved classification re-
sults and more reliable accuracy comparing with other classification 
algorithms (Bofana et al., 2020).

The RF specifically provides multiple decision trees based 
on randomly selected subsets of training samples and variables. 
Additionally, the RF classifier uses the Gini index (generalization of 
the binominal variance) to measure inequality (Bofana et al., 2020). 
The calibration of RF classifier requires only two parameters, which 
are (1) number of classification trees and (2) the number of predic-
tion variables used in each node to make the tree grow (Bofana 
et al., 2020; C. Liu et al., 2020). In this study, RF parameters were 

TA B L E  1  The forest land use (major forest cover transitions) and their corresponding landscape coverage and contributions to C dynamics 
in the Greater Mekong Subregion during 1999–2019.a

Types
Management and occurring 
probability

Forest cover
Mean C 
density in 
Mg C

Mean C 
stocks in 
Pg C

C sinks (+) 
or sources 
(−) in Tg C

% (of the 
region) ×104 km2

Intact forest Permanent dense and protected 
forests

48.07 ± 17.3 122.5 ± 44.1 123.1 ± 38.3 3.3 ± 1.9 93.6 ± 12.5

Afforestation Non-forest to forest (fast/abruptly) 11.04 ± 7.3 28.15 ± 18.6 34.0 ± 11.5 1.6 ± 1.1 18.4 ± 2.9

Natural loss Forest to non-forest (slow/seasonally) 0.07 ± 0.01 0.18 ± 0.03 0.9 ± 2.7 0.1 ± 0.3 −18.5 ± 2.1

Deforestation Forest to non-forest (fast/abruptly) 9.53 ± 1.1 24.35 ± 2.8 19.2 ± 10.2 1.3 ± 0.6 −15.2 ± 1.3

Degraded forest Forest to non-forest (slow/gradually) 0.48 ± 0.4 1.22 ± 1.0 2.1 ± 1.0 0.8 ± 0.3 −0.74 ± 0.1

aThe forest land use types were defined based on the major forest cover transitions described in Table S3, sustainability probability was structured 
based on possible trajectories and possibility of changes from forest verse non-forest and non-forest to forest. Mean carbon (C) density and C 
stocks were aggregated for estimates using the Valuation of Ecosystem Services and Tradeoff model, while net C sink values were aggregated from 
the estimated C sequestration. The values with ± indicate standard deviations and the values in parentheses are the contribution percentages. A 
Petagram of C (Pg C) is also known as a Gigaton (Gt), equals to 1015 grams or 1 billion tons. 1 Teragram (Tg) = 1 million tons (Mt) = 1012 grams = 10−3 Pg 
C = 10−3 Gt C. 1 megagram (Mg) = 106 grams (g) = 1 ton C.
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optimized as follows: number of trees = 100, variables at each split 
(mtry) = 6, and minimum size of terminal node = 1. RF classifier func-
tion (ee.Classifer.smileRandomForest) was applied on the GEE plat-
form (Figure S3; see Supporting Information GEE codes).

2.2  |  Mapping forest cover 
probability and validation

Forest and non-forest pixels were extracted from the classified LC 
maps, where the non-forested pixels were reclassified as non-forest 
type while forest pixels were kept as forest type in new LC maps. In 
this study, at least a total number of 7720 validation sample points 
were acquired from FROM-GLC 10 ref. (Gong et al., 2019) and distrib-
uted over the two final classes namely forest and non-forest classes. 
Therefore, the forest and non-forest-related binary values were 
spatially used to establish the confusion matrix as a cross-tabulation 
to assess the mapping errors (commission and omission errors) by 
comparing the mapped and the ground observed class labels. The 
accuracy assessment metrics including producer's accuracy (PA) and 
user's accuracy (UA), kappa coefficient (KC; ranging: −1 and +1), and 
the overall accuracy (OA; in percentages) were evaluated to repre-
sent the commission–omission errors and the overall agreement be-
tween the mapped LC and ground truth (Thanh Noi & Kappas, 2018; 
Zheng et al.,  2017). The values of KC less than zero indicate no 
agreement between observed and predicted data, while the values 
close to 1 indicate excellent agreement (Bofana et al., 2020; Nitze 
et al., 2012; Thanh Noi & Kappas, 2018; Zheng et al., 2017). KC was 
estimated using the following equation (Equation 1):

where k is number of rows and columns in the error matrix; N is the 
total number of observations; Xi represents observations in row i  and 
column i ; Xi+ stands for the marginal total of row i ; and X+i indicates 
the marginal total of column i .

2.3  |  Analysis of forest cover change and the 
degree of change

The annual forest cover change and the degree of changes were ana-
lyzed based on the distinguished forest and non-forest pixels using the 
two indices: K index and S index. K index is usually employed to calcu-
late the LULC dynamic index as a percentile (%) of changes between 
the initial and final LULC maps at certain analysis period (T). The S index 
is usually employed to analyze the LULC dynamic (Huang et al., 2018; 
Lin et al., 2018, pp. 1992–2018). In this study, the indices K and S were 
applied to forest maps to analyze the trends and degree of changes of 
forest cover. The two indices were calculated using Equations (2 and 3):

where Fc1 and Fc2 are the forest cover maps at the final and initial 
years, respectively, of a certain period; Ai is the area of forested land at 
the initial year of the period; ΔAi→j is the total area of forested land (i  ) 
converted into non-forest ( j), and ΔAi→j is used to analyze the degree 
of forest loss while ΔAj→i is used to estimate the degree of forest gain; 
T represents the study time or the number of years considered for the 
index (Huang et al., 2018; Lin et al., 2018, pp. 1992–2018). In this study, 
the forest-K and S indices are estimated at the annual basis (annual 
change) and T is set to be 2 in each scenario.

2.4  |  Analysis of major forest cover transition 
processes and related ecological classification

Major forest cover transitions are the processes of converting forested 
pixels to non-forest pixels and non-forest pixels being reforested or af-
forested (Leinenkugel et al., 2015; Qin et al., 2019, pp. 2000–2017; 
Yasmi et al., 2017). We developed an approach to identify the poten-
tial probability transitions that may generally affect forest cover pixels. 
This approach includes three steps: (1) to group LC maps as T1 (older) 
and T2 (newer); (2) to analyze the nine possible LC trajectory labels 
and assign them to specific LC transition probabilities; and (3) to des-
ignate and categorize the landscape change based on possible forest-
related transition driving factors (Münch et al., 2019).

Therefore, high priority is given to the trajectories related to 
the potential forest loss and gain including forest encroachment, 
deforestation, afforestation/reforestation, and natural dynamics to 
account for encounter anthropogenic activities and natural climate-
based effects (i.e., fire, drought, flooding, and erosion) that may have 
negatively effects on forest extent.

Table  S4 shows the possible LC trajectory labels and transition 
probabilities (expected changes). The highlighted fields indicate the 
identified labels and transition possibilities that may affect forest 
cover; (↑) indicates increasing processes, and (↓) indicates decreasing 
processes. Landscape changes were categorized by gradual ecological 
change, abrupt change, and seasonal change. Moreover, to identify and 
compute the amount of forest loss and gain, pixels of unchanged forests 
consisting of persistent forests and protected forests were aggregated 
and named intact forest; the pixels of forest encroachment (forest 
converted into cropland), tree logging (deforestation), degradation and 
naturally forest loss trajectories were aggregated into deforestation or 
forest extraction and provided forest loss pixels; whereas all non-forest 
LC trajectories converted into forest provided forest gain pixels (i.e., 
afforestation, reforestation, and naturally forest regeneration).

2.5  |  Estimates of forest-based C sequestration

The Integrated Valuation of Ecosystem Services and Tradeoffs 
(InVEST) C model was used to estimate forest-based C storage and 

(1)Kc =

∑k

i=1
xii −

∑k

i=1

�

Xi+ × X+i

�

N
2
−

∑k

i=1

�

Xi+ × X+i

�

,

(2)
K =

Fc2 − Fc1

Fc1
×
1

T
× 100% ,

(3)S =

(

n
∑

i,j

(

ΔAi→j

Ai

)

)

×
1

T
× 100% ,
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sequestration based on the four basic C pools (Figure S2) and forest 
cover pixels (Bierbower, 2015; Liang et al., 2017). To estimate and 
specifically separate the C storage and sequestration extent at for-
est and non-forest grid cells, the C values of each pool (C above, C 
below, C soil, and C dead) were aggregated over the forest and non-
forest pixels (Table S5).

To train the InVEST C model and to calibrate the required inputs, 
the C pools (stated above) were first multiplied by 0.01 to convert 
their initial values from Mg C km−2 to Mg C ha−1 to match the metrics 
with the LC extent area metric (ha−1) and a biophysical table was 
independently built based on forest and non-forest corresponding C 
pool pixels as shown in Table S5.

The total C storage C was given by the sum of Cm,i,j at a given grid 
cell (i, j) with LC type (m) and was estimated by the following equa-
tions (Equations 4 and 5):

where A is the actual area of each forested or non-forested grid cell, 
Cam,i,j, Csm,i,j, Csm,i,j, and Cdm,i,j are the C stocks (in Mg C ha−1) of abo-
veground biomass, belowground biomass soil organic C, and dead 
organic C at (i, j) with LC type (m). C sequestration S was therefore cal-
culated using Equation (6):

where CT2 and CT1 indicate the C storage values in years T1 and T2, 
respectively (Bierbower, 2015).

3  |  RESULTS AND DISCUSSION

3.1  |  Spatiotemporal forest cover dynamics

Annual LC maps at a 30-m resolution indicate that the total forest 
area increased from 1.42 × 106 km2 (55.0% of the region area) in 
1999 to 1.53 × 106 km2 (59.3% of the region area) in 2019 (Figure S4). 
During the period 1999–2019, the forest-related LC trajectories 
were characterized as (Figure 1; Table S6; Figure S4): (i) there were 
5.42 × 105 km2 (21.12% of the region area) experienced forest cover 
transitions (Figure 1a) and intact forest was mainly located in Laos 
PDR and Myanmar (Figure 1b); (ii) there was 0.47% forest change 
annually on average over the region area, with a decreasing trend 
during the period 1999–2009 at a rate of −1.74% year−1 and an in-
creasing trend during 2009–2019 at a rate of 2.21% year−1 of the re-
gion area (Figure 1f,g; Figure S4A); (iii) cropland increased by 4.75% 
of the region area (Figure  S4B) from encroachment in forest (Fe), 
land reclamation (Re), and increased cultivation land (Ic), where it 
mainly occurred in Thailand and Cambodia; and (iv) urban and set-
tlement (Ue) increased about 0.03% of the region area. Analysis 

of major forest cover transitions revealed that, of the GMS forest, 
there was approximately 11.04% afforested/reforested (Af), 9.53% 
deforested (transformed to agricultural land, i.e., forest encroach-
ments-Fe) by human activities at forest boundaries, and only 0.07% 
forest loss due to natural disturbances (Table S6).

Figure  1 and Figure  S5 show forest cover transition dynamics 
over the GMS at a country level during 1999–2019. A large forest 
gain (afforestation) mainly occurred in southern China (Yunnan and 
Guangxi provinces). Afforestation here did not include large-scale 
harvesting, but often included forestation of bare ground and short 
vegetation (grassland and cropland), especially continued forest ex-
pansion of croplands on hill slopes (a close-up is shown in Figure 1c). 
Forest cover increased substantially in Yunnan and Guangxi prov-
inces of China, from 44.95% of the land in 1999 to 70.41% in 2019 
with an average rate of increase of 80.22 km2 year−1 (1.27% year−1 of 
the region; Figure S5K,L). The expansion of forested area and reduc-
tion of agriculture on marginal sloping lands was mainly due to the 
implementation of forestation policies since 2000, which includes 
government-funded efforts to combat land degradation and fight 
poverty (Brandt et al., 2018; Delang & Yuan, 2016; Tong et al., 2018, 
2020).

In contrast, forest loss (deforestation) mainly occurred in Thailand 
(Figure 1d; Figure S5E), Cambodia (Figure 1e; Figure S5G), and South 
of Vietnam (Figure S5C). In Vietnam, deforestation was fast during 
the period 1999 to 2013 with an average forest loss rate of 0.23% 
year−1 (7.87 km2 year−1) of the country's forest area (Figure S5C,D). 
In Cambodia, deforestation driven by large-scale land acquisitions 
(Davis et al., 2015) and other land use expansions (Feng et al., 2021; 
Grogan et al., 2019) has been accelerating since 2000. During the 
period 1999–2019, about 18% (0.93% year−1 or 16.84 km2 year−1) of 
the country's forest area was lost through these land concessions 
(Figure  S5G,H; see expanded view in Figure  1e), largely owing to 
acquired lands due to a surge in economic land concessions (Davis 
et al.,  2015). Davis et al. reported that the annual rate of forest 
loss within concessions was between 29% and 105% higher than 
in comparable land areas outside concessions (Davis et al.,  2015). 
Grogan et al.  (2019) reported that 23.5 ± 1.8% of Cambodia's for-
est cover was cleared during the period 2001–2015. Other GMS 
countries showed a slight loss or nearly neutral change in forest area 
(Figure S5A,B,I,J). The total forest losses were offset by a large gain 
in forest area in China; as a result, the GMS has increased forest 
coverage by 1.92% since 1999 (Figure 1f; Figure S4A).

3.2  |  Spatiotemporal distributions of forest C 
stocks and C sequestration

In this study, C sequestration was calculated from forest growth 
without considering the full life cycle of extracted wood. Changes 
in litter, coarse woody debris, and soil C were ignored as well. C 
sinks and sources of different forest land use types were aggregated 
from their corresponding C sequestration pixels over the period 
1999–2019.

(4)C =

n
∑

m−1

Cm,i,j ,

(5)Cm,i,j = A + Cam,i,j + Cbm,i,j + Csm,i,j + Cdm,i,j ,

(6)S = C
T2

− C
T1
,
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6  |    CHEN et al.

Spatiotemporal distributions of C stocks and C sequestration 
in the entire GMS region and at a country level are shown in 
Figures  2 and 3 and Figure  S6. The pixels with high values of 
both C stocks and C sequestration were in northeast Myanmar, 
Southern Cambodia, and South Vietnam (Figure 2a,b). Over the 
GMS, the total C stocks of 6.7 Pg C in 1999, decreased to 4.31 Pg 
C in 2006 and then increased to 7.36 Pg C in 2019 at a rate of 
0.033 Pg C year−1 (9.39% year−1). Consequently, the major forest 
cover transition-induced C balance was inverted from a source 
before 2006 to a sink, and total C sequestration increased rap-
idly from 0.021 Pg C in 2007 to 0.41 Pg C in 2019 at the rate 
of 0.072 Pg C year−1 (Figure 2c). Consistent with a case study in 
southern China,12 the trends and inter-annual variability over 
the GMS region in C sequestration were expected to be con-
trolled by the biogeochemical consequences of land use changes 
(Figure 2).

The total forest C stocks of the six countries during the period 
1999–2019 varied from the lower values of 1.23 Pg C (Thailand) 
and 1.57 Pg C (Cambodia) to the highest values of 2.87 Pg C 
(Myanmar) in 1999 (Figure 3a). China was characterized by the larg-
est C gain (1.75 Pg C) and the smallest C loss (0.15 Pg C), whereas 
Cambodia was characterized by the smallest C gain (0.38 Pg C) and 
the largest C loss (0.72 Pg C; Figure 3a). The forest C density for 
all the six countries increased during the study period with an-
nual rates ranging from 0.12 ± 0.08 Mg C ha−1 year−1 (Cambodia) to 
0.57 ± 0.12 Mg C ha−1 year−1 (China; Figure  3b). China, Myanmar, 
and Laos PDR showed higher increasing trends in C density owing 
to higher rates of increasing forest coverage in these countries 
(Figure  3b; Figure  S6). Forest C sequestration decreased with 
a rate of 11.25 Mg C year−1 in Cambodia and 3.22 Mg C year−1 in 
Thailand while the other four countries increased with rates rang-
ing from 17.55 to 35.55 Mg C year−1 during 1999–2019 (Figure 3c).

F I G U R E  1  Spatial patterns and 
changes of forest cover transitions 
and net forest gain/loss in the Greater 
Mekong Subregion during 1999–2019. 
(a) Map of transitions of forests and 
other land cover. (b) Map of loss and 
gain of forests. (c) Expanded view of the 
upper black rectangle in (a), afforestation 
particularly common in northern Guangxi 
and Yunnan. (d) Expanded view of the 
middle black rectangle in (a) deforestation 
is particularly common in northwest 
Thailand. (e) Expanded view of the lower 
black rectangle in (a) deforestation which 
is particularly common in Cambodia is due 
to large-scale land acquisitions. (f) Annual 
loss, gain, and net change of forests, 
and the error bars indicate ±1 standard 
deviation. (g) Aggregated major forest 
cover transitions contributed to forest 
loss and gain during 1999–2019. Map 
lines delineate study areas and do not 
necessarily depict accepted national 
boundaries.
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3.3  |  Impacts of forest cover change on C 
sequestration

Forest cover changes in this region have profound biophysical im-
pacts on C dynamics. The association of the different LC types with 
C sequestration is shown in Figures 3 and 4 and the spatial distribu-
tions are shown in Figure  1a–e. Intact forests are permanent and 
protected forests with a dense tree cover and neutral disturbances 
(Table  1). Intact forests covered 1.24 × 106 km2 (48.07% of the re-
gion) and stored 41.42% of the total forest C stocks (3.28 Pg C) in the 
beginning of the study period (1999), and showed C stock gross gain 
of 0.95 Pg C and loss of 0.2 Pg C (Figure 3d), contributing to 3.2% of 
the region's forest C sequestration (0.027 Pg C year−1; Figure 3f) with 
a large increase in forest C density (1.5 Mg C ha−1 year−1; Figure 3e) 
during the study period. On average of our study period, the intact 
forest sequestered 93.58 Mg C year−1 accounting to 44.7% of the re-
gion's forest C sequestration (Table 1; Figure 3d). C sequestration by 
intact forests increased by 29.22 Mg C year−1 (3.2% year−1; Figure 3f) 
likely owing to CO2 fertilization, global warming, and recovery from 
past disturbances.

Afforestation here includes all new forests (i.e., afforestation 
(afforested–reforested land and recovered forests), reforestation, 
and recovered forests) which is an area changed from non-forest 
to forest (Table  1). The afforestation land covered only 11.04% 
(2.81 × 105 km2) of the region and stored 19.17% and 25.76% of the 
total forest C stocks (0.8 and 1.7 Pg C) at the beginning (1999) and 
at the end (2019) of the study period, respectively (Figure 3d), with 
a large forest C stock gain (1.68 Pg C) and an increase in forest C 
density (an average rate of 1.72 Mg C ha−1 year−1; Figure  3d,e). On 
average of the study period, afforestation stored 1.55 Pg C with 
forest C density of 33.96 Mg C ha−1 and contributed to 26.02% of 
the total region's increase in forest C stocks. Afforestation seques-
tered 0.021 Pg C year−1 and contributed to 27% of the GMS's forest 
C sequestration (Table 1; Figure 4). C sequestration by afforestation 
increased by 37.22 Mg C year−1 (3.8% year−1; Figure 3f) mainly owing 
to an increase in C density (Figure 3e).

Forest extraction was identified as three land use types (see 
Section 2 for their definitions) involving natural forest loss (NL), de-
forestation (Defo), and degraded forest (DF; Table  1). NL and DF, 
characterized by the gradual ecosystem landscape changes, were 

F I G U R E  2  Spatiotemporal changes in 
C stocks (a) and C sequestration (b) in the 
Greater Mekong Subregion (GMS) during 
1999–2019. (a, b) Spatial distributions 
of mean annual changes in C stocks of 
forests and mean annual C sequestration, 
respectively, both are in kg C m−2 year−1 
during the study period. (c) Total C stocks 
and annual C sequestration in the GMS. 
Map lines delineate study areas and do 
not necessarily depict accepted national 
boundaries.
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8  |    CHEN et al.

mainly caused by climate change and by anthropogenic activities 
at forest boundaries, including natural conversions of forests into 
marshlands, wetlands, and any other related wetlands (Table  S4). 
Defo was a result of logging activities and other forest disturbances. 
The total forest extraction land covered 10.08% of the region 
(2.61 × 105 km2) and had a net loss of 1.08 Pg C of forest C stocks 
and a decrease in C density with an average rate of 0.15 Mg C ha−1 
per year during the period 1999–2019 (Figure 3d–f). C stocks of NL, 
Defo, and DF were 0.12, 0.88, and 0.67 Pg C in 1999 (Figure 3d), with 
a negative net balance (−0.05, −0.71, and −0.18 Pg C year−1), respec-
tively, between 1999 and 2019 (Figure 3d). C sequestration of these 
three land use types with forest extraction decreased 1.2, 20.1, and 
11.2 Mg C year−1 and a contribution of 0.17%, 2.22%, and 1.02% to 
the regional C sequestration, respectively, whereas Defo and DF 
areas acted as a C source (Figure 3f) from 1999 to 2019.

3.4  |  Accuracy assessment and data 
intercomparison

We evaluated the accuracy of our land cover results by comparing 
our results with other available multi-temporal land cover products 
(VCF, ESA-CCI, and MCD12 C1) at pixel levels. The intercomparison 
indicates that an overall agreement was found during 2010–2016 
and high inconsistences were found during 2001–2007 among all 
the available datasets (Figure  S7A). A net forest gain of the GMS 
over this century was reported by MDC12, VCF, FRA and this study, 
whereas ESA-CCI is the only dataset showing an overall net forest 
loss of approximately 0.0115 Mha year−1 (Figure S7B). Our estimated 
forest cover maps agree with observed forest maps (FROM-GLC 10, 
GSPECLib, and GEE) well with an overall agreement percentage of 
87.85% and a kappa coefficient value of 0.86 (Table S7).

F I G U R E  3  Dynamics of C stocks for different forest land use types in the Greater Mekong Subregion region and at country levels. (a) C 
stock in 1999, with consecutive gross gains and losses during the period 1999–2019. (b) Net changes in C density (1999–2019) and the error 
bars indicate ±1 standard deviation. (c) Mean annual increasing rates of C sequestration in Pg C year−1 and increasing percentages (%) of its 
mean values during 1999–2019 for each country. (d), (e), and (f) are same as (a), (b), and (c), but for each forest land use type, respectively.
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    |  9CHEN et al.

4  |  CONCLUSION AND IMPLIC ATIONS

In the past two decades, the GMS has been characterized by ex-
tensive forest cover transitions owing to human activities and cli-
mate change. About 1.1 × 105 km2 of forest (4.31% of the region) 
transitioned to agricultural land through encroachment into forests, 
climate-related disasters, and other anthropogenic disturbances. 
The transitions mainly occurred in Cambodia, Thailand, and in the 
south of Vietnam with an overall regional forest loss of 2.5 × 105 km2 
(9.80% of the GMS region in 1999) during 1999–2019 (Table  1; 
Table  S5). This regional gross forest loss was compensated by af-
forestation and other transitions from traditional agriculture toward 
managed forests mainly as a result of a policy of the production 
of wood products established in the subtropical and mountainous 
landscapes in southern China (Yunnan and Guangxi provinces; Tong 
et al., 2020). We found that there were 2.8 × 105 km2 of afforested/
reforested and recovered forests (10.98% of the GMS region area).

In the dynamic environments of the GMS, forest losses mainly 
in Cambodia and Thailand were also counteracted by forest gains 
during the study period mainly in China. Our estimated net gain of 
forest cover over the GMS is 2.5 × 104 km2 (0.96% of the region), 
which is closely consistent with the FAO-FRA and forest sector 
strategy 2020 (Leinenkugel et al., 2015).

The forest cover changes were closely associated with changes 
in C stocks, C density, and C sequestration: an increase in forest area 
corresponding to increases in C intensity and C sinks (comparing 
Figure 4 with Figures S5 and S6; Figure 1). Analysis of the effects 
of major forest cover transitions on C dynamics indicates that intact 
forests and new forests had higher contributions to C stocks and 
larger C sequestration than other forest land use types (Figure 3d–f). 
Forestry statistics at the national level showed that during the study 
period an increase in both C stocks and C sequestration in China due 
mainly to afforestation, and in Laos PDR and Myanmar due largely to 

the large proportion of intact forests though there was a large area 
of deforestation. Our study also shows that the intact and newly 
planted forests substantially contributed to an increase in C seques-
tration (Table 1; Figure 3d–f). The degraded forest showed a strong 
positive impact on C loss (Figure 3d).

Political, social, and economic factors can influence forest 
conservation and transitions in conjunction with climate driv-
ers. Market-driven intensification (Bruun et al.,  2009, 2017; Davis 
et al.,  2015; Grogan et al.,  2019; Schmidt-Vogt et al.,  2009; Zeng, 
Estes, et al.,  2018) has led to accelerated forest loss and forest 
transformation in Cambodia, Thailand, and Laos PRD. National land-
tenure policies and market pressures may have also increased local 
demands for new croplands in the GMS (Davis et al., 2015; Grogan 
et al., 2019). This expansion also stands in marked contrast to the 
widespread agricultural retreat and forest recovery that has been 
occurring in China where a series of government programs and 
rural-to-urban migration have returned farmland to forest on sloping 
highlands (Tong et al., 2020). The widespread and fast forest cover 
transitions in the GMS in this century have largely been ignored in 
both global assessments of land use and future projections, although 
which substantially influenced the roles tropical forests of this region 
play in the context of regional and global climate mitigation, biodi-
versity conservation, and global C cycling (Alkama & Cescatti, 2016; 
Baccini et al.,  2017; Feng et al.,  2021; Hansen et al.,  2013, 2020; 
Matricardi et al.,  2020; Saatchi et al.,  2011). Our results not only 
should warrant the attention of policymakers, but also contribute 
to better understanding of the rapid and dramatic changes in forest 
cover transitions and associated C balance and to obtaining deeper 
insight into the causes of these changes. Our findings have poten-
tial implications for forest conservation, C sink service, and climate 
change mitigation in the GMS and other hotspots of tropical forests.

With regard to uncertainties in our analysis, to detect forest con-
versions at scales smaller than a Landsat pixel is beyond our ability 

F I G U R E  4  Effects of land use change 
on C dynamics. (a) Annual contributions 
of each forest land use type on C 
sequestration in Pg C year−1. (b) Annual 
contributions of each forest land use type 
on C sequestration in percentage of the 
Greater Mekong Subregion region in %. 
(c) Annual C stocks of each major forest 
land use type in Pg C. (d) Comparative 
contribution of each forest land use type 
to the total C stocks of the region in %.
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10  |    CHEN et al.

(Brinck et al., 2017) would lead to uncertainties. Our estimates rep-
resent absolute forest C losses, instead of net losses that incorpo-
rate biomass C gains that could not be calculated from available 
data with confidence (Feng et al., 2021). In addition, fragmentation 
and edge effects of forest losses causing additional long-term C 
losses on the landscape that we could not quantify (Zeng, Gower, & 
Wood, 2018). Comparison of our estimate of forest cover transitions 
during the period 1999–2019 over the GMS region with those four 
commonly used global land cover datasets (ESA-CCI, MCD12, VCF, 
and FRA) indicates more than 75% of matching pixels (Figures S7–
S9). It is also noticed that uncertainties may stem from the errors 
in static datasets and scale mismatch between the benchmark C 
pools and remotely sensed forest C sequestration maps, however, 
the findings of this study provide up-to-date reference information 
on forest cover change and forest C uptake and a framework for 
the future extensive analysis of forest C dynamics and associated 
economic developments in the GMS. To reduce these uncertainties, 
future studies could integrate higher- resolution satellite and lidar 
datasets to map primary and secondary forests and related biomass 
C loss more accurately. More studies on above- and belowground C 
recovery associated with forest regrowth are also needed.
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