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Due to rapid losses of mangrove forests caused by anthropogenic disturbances and climate change, accu-
rate and contemporary maps of mangrove forests are needed to understand how mangrove ecosystems
are changing and establish plans for sustainable management. In this study, a new classification algo-
rithmwas developed using the biophysical characteristics of mangrove forests in China. More specifically,
these forests were mapped by identifying: (1) greenness, canopy coverage, and tidal inundation from
time series Landsat data, and (2) elevation, slope, and intersection-with-sea criterion. The annual mean
Normalized Difference Vegetation Index (NDVI) was found to be a key variable in determining the clas-
sification thresholds of greenness, canopy coverage, and tidal inundation of mangrove forests, which are
greatly affected by tide dynamics. In addition, the integration of Sentinel-1A VH band and modified
Normalized Difference Water Index (mNDWI) shows great potential in identifying yearlong tidal and
fresh water bodies, which is related to mangrove forests. This algorithm was developed using 6 typical
Regions of Interest (ROIs) as algorithm training and was run on the Google Earth Engine (GEE) cloud com-
puting platform to process 1941 Landsat images (25 Path/Row) and 586 Sentinel-1A images circa 2015.
The resultant mangrove forest map of China at 30 m spatial resolution has an overall/users/producer’s
accuracy greater than 95% when validated with ground reference data. In 2015, China’s mangrove forests
had a total area of 20,303 ha, about 92% of which was in the Guangxi Zhuang Autonomous Region,
Guangdong, and Hainan Provinces. This study has demonstrated the potential of using the GEE platform,
time series Landsat and Sentine-1A SAR images to identify and map mangrove forests along the coastal
zones. The resultant mangrove forest maps are likely to be useful for the sustainable management and
ecological assessments of mangrove forests in China.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction regions between approximately 30�N and 30�S latitude (Lee and
Mangrove forests are tidal wetlands with a diverse assemblage
of trees and shrubs and are located in the tropical and subtropical
Yeh, 2009; Giri et al., 2011). These forests provide a wide range
of ecosystem services such as nursery habitats for many marine
fisheries, water purification, shoreline stabilization, biological
diversity, and are important to the recreation and tourism industry
(Rahman et al., 2013; Abdul Aziz et al., 2015; Giri et al., 2015).
Mangrove forests are among the most carbon-rich forests in the
tropics, which make them important areas for study due to current
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losses in forest cover and ecosystem degradation. These forests are
candidates for conservation efforts under schemes such as Reduce
Emission from Deforestation and Degradation (REDD+) (Donato
et al., 2011; Kirui et al., 2013). The mangrove forest ecosystem is
one of the most vulnerable ecosystems on Earth due to anthro-
pogenic disturbance and climate change (e.g. Sea level rise). It
has been reported that 20–35% of global mangrove forest lands
have been lost due to deforestation since the 1980s (FAO, 2007;
Rahman et al., 2013). The rapid loss of mangrove forests is com-
pelling managers and scientists to inventory and monitor their
spatial extent, and a considerable number of monitoring efforts
have been conducted from the local to global scales (Giri et al.,
2008, 2011, 2015; Spalding et al., 2010; Kirui et al., 2013;
McCarthy et al., 2015; Hamilton and Casey, 2016). Two global scale
mangrove forest maps were produced for the year 2000: The
World Atlas of Mangroves (referred as WAM10) by Spalding et al.
(2010), and Mangrove Forests of the World (MFW) by Giri et al.
(2011). More recently, Hamilton and Casey (2016) released the
Global Database of Continuous Mangrove Forest Cover for the
21st Century (CGMFC-21) from 2000 to 2012 by integrating the
Global Forest Cover (GFC) dataset (Hansen et al., 2013), MFW,
and the Terrestrial Ecoregions of the World (TEOW) (Olson et al.,
2001). Their works have contributed to the studies of mangrove
forest biodiversity and carbon stocks and to the efforts for conser-
vation of mangrove forest ecosystems.

However, these aforementioned mangrove forest maps in China
are incomplete or outdated, and therefore cannot reflect the latest
spatial distribution of mangrove forests in China. For example, only
about 14% (3139 ha) of the mangrove forests in China were
mapped in the MFW map (Hamilton and Casey, 2016). This incom-
plete mangrove forest mapping in China was propagated to the
annual CGMFC-21 maps since they were generated using the
MFW base map of 2000 and annual forest loss map of GFC
(2001–2012). Moreover, gains in mangrove forest cover were not
considered. The WAM10 included China, but the map is not con-
temporary because it was generated using Landsat Thematic Map-
per (TM) and Enhanced Thematic Mapper (ETM+) data acquired
between 1999 and 2003 (Spalding et al., 2010). Therefore, it is crit-
ical that the coverage and spatial distribution of mangrove forests
in China be accurately mapped using the most recent image data
and improved remote sensing techniques.

Table 1 provides a summary on existing data, algorithms, and
map products for mangrove forest mapping. Supervised and unsu-
pervised classification methods were used in most of the published
studies. These algorithms can generate accurate mangrove forest
maps for specific regions at specific time (image acquisition time),
but are often difficult to scale-out to larger areas at other times.
The majority of the published studies were based on moderate to
high spatial resolution optical satellite images such as Landsat
data. A few studies were based on integrating optical and Synthetic
Aperture Radar (SAR) data, and they demonstrated that optical and
SAR data could complement each other by combining spectral and
structural information of mangrove forests, thereby overcoming
the problems caused by clouds and shadows in optical imagery.
Rahman et al. (2013) used time series Moderate Resolution Imag-
ing Spectroradiometer (MODIS) to map mangrove forests, but the
other studies often used imagery from a single date or multiple
dates. Time series images were rarely used to map mangrove
forests.

Time series Landsat data can provide more phenological infor-
mation for land cover classification, and their advantages have
been illustrated in recent studies (Hermosilla et al., 2015; Reiche
et al., 2015; Dong et al., 2016; Zhou et al., 2016). Several of those
studies analyzed time series spectral data of individual pixels
and used the phenology-based spectral signatures to identify and
generate maps of forests, rubber plantations, and paddy rice
croplands (Dong et al., 2013, 2016; Kou et al., 2015). With the
increasing amount of cost-free time series data from satellites such
as Landsat and Sentinel, releasing of batch pre-processing soft-
ware/tools for cloud detection (e.g., Fmask (Zhu and Curtis,
2012)) and atmospheric correction (e.g., Landsat Ecosystem Distur-
bance Adaptive Processing System (LEDAPS) (Maiersperger et al.,
2013; Masek et al., 2013)), as well as cloud computation resources
like Google Earth Engine (GEE, https://earthengine.google.com),
there exists a great deal of potential in the phenology-based
approach to identify and map mangrove forests using time series
optical and SAR images.

The objectives of this study were to (1) develop a phenology-
based algorithm to identify mangrove forests by analyzing time
series Landsat and Sentinel-1A images, and (2) apply the algorithm
to generate a mangrove forest map of China in 2015 and evaluate
its performance with ground reference data and publicly available
maps and data of mangrove forests. China is an ideal region for
studying the cold resistance of mangrove forests, the response of
mangrove forest to global warming, and the impacts of human
activity such as conservation, restoration, population growth, and
rapid economic development (Chen et al., 2009). According to the
forest census statistics, China has about 22,000 ha of mangrove for-
ests, which have high species-richness and biodiversity (Chen
et al., 2009; Spalding et al., 2010). Several studies estimated the
mangrove forest area in China from the local (Lee and Yeh, 2009;
Wu et al., 2011; Li et al., 2013; Li and Dai, 2014; Zhang et al.,
2015; Wang et al., 2016) to national scale (Chen et al., 2009;
Spalding et al., 2010; Wu et al., 2013; Jia et al., 2014). However,
these estimates were highly variable at the national scale, ranging
from 19,788 ha (Spalding et al., 2010) to 24,578 ha (Wu et al.,
2013). The total extent of mangrove forests at the province scale
also varied widely (Wu et al., 2013; Jia et al., 2014). Because of
the extensive distribution of mangrove forests along coastlines
and high fragmentation caused by intensive human disturbance,
it is a challenging task to accurately map mangrove forests in
China.
2. Material and methods

2.1. Study area

The study area included the coastal mangrove ecosystems in
southern China (Fig. 1), comprising areas in the Guangxi Zhuang
Autonomous Region (referred as Guangxi ZAR), Hong Kong, Macao,
Taiwan and the provinces of Guangdong, Hainan, Fujian and Zhe-
jiang. Natural mangrove forests are mainly distributed within lati-
tudes between 18�090N and 27�200N, while planted mangrove
forests have extended to Leqing Bay in Zhejiang Province with lat-
itude of 28�250N (Spalding et al., 2010; Wu et al., 2013). Histori-
cally, the total area of mangrove forests in China was 250,000 ha,
and in 1950s was about 420, 000 ha (Liao and Zhang, 2014), and
continue to decrease due to extensive land conversion, salt produc-
tion, aquaculture, and urbanization (Wu et al., 2013). The total area
of mangrove forests in 2002 was 22,025 ha, excluding Hong Kong,
Macao, and Taiwan (Chen et al., 2009). Predominant plant species
are Bruguiera gymnorrhiza, Kandelia obovta, Avicennia marina, Aegi-
ceras corniculatum, Acrostichum aureum, Acanthus ilicifolius (Liao
and Zhang, 2014).
2.2. Data

2.2.1. Landsat images and preprocessing
Complete coverage of the study area is 25 tiles of the Landsat

Worldwide Reference System (WRS) path/rows. A total of 1941
Landsat surface reflectance (SR) images were acquired between
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Table 1
A brief summary on image data and algorithms from selected peer-reviewed references related to mangrove forest mapping.

Methods Optical images SAR images Optical + SAR images

VHSR/HR MR CR

VI Spalding et al. (2010), Pattanaik and Narendra
Prasad (2011), Wu et al. (2013)

Supervised

MLC Lee and Yeh (2009) Ramı́rez-Garcı́a et al. (1998), Krause et al. (2004),
Giri et al. (2007), Lee and Yeh (2009),
Salami et al. (2010), Kirui et al. (2013)

Held et al. (2003),
Rodrigues
and Souza-Filho (2011)#,
Jhonnerie et al. (2015)

NN Seto and Fragkias (2007) Held et al. (2003)
SVM Wang et al. (2016)
CART/PE/DT Long and Skewes (1996)#, Giri et al. (2015),

Almahasheer et al. (2016)
Simard et al. (2002)

RF Jhonnerie et al. (2015)

Unsupervised ISODATA Simard et al. (2008), Long and Giri (2011),
Li et al. (2013), Carney et al. (2014)#,
Giri et al. (2015)

Hybrid supervised and
unsupervised

Giri et al. (2008, 2011)#, Ibharim et al. (2015)

Knowledge-
based

OO Vo et al. (2013)#,
Liu et al. (2014)

Conchedda et al. (2008), Jia et al. (2014)# De Santiago et al.
(2013)#

Others Rahman
et al. (2013)*

Rocha De Souza
Pereira et al. (2012)

Phenology This study

VHSR: Very high spatial resolution satellite image (e.g., Worldview-3); HR: High resolution satellite image (e.g., SPOT); MR: Moderate resolution satellite image (e.g.,
Landsat); CR: coarse resolution satellite image (e.g., MODIS); SAR: Synthetic Aperture Radar; VI: Visual interpretation; NN: Neural Network; SVM: Support Vector Machine;
CART: Classification and Regression Tree; PE: Parallel-epiped; RF: Random forest; ISODATA: Iterative Self-Organizing Data Analysis Technique Algorithm; OO: Objected
oriented; DT: Decision Tree; Others: User’s defined algorithm.

* Indicate time series data were used, the others were based on images of single date or mosaic.
# Indicate visual interpretation methods were employed to refine the mangrove forest maps.

Fig. 1. Location of study area, spatial distribution of Region of Interests (ROIs), and coverage of Landsat Worldwide Reference System 2 (WRS-2) path/row for the study area in
Southern China. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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January 1, 2014 and July 23, 2016, and were available on GEE as
image collections. All Landsat SR data was processed based on
standard Level 1 Terrain-corrected (L1T) ortho-rectified images
and have high geometric accuracy. The Landsat 8 Operational Land
Imager (OLI) SR data was generated by LaSRC software (USGS,
2016), while Landsat 7 ETM + SR data was created by the LEDAPS
(Masek et al., 2013; USGS, 2017). Poor quality observations of each
Landsat imagery include clouds and shadows identified by cfmask
band from SR collection and fmask band from top-of-atmosphere
(TOA) reflectance with Fmask collection (Zhu et al., 2015; USGS,
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2016, 2017). Observations unaffected by clouds and shadows, and
ETM + scan-line-off strips were considered good quality observa-
tion. The spatial distribution of total observations, good quality
observations, and percentage of good quality observations for all
Landsat images are presented in Fig. 2a–c.

Four widely used vegetation indices such as Nominalized Dif-
ference Vegetation Index (NDVI) (Tucker, 1979), Enhanced Vegeta-
tion Index (EVI) (Huete et al., 1997, 2002), Land Surface Water
Index (LSWI) (Gao, 1996; Xiao et al., 2004), and modified Normal-
ized Difference Water Index (mNDWI) (Xu, 2006) were calculated
for each imagery, using Eqs. (1)–(4).

NDVI ¼ qNIR � qred

qNIR þ qred
ð1Þ

EVI ¼ 2:5� qNIR � qred

qNIR þ 6� qred � 7:5� qblue þ 1
ð2Þ

LSWI ¼ qNIR � qSWIR

qNIR þ qSWIR
ð3Þ

mNDWI ¼ qgreen � qSWIR

qgreen þ qSWIR
ð4Þ
Fig. 2. Spatial distribution of Landsat optical and Sentinel-1A SAR data used in this study
+/OLI images, (c) percentage of good quality observations for Landsat ETM+/OLI ima
observations in the four corners of path/row overlapping area are counted four times, wh
references to color in this figure legend, the reader is referred to the web version of thi
where qblue, qgreen, qred, qNIR, and qSWIR are blue (B1:450–520 nm),
green (B2:520–600 nm), red (B3:630–690 nm), near-infrared (NIR,
B4:760–900 nm), and shortwave infrared (SWIR, B5:1550–
1750 nm) bands of Landsat ETM+/OLI imagery, respectively.

2.2.2. Sentinel-1 images and preprocessing
Sentinel-1A carries a C-band imager at 5.405 GHz with inci-

dence angle between 20� and 45� and a 12-day repeat cycle at
the equator (Torbick et al., 2016). The Level 1 Ground Range
Detected (GRD) product in the Interferometric Wide (IW) swath
model, which has dual-polarization of vertical transmitting with
vertical receiving (VV) and vertical transmitting with horizontal
receiving (VH) bands, was used in this study. Each tile has high
geometric accuracy and was processed with Sentinel-1 Toolbox
using these steps: (1) thermal noise removal, (2) radiometric cali-
bration, (3) terrain correction (orthorectification) using DEM data
from either the Shuttle Radar Topography Mission (SRTM, 30-m,
(Farr et al., 2007)) or Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER), and 4) conversion of backscat-
ter coefficient (r0) to decibels (dB) (Sentinel-1 Team, 2013). The
spatial resolution of Sentinel-1A was 10-m and already available
in GEE as an image collection. A total of 586 Sentinel-1A images
acquired from April 3, 2014 (Lunch date) to July 23, 2016 were
: number of (a) total observations and (b) good quality observations for Landsat ETM
ges, and (d) total number of Sentinel-1A SAR images. The number of total/good
ile in other path/row overlapping area are counted twice. (For interpretation of the
s article.)
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used, and the number of total observations was presented in
Fig. 2d.

All the Landsat and Sentinel-1A data processing was conducted
in GEE. GEE is a cloud-based platform for planetary-scale environ-
mental data analysis. It combines a multi-petabyte catalog of satel-
lite imagery and geospatial datasets, Google’s computational
infrastructure optimized for parallel processing of geospatial data,
Application Programming Interfaces (APIs) for JavaScript and
Python, and a web-based integrated development environment
for rapid prototyping and visualization of complex spatial analyses.
GEE is designed so that users rarely have to worry about map pro-
jections when doing computing at large area, projection parame-
ters are requested in the output projection. By default, GEE
performs nearest neighbor (NN) resampling during reprojection.

2.2.3. DEM and vector maps
The 30-m SRTM DEM data and their derived variable (slope)

were used to mask out those regions of high elevation and/or
steep-slope where mangrove forests are not likely to occur. The
administrative boundary map of China (Shapefile format, 1:
10,000,000 scale) was used to delineate the coastline. The vector
map of Mangrove Forests in South Asia in 2015 (referred as
MFSA15), which was produced by Lǚ et al. (2015) using Landsat
8 images acquired between 2013 and 2015, was downloaded from
the Global Change Research Data Publishing & Repository website.
In addition, the WAM10 vector map (Spalding et al., 2010) was
downloaded from the Ocean Data Viewer website. The WAM10
map was generated by such joint initiatives as the International
Tropical Timber Organization (ITTO) and the International Society
for Mangrove Ecosystems (ISME) through analyses of Landsat
TM/ETM + data acquired between 1999 and 2003. Mangrove forest
maps of China were respectively clipped from MFSA15 and
WAM10 for comparison.

2.2.4. In-situ data for algorithm development and map accuracy
assessment

We organized in-situ data frommultiple sources. First, field sur-
veys in mangrove forest protection areas in Beihai City, Guangxi
ZAR, and Zhanjiang and Zhuhai cities in Guangdong Province were
carried out mid-May of 2015. An additional field survey of the
mangrove forest protection area in Dongzhai Harbor, Hainan Island
was performed in 2012. Photos of mangrove forests and surround-
ing landscapes were taken by the GPS-based EX-H20G camera and
uploaded to the Global Geo-Referenced Field Photo Library (www.
eomf.ou.edu/photos/), a free and public portal for people to down-
load, upload and share GPS-embedded land cover photos. These
GPS photos were converted to Keyhole Markup Language (KML)
format files and then loaded into Google Earth (GE). Second, in-
situ data from the China Mangrove Conservation Network (CMCN,
http://www.china-mangrove.org) were collected. The CMCN is a
non-governmental cooperation platform that joins government,
enterprises, and other non-government forces to support healthy
development of mangrove ecosystem. The CMCN in-situ data con-
sist of large number of GPS photos taken by volunteers over the
respective locations of mangrove forest protection areas, and
already overlaid with Google map (Fig. S1–S2). The integrated
dataset of GPS-based field photos, CMCN in-situ data, and GE very
high spatial resolution (VHSR) satellite images taken circa 2015
serves as the background reference for us to create Regions of
Interests (ROIs) using 1� � 1� grid cell for algorithm training and
map accuracy assessment (Dong et al., 2013; Kou et al., 2015).
Thirdly, we collected and organized available non-mangrove forest
ROIs from previous studies. In Hainan Island, we had collected
1118 polygon ROIs of upland-forest, rubber plantation, water,
cropland, and built-up (building) from our previous study, which
were randomly created using 0.5� � 0.5� grids with GPS field pho-
tos taken between 2011 and 2013 as well as GE VHSR images circa
2010 (Chen et al., 2016). Those ROIs located within the 25-km
coastline buffer zone was selected and updated with GE VHSR
images acquired circa 2015. Finally, a total of 224 and 634 polygon
ROIs for mangrove forests and non-mangrove forests were
obtained, respectively (Figs. 1 and S3).

We obtained training dataset from the available ROIs for algo-
rithm development. First, out of the 224 mangrove forest ROIs,
we selected six relatively large-size ROIs as training data to study
the optical and SAR signatures of mangrove forests over time
(Fig. 3). As mangrove forests have the unique feature of tidal inun-
dation and differ in inundation frequency (frequently inundated,
moderately inundated, and rarely (infrequently) inundated), these
six mangrove forest ROIs have different inundation frequencies:
two ROIs frequently inundated, one ROI moderately inundated,
and three ROIs rarely inundated (see Figs. S4–S6 for details), based
on the local tidal inundation information. Such a phenology-based
signature analysis and algorithm development approach has been
used and well documented in our previous studies of paddy rice
croplands and forests (Xiao et al., 2005, 2006; Dong et al., 2016;
Qin et al., 2016). Secondly, all mangrove forest pixels (9089 ha in
total) in the MFSA15 dataset were used to evaluate our training
ROIs during the spectral signature analysis. Only 20% of non-
mangrove forest ROIs (127 ROIs) were randomly selected for algo-
rithm development, using NOAA/NOS/NCCOS/CCMA Biogeography
Branch’s Design Tool for ArcGIS.

In addition to the remaining 218 mangrove forest ROIs and 80%
of the non-mangrove forest ROIs (507 ROIs), we designed a 1� � 1�
systematic sampling grid and generated random polygon ROIs
within individual grid cells for map accuracy assessment. This sys-
tematic sampling approach for accuracy assessment has been doc-
umented in previous publications (Qin et al., 2016). A total of 4100
random points (100 points per 1� � 1� grid cell, 41 grid cells in
total) with 15-m radius buffer zone (Area close to a pixel at 30-
m spatial resolution) were generated using GEE’s random function,
but only 1184 points that distributed within a 25-km coastline buf-
fer zone were kept for this study (Fig. S7). These random points
were stored in KMZ file format and were identified as mangrove
forests or non-mangrove forests with GE VHSR images obtained
circa 2015. Out of the 1184 ROIs, only three mangrove forest points
(ROIs) were obtained in this sampling design, as mangrove forest
area accounts for very small fraction of the total study area. There-
fore, we combined these 1184 random ROIs with the ROIs from
field surveys and previous studies. Finally, we used 221 (218 plus
3) mangrove forest polygons ROIs and 1688 (507 plus 1181) non-
mangrove forest polygons ROIs for map accuracy assessment.
Detailed statistical information about the training data and refer-
ence data is shown in Table S1.

2.3. Phenology-based mangrove forest mapping algorithms

Three key features including: (1) evergreen trees or shrubs
(greenness); (2) canopy coverage (high leaf area index); and (3)
tidal inundation were proposed to identify mangrove forests as
they are unique evergreen trees or shrubs at estuaries and marine
shorelines where inundation by tides occurs. Time series Landsat
data were used to identify these features of the mangrove forest
ecosystem (Fig. 4). The criteria of LSWI > 0 and EVI > 0.2 was used
to map evergreen forest in tropical America, Africa, and Asia (Xiao
et al., 2009). We employed this criterion to identify the greenness
of mangrove forest. Histogram analysis of annual mean NDVI and
LSWI, based on training ROIs (Fig. 5a) and temporal profile analysis
of NDVI/EVI/LSWI with four mangrove forest pixels from different
locations (Fig. S8), indicated that a vast majority of mangrove for-
ests have their NDVI and LSWI values greater than 0.3. Therefore,
NDVI > 0.3 and LSWI > 0.3 were used as criteria to identify canopy
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Fig. 3. Mangrove forest ROIs used for algorithm development: (a) frequently inundated mangrove forests in Tieshan Harbor, Guangxi ZAR, (b) moderately inundated
mangrove forests in Anpu Harbor, Zhanjiang City, Guangdong Province, and (c) rarely inundated mangrove forests in Dongzhai Harbor, Hainan Province. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Illustration of different mangrove forests in (a–c) GE VHSR images and frequency maps of (d–f) greenness, (g–i) canopy coverage, and (j–l) tidal inundation. The GE
VHSR images of (a) to (c) are of frequently inundated, moderately inundated, and rarely inundated mangrove forests clipped from Fig. 3a–c, respectively. Images are matched
in columns, and scale bars of greenness, canopy coverage, and tidal inundation were presented below corresponding maps. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.).
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coverage of mangrove forest. Tidal inundation was identified by
using the criteria of LSWI � EVI or LSWI � NDVI, both of which
have been used for mapping paddy rice and reed wetland (Dong
et al., 2016; Zhou et al., 2016).

Because of the variation in tidal action and phenology of man-
grove forests, the features of greenness, canopy coverage, and
inundation from specific imagery or one image composite could
be biased. Here we used frequency-based greenness, canopy cover-
age, and inundation from time series Landsat images to identify
mangrove forest, following the method reported in mapping paddy
rice in northeastern Asia (Dong et al., 2016). For greenness fre-
quency, as an example, we first determine greenness state using
Eq. (5).
Greenness ¼ 1 LSWI > 0 and EVI > 0:2
0 Other values

�
ð5Þ

Secondly, calculating greenness frequency using Eq. (6).

FGreenness ¼
P

NGreennessP
NTotal �

P
NBad

� 100 ð6Þ

where FGreenness is greenness frequency scaled to 0 and 100, NGreenness

is the number of observation with LSWI > 0 and EVI > 0:2; and
NTotal is the number of total observations, NBad is the number of
bad observations (e.g. clouds, shadows, and ETM + scan-line-off
strips) (Dong et al., 2016). Frequency maps of canopy coverage
and tidal inundation were generated using the criteria of



Fig. 5. The annual mean NDVI and LSWI histograms of mangrove forests based on training ROIs (a), and error bar plots of annual mean NDVI against frequency of (b)
greenness, (c) canopy coverage, and (d) tidal inundation based on training ROIs and MFSA15, respectively. The error bars indicate one standard deviation, while blue lines
were corresponding fitted thresholds based on l� 2r values of training ROIs. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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(NDVI > 0.3 and LSWI > 0.3) and (LSWI � EVI or LSWI � NDVI),
respectively.

Determining the frequency thresholds of greenness, canopy
coverage, and tidal inundation was a key step during mapping
mangrove forests. Due to the spectral influence of water, fre-
quently inundated mangrove forests (Fig. 4a) have weak signals
of greenness (Fig. 4d) and canopy coverage (Fig. 4g), but strong
inundation signal (Fig. 4j). Conversely, rarely inundated mangrove
forests (Fig. 4c) have strong signals of greenness (Fig. 4f) and
canopy coverage (Fig. 4i), but weak tidal inundation signal
(Fig. 4l). The moderately inundated mangrove forests (Fig. 4b) have
moderate signals of greenness, canopy coverage, and tidal inunda-
tion. Therefore, fixed frequency thresholds cannot address these
situations well, and variable frequency thresholds are more
appropriate.

Based on the fact that the denser the canopy, the lower the
chance that water has been observed by satellites, we assume that
the frequency of greenness, canopy coverage, and tidal inundation
were closely related to mangrove forest canopy density, which can
be represented by annual mean NDVI (Jensen et al., 1991). The fre-
quency of greenness and canopy coverage linear increased signifi-
cantly with annual mean NDVI when NDVI < 0.6 (Fig. 5b and c),
while tidal inundation frequency decreased linearly with annual
mean NDVI when NDVI > 0.3 (Fig. 5c). Therefore, variable fre-
quency thresholds of greenness, canopy coverage, and tidal inun-
dation can be determined using their linear fits against annual
mean NDVI. In this study, the linear fits were built on low bound
values of l� 2r, where l is annual mean NDVI and r standard
deviation (see Figs. S9–S11 for details). Based upon the mangrove
forest characteristics presented in Fig. 5, the frequency upper
(lower) bound thresholds for greenness, canopy coverage, and tidal
inundation were set to 80% (20%), 70% (10%) and 70% (0), respec-
tively. Therefore, based on the linear fitting results from Figs. S9–
S11, mangrove forests were identified if a pixel meets (7), (8),
and (9) at mean time according to its annual mean NDVI.

Fgreenness ðxÞ >
20 x < 0:25

211:47x� 33:46 0:25 6 x < 0:54
80 x P 0:54

8><
>: ð7Þ
FCanopy ðxÞ >
10 x < 0:28

193:85x� 43:78 0:28 6 x < 0:59
70 x P 0:59

8><
>: ð8Þ

FInundation ðxÞ >
70 x < 0:28

�155:81xþ 114:01 0:28 6 x < 0:73
0 x P 0:73

8><
>: ð9Þ

where x is annual mean NDVI.

2.4. Implementation of mangrove forest mapping algorithm in China

Implementation of the mapping algorithms (see Section 2.3) at
the regional scale is a challenging task, since many factors could
potentially affect classification accuracy. However, areas where
mangrove forests are not likely to occur can be excluded from
the spatial analysis (Long and Giri, 2011). We first created the
masks of four non-mangrove land cover types: non-coastal zones,
upland and steep-slope regions, built-up and barren lands, and
yearlong water bodies. Second, we generated the mangrove forest
map in 2015, based on spectral signatures of greenness, canopy
coverage, and tidal inundation. The mangrove forest map was fur-
ther refined by determining the forest’s connectivity with the sea
using a yearlong water body mask (Fig. 6).

2.4.1. Coastal zone regions
A 25-km coastline buffer zone was generated to delineate the

potential areas of mangrove forests. This buffer extends 15 km
inland and 10 km in the sea. The buffer zone boundary was modi-
fied in some regions (e.g. around Hong Kong) where the coastlines
are wide, due to the presence of islands. A similar 10 km buffer
zone has been used to map mangrove forests along the Kenyan
coastline by Kirui et al. (2013).

2.4.2. Upland and steep-slope regions
Histograms of mangrove forest elevations and slopes, based on

training ROIs and the MFSA15 map in China, indicated that a vast
majority of mangrove forests were distributed in areas with an ele-
vation between -5 m and 10 m above mean sea level (AMSL) and a



Fig. 6. Mangrove forest mapping flow chart. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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slope of less than 10� (Fig. 7). Therefore, DEM < 10 m and
slope < 10� were used to delineate the potential locations of man-
grove forests.

2.4.3. Built-up and barren lands
Built-up and barren lands have either an impervious surface or

exposed soils, which usually have low LSWI values (Xiao et al.,
2005). A frequency map of LSWI < 0 was generated using a method
similar to Eq. (5) and (6). A pixel with frequency value >50% was
then classified as built-up or barren land (Zha et al., 2003; Qin
et al., 2015) and were masked as non-mangrove.

2.4.4. Yearlong water bodies
Along the coastline, there are a considerable amount of yearlong

water bodies, such as salterns and aquaculture ponds. As illus-
trated in Fig. 8b&c, Sentinel-1A VH band was very sensitive to
water and non-water (upland forest, built-up, and cropland) cover,
and water can be readily identified using VH < -19. However, a few
Fig. 7. Histogram of (a) elevation and (b) slope based on mangrove forest training ROIs a
legend, the reader is referred to the web version of this article.)
land cover types, such as sand beaches and flat impervious surfaces
like airport runways, also have HV < -19 (intersect area in Fig. 8c,
and see Fig. S12 for illustration). These non-water land cover types
can be identified by mNDWI (Rokni et al., 2014); and the criteria
mNDWI > 0 used for mapping open surface water bodies (Xu,
2006). Frequency maps with VH < -19 and mNDWI > 0 were gener-
ated based on all Sentinel-1 A and Landsat data, respectively
(Fig. 8d&e). The boundary between water and non-water in the
Sentinel-1A VH frequency map was more accurate than that of
the mNDWI frequency map (Fig. 8d&e). Here we use
FVH<�19 > 80% and FmNDWI>0 > 10% to identify yearlong water bodies
(Fig. 8f).
2.4.5. Refining the mangrove forest map using the intersection-with-
sea criterion

Mangrove forests are usually inundated with sea water. There-
fore, mangrove forest patches that do not intersect the sea at any
point in the year are considered non-mangrove. A few isolated
nd MFSA15, respectively. (For interpretation of the references to color in this figure



Fig. 8. Illustration of identifying yearlong water using Sentinel-1A and Landsat data: (a) GE VHSR image at Dongzhai Harbor, Haikou; (b) Sentinel-1 VH band acquired on June
25, 2015, and (c) histogram of water and non-water in image b; (d) frequency map with VH < �19 based on all Sentinel-1A data; (e) frequency map with mNDWI > 0 based on
all Landsat data; (f) cumulative frequency of water and non-water ROIs based on frequency map with VH < �19 and mNDWI > 0, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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mangrove forests were removed from the map using this criterion,
but their area was very small when screening the entire study area
in GE. Seawater bodies were derived from yearlong water bodies
by removing small inland water bodies such as aquaculture ponds.
However, bays or estuaries that are separated by bridges should be
kept as sea. Based on a simple testing, a threshold of 100 ha was
used to remove small inland yearlong water bodies while main-
taining bays and estuaries as sea. A buffer zone of 100 mwas added
to the seawater body layer to help determine the intersection
between mangrove forest patches and the sea in GEE. Forest
patches that intersected with the seawater buffer zone are kept
as mangrove forests.

2.5. Accuracy assessment of the resultant mangrove forest maps

The mangrove forest map generated from the algorithm defined
in this study (Digital Classified Mangrove Forest Map, MFMDC) was
converted to KML format in GEE. It was then loaded into GE, visu-
ally interpreted and evaluated, and adjusted (keep, remove, or add
polygons) using GE VHSR images circa 2015 (Visual Interpreted
and Adjusted Mangrove Forest Map, MFMDC+VIA). In Guangxi ZAR,
the MFMDC+VIA was further confirmed by a local expert (Lianghao
Pan) from the Guangxi Mangrove Research Center (GMRC),
Guangxi Academy of Sciences, with ten years of field experience
in the mangrove region. The KML format MFMDC and MFMDC+VIA

were converted to a raster format at 30-m spatial resolution in Arc-
GIS and then loaded in ENVI for accuracy assessment using ground
reference data by confusion matrix. The ground reference data con-
sist of 221 (218 manually created and 3 computers generated)
mangrove forest polygon ROIs and 1688 (507 manually created
and 1181 computer generated) non-mangrove forest polygon ROIs.
The KML format of MFMDC and MFMDC+VIA were also converted into
shapefile format in ArcGIS to calculate area using a projected coor-
dinate system of Krasovsky_1940_Albers. Then, the percentages of
spatially consistent area in different regions between the MFMDC

and MFMDC+VIA were reported.
2.6. Inter-comparison with other available mangrove forest maps or
datasets

Wall-to-wall comparisons between MFMDC+VIA and the MFSA15
(Lǚ et al., 2015) in Guangxi ZAR and WAM10 (Spalding et al., 2010)
in China were conducted, respectively. We only chose Guangxi ZAR
for comparison because mangrove forests in other regions were
not fully mapped in MFSA15. Mangrove forest areas at the provin-
cial level was also compared with the following public data: 1)
State Forestry Administration (SFA) (Chen et al., 2009); 2) North-
east Institute of Geography and Agroecology, Chinese Academy of
Sciences (IGA-CAS) (Jia et al., 2014); 3) the First Institute of
Oceanography, State Oceanic Administration (FIO-SOA), China
(Wu et al., 2013); 4) MFSA15; and 5) WAM10. The MFW (Giri
et al., 2011) and CGMFC-21 (Hamilton and Casey, 2016) were not
compared because only about 3000 ha in Guangxi ZAR was
reported in these two products. These maps were generated using
images from 2002, 2010, 2010, 2015, and 2000 for SFA, IGA-CAS,
FIO-SOA, MFSA15, and WAM10, respectively. Although most of
these datasets were generated five or more years earlier than our
map, it still has reference value given China’s protection policies
that have increased since the 1980s (Chen et al., 2009). In addition,
most mangrove forests grow slowly; it is not likely that mangrove
forests would rapidly expand within a few years.
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3. Results

3.1. Accuracy assessment of the China’s mangrove forest map in 2015

Both the MFMDC and MFMDC+VIA show high accuracy when eval-
uated with ground reference ROIs (Table 2). They shared almost
same values of user’s accuracy (UA), producer’s accuracy (PA),
overall accuracy (OA), and kappa coefficients. The UA, PA, OA,
and Kappa coefficient for MFMDC+VIA were 100%, 95.54%, 99.19%
and 0.97, respectively.

The mangrove forest map in Guangxi ZAR had the highest accu-
racy; identical areas (spatially consistent mangrove forests area
between MFMDC and MFMDC+VIA) account for 97% of the MFMDC

and 96% of MFMDC+VIA (Table 3). In Guangdong, Hainan, Fujian
and Hong Kong, the identical area accounts for relatively low val-
ues (82–84%) with MFMDC, but high values (93–99%) with MFMDC+-

VIA. However, the identical area can account for 94% and 97% of
MFMDC in Guangdong and Hainan Province, respectively, if only
those regions with dense mangrove forest cover are considered.
The consistent areas between MFMDC and MFMDC+VIA are low in
Taiwan and Macao, and especially low in Zhejiang (Table 3). The
identical area in China are 86% and 96%, when compared with
the MFMDC and MFMDC+VIA, respectively (Table 3).

3.2. Spatial and area distribution of mangrove forests in China in 2015

Mangrove forests in China are mostly distributed along the
coastlines of Guangxi ZAR, Guangdong Province, and the northern
part of Hainan Province. Mangrove forest cover decreased signifi-
cantly from the coastline of Hong Kong north to Zhejiang Province
(Fig. 9a). In Taiwan, mangrove forests are mainly distributed along
the western and northwest coastline. The total area of mangrove
forests from MFMDC+VIA is 20,303 ha, with 6849 ha, 8136 ha, and
3667 ha in Guangxi ZAR, Guangdong, and Hainan Provinces,
respectively (Table 4). These three regions account for about 92%
of the total mangrove forest cover in China. Mangrove forest cover
in Fujian Province, Taiwan, and Hong Kong range from 410 ha to
675 ha. About 8 ha and 13 ha of mangrove forests are found in Zhe-
jiang Province and Macao, respectively.

3.3. Inter-comparison of mangrove forest maps among multi-source
datasets

The identical area between MFMDC+VIA and MFSA15 in Guangxi
ZAR is 3992 ha, accounting for 80% of MFSA15 and 58% of MFMDC+-

VIA, respectively (Fig. 10). A considerable amount of mangrove for-
ests around the bay of Qinzhou City (black boxes of I and II) occurs
in MFMDC+VIA but not in MFSA15. These regions do contain a great
deal of mangrove forests (Fig. 10b&c). The 1017 ha of mangrove
forests that are only mapped in MFSA15 is due to the difference
in patch boundaries and misclassification (Fig. 10d).

There are large differences between MFMDC+VIA and WAM10
(Fig. 11). The spatially consistent area between these two maps
Table 2
Accuracy assessment of MFMDC and MFMDC+VIA in China using ground reference data.

Ground reference pixels

Class Mangrove

Map pixels Mangrove 7204/7155
Non-mangrove 359/334

Total ground truth pixels 7563/7489
Producer’s accuracy 95.25%/95.54%

Overall accuracy is 99.13%/99.19% and kappa coefficient is 0.97/0.97, respectively. The fi
MFMDC+VIA. Non-mangrove includes upland-forest, cropland, water, and built-up lands.
is 9546 ha, accounting for only 47% of MFMDC+VIA and 48% of
WAM10, respectively. The MFMDC+VIA has more mangrove forests
in Guangxi ZAR (e.g. Fig. 11c) and Guangdong Province (e.g.
Fig. 11b) than WAM10, but fewer mangrove forests in Fujian and
Zhejiang Province (e.g. Fig. 11a in purple box). For some regions,
such as Hong Kong, mangrove forests of WAM10 have several pix-
els of geometry offsets (Fig. 11b). The WAM10 also detected many
more mangrove forests at Tongmingwan, Zhanjiang City, Guang-
dong Province, where large patches of mangrove forests might
have existed before this study (Fig. 11d).

The total area of mangrove forests in China from MFMDC+VIA

(20,303 ha) is very close to the area from WAM10 (19,788 ha)
and IGA-CAS (20,778 ha) and lower than the area calculated from
the SFA (22,025 ha) and FIO-SOA (24,578 ha) (Table 4). At the
provincial level, we detected more mangrove forests in Guangxi
ZAR than most studies except SFA (8375 ha). In Guangdong Pro-
vince, we mapped 8136 ha of mangrove forests, obviously lower
than the area from FIO-SOA (12,131 ha) and about 1000 ha lower
than SFA and IGA-CAS. The area of mangrove forests in Hainan Pro-
vince differs slightly among these studies, except FIO-SOA
(4891 ha). WAM10 has detected significantly higher values of
mangrove forests than the other studies in Fujian and Zhejiang Pro-
vince. We detected 544 ha of mangrove forests in Hong Kong, very
close to the agricultural statistics data (510 ha) reported by the
Agriculture, Fisheries and Conservation Department of Hong Kong.
4. Discussion

4.1. Data and algorithms for mapping mangrove forests

This study developed a new algorithm to identify mangrove for-
ests based on its unique features and applied this algorithm using
time series data from Landsat and Sentinel-1A, as well as DEM, to
map China’s mangrove forests in 2015. The algorithms and data
used in this study are quite different from several previous studies
(De Santiago et al., 2013; Giri et al., 2015; Jhonnerie et al., 2015).

First, the integration of Landsat optical and Sentinel-1A SAR
data captures complementary information on the spectral and
structural characteristics of mangrove forests. We also use both
Sentinel-1A and Landsat data to generate a yearlong water mask,
which is valuable for the identification of mangrove forests via
their inundation by the sea. Previous studies have used a super-
vised classification approach (Giri et al., 2011), NIR band (Long
and Skewes, 1996), and brightness (Vo et al., 2013) to map water
bodies before mapping mangrove forests. Although NDWI or mod-
ified NDWI (mNDWI) derived from Landsat data were good indica-
tors of open surface water bodies (Mcfeeters, 1996; Xu, 2006;
Rokni et al., 2014), the inclusion of Sentinel-1A data was still useful
since it has a fine spatial resolution of 10-m and is unaffected by
cloud cover. We found Sentinel-1A VH band differentiates well
between water and non-water, as the frequency map with
VH < �19 has a more distinct boundary between water and non-
water than does the frequency map with mNDWI > 0 (Fig. 8d&e).
Total map pixels User’s accuracy

Non-mangrove

0/1 7204/7156 100%/100%
32,868/33,819 34,227/34,163 98.95%/99.02%

32,868/33,820 41,431/41,309
100%/100%

rst values before backslash in each cell were for MFMDC, and the second were for



Table 3
Comparison between the MFMDC and MFMDC+VIA in 2015.

Mangrove forest area (ha) Percentage (%)

MFMDC MFMDC+VIA Identical Identical/MFMDC Identical/MFMDC+VIA

Guangxi ZAR# 6775 6849 6572 97 96
Guangdong/DMFR 9565/6927 8136/6728 7919/6528 83/94 97/97
Hainan/DMFR 4136/3467 3667/3562 3417/3346 83/97 93/94
Fujian 807 675 662 82 98
Hong Kong 645 544 539 84 99
Taiwan 707 410 387 55 94
Zhejiang 13 8 2 15 25
Macao* 6 13 5 83 38
Total 22,654 20,303 19,503 86 96

MFMDC: Mangrove forest map direct from digital classification; MFMDC+VIA: MFMDC after visual interpretation and adjustment using GE VHSR images; Identical: Identical
mangrove forest area between MFMDC and MFMDC+VIA; DMFR: Dense mangrove forest region, corresponding spatial extents were shown in Fig. 9(I and III);

# MFMDC+VIA here was additionally confirmed by a local expert with ten years of field experience.
* Classified accuracy would be close to 100% but degraded significantly due to influence of a conical building, see Fig. S13 for detail.

Fig. 9. Spatial distribution of (a) China’s mangrove forests in 2015 and (b) zoom views of extent I in Guangdong Province, (c) extent II in Guangxi ZAR and (d) extent III in
Hainan Province where dense mangrove forests occurs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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The mNDWI, however, is useful in eliminating misclassified water
pixels such as sand beaches and flat impervious surfaces from the
Sentinel-1A based water map.

Secondly, classification of mangrove forests based on time ser-
ies Landsat imagery greatly reduced misclassification typically
caused by the effects of tidal inundation on vegetation indices
(Cohen and Lara, 2003; Wu et al., 2013). In order to reduce this
tidal inundation effect, some studies used satellite data obtained
during low tide to map coastal vegetation like mangrove forests
(Nayak and Bahuguna, 2001). Most previous studies used images
of single date or multi-date mosaics for mangrove forest classifica-
tion (Table 1), while we used frequency-based criteria from three
years of time series Landsat and Sentinel-1 data. The resultant
mangrove forest maps for 2015 have high accuracy (UA/PA/
OA > 95%) and are more robust than those derived from analyses
of single/mosaic images (e.g. MFSA15), as the advantages of land
cover classification based on time series image data have been
illustrated by several studies (Hermosilla et al., 2015; Reiche
et al., 2015; Dong et al., 2016; Zhou et al., 2016).

Thirdly, most prior studies employed supervised (e.g., MLC) and
unsupervised (e.g., ISODATA) classification algorithms to map
mangrove forests or to quantify their changes (Table 1). The resul-
tant maps are often affected by the training datasets and selected
images used in the analysis, which makes it hard to compare maps
from different years or data producers. In this study, we used three
key features: greenness, canopy coverage, and tidal inundation to
map mangrove forests. Time series Landsat ETM+/OLI data accu-
rately captures these features and enables us to distinguish man-



Table 4
Area comparison of mangrove forests in China from different map data sources.

Mangrove forest area (ha)

This study (2015) SFA (2002) IGA/CAS (2010) FIO/SOA (2010) WAM10 (2000) MFSA15 (2015)

Guangxi 6849 8375 5813 6596 4529 5009
Guangdong 8136 9084 9289 12,131 7276 4080#

Hainan 3667 3930 3576 4891 3919 –
Fujian 675 615 1023 941 2186 –
Zhejiang 8 21 293 20 1188 –
Taiwan 410 – 382 – 242 –
Hong Kong 544 – 389 – 448 –
Macao 13 – 11 – – –
Total 20,303 22,025 20,778 24,578 19,788 9089

SFA: State Forestry Administration, from Chen et al. (2009); IGA.CAS: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, from Jia et al. (2014);
FIO.SOA: First Institute of Oceanography, State Oceanic Administration, from Wu et al. (2013); WAM10: World Atlas of Mangroves (2010) from Spalding et al. (2010);
MFSA15: Mangrove Forest map in South Asia in 2015, from Lǚ et al. (2015).

# Mangrove forest mapping in Guangdong Province was incomplete in MFSA15.

Fig. 10. Spatial comparison between MFMDC+VI and MFSA15 in Guangxi ZAR: (a) overlay comparison with identical areas in green and inconsistent areas in red and blue,
zoom views of extent I (b) and extent II (c) where mangrove was not mapped in MFSA15, and (d) zoom view of extent III where inconsistency was existed between MFMDC+VI

(in red) and MFSA15. The background of (b) and (c) are Landsat OLI images acquired on April 14, 2015 (P124/R45) shown in false color composite (R/G/B = Band 6/5/4), while
the background in (d) is a GE VHSR image acquired on October 8, 2015. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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grove forests from other land cover types. This phenology-based
algorithm requires a relatively small number of training datasets
(we used 6 mangrove ROIs here) to study how mangrove forests
change over time. It can be applied as a more general classification
algorithm that can be readily extended to large regions with the
GEE platform. We also found that the annual mean NDVI is a key
variable in determining the frequency thresholds of greenness,
canopy coverage, and tidal inundation, which allows us to generate
mangrove forest maps in China using one algorithm and dynamic
threshold values.

Fourthly, removing forest patches not intersecting with the sea
was a simple and straightforward method to refine mangrove for-
est maps. Previous study used a similar intersection criterion with
water and noncontiguous water to refine mangrove forest maps
during post-classification in GIS software (Long and Skewes,
1996). Here, we integrated these steps with GEE and generated a
map directly. Fig. 12 illustrates the implementation of this
intersection-with-sea criterion. Many discrete patches in red were
previously misclassified as mangrove forests (Fig. 12A), and most
have been removed as they are not inundated by the sea
(Fig. 12d). In addition, buffer zone, elevation, and slope were
employed in the analysis to generate mangrove forest maps. The
thresholds for these criteria was similar or the same as in previous
studies. For example, Almahasheer et al. (2016) used a 1-km buffer



Fig. 11. Spatial comparison between MFMDC+VI and WAM10: (a) overlay comparison with identical areas in green and inconsistent areas in red and blue; (b) zoom view of
Mai Po Marshes Nature Reserve in Hong Kong and borders of Shenzhen Special Economic Zone of Guangdong Province (extent I) where mangrove forests in Shenzhen were
not mapped and geometry offsets existed in the WAM10 map; (c) zoom view of extent II in Beihai City, Guangxi ZAR where some mangrove forests were not mapped in
WAM10; and (d) zoom view of extent III in Tongminwan, Zhanjiang City, Guangdong Province where theWAM10 mapped many more mangrove forests. The purple rectangle
in (a) indicates the WAM10 map here almost classification error because natural limits of mangrove forests in China is about 27 �N. The background of (b), (c) and (d) are
Landsat OLI images acquired on January 19, 2015 (P122/R44), October 23, 2015 (P125/R45) and January 17, 2015 (P124/R45) shown in false color composite (R/G/B = Band 6/
5/4), respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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from coastline to mask out non-mangrove areas. Here, we used a
wide buffer zone of 25-km to account for the diversity (e.g. many
small islands and longer inner estuaries) of the lengthy coastline
in China. The 10-m AMSL from this study was consistent with
many previous studies (Long and Skewes, 1996; Kirui et al.,
2013; Darmawan et al., 2016). We masked by slope because man-
grove forests occur in wetlands, which have relatively flat
topography.

4.2. Potential sources of errors in the resultant mangrove forest map in
China

4.2.1. Evergreen vegetation that is close to yearlong water bodies
Some evergreen vegetation that is in close proximity to year-

long water bodies such as aquaculture ponds, estuaries, and the
sea may be mapped as mangrove forests since these pixels were
a mixture of evergreen vegetation and water (Fig. 13a). It’s difficult
to remove them using the intersection-with-sea criterion because
they are very close to yearlong water bodies. The proportion of
these misclassified pixels would be significant when mangrove for-
ests are sparsely distributed along a coastline. For example, the
identical area accounts for 55% of the MFMDC in Taiwan mainly
because only 410 ha of mangrove forests are distributed along its
longer coastline (Table 3, Fig. 9). Sparse mangrove forests along
the coastline of south Hainan Island, Pearl River Delta—one of the
most intensive disturbance estuaries – and Fujian Province also
degraded the proportion of identical area to MFMDC and MFMDC+VIA

to 82–83%. However, this type of misclassification decreased sig-
nificantly in regions with relative dense distributions of mangrove
forests. The identical area accounts for 97%, 94% and 97% of MFMDC

in Guangxi ZAR, and dense mangrove forest regions of Guangdong
and Hainan Province, respectively (Table 3).
4.2.2. Young and newly planted mangrove forests
China’s government has made great efforts to restore mangrove

forests since the 1990s: about 1531 ha of mangrove forests have
been successfully restored up to 2002, and the restoration area
has continued to increase in the recent decade (Chen et al.,
2009). However, most of these planted mangrove forests have a
sparse canopy because they grow slowly (Fig. 13c &d), and were
not identified as mangrove forests by our algorithm. This was the
main reason for the 15% consistent area between MFMDC and
MFMDC+VIA in Zhejiang Province where natural mangrove forests
are rare (Spalding et al., 2010) and almost all mangrove forests
were planted in recent years. It’s also difficult to identify the young
and newly planted mangrove forests in GE VHSR images without a
wealth of field experience. Therefore, the total area of 20,303 ha



Fig. 12. Illustration of improved map accuracy using the intersection-with-sea criterion: (a) Landsat 8 OLI image acquired on September 14, 2015 shown in false color
composite (R/G/B = Band 6/5/4) with mangrove forests shown in dark green; the OLI image overlapped with (b) yearlong water raster layer, (c) MFMDC raster layer, (d)
yearlong water vector layer after removing small water patches and (e) improved mangrove forest map after removing misclassified pixels that were not connected with sea.
A is a zoom view of misclassified mangrove forests in a region where there was no connection to the sea. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 13. Illustration of typical uncertainties in our algorithm: (a) typical evergreen vegetation located very close to yearlong water bodies and subsequently misclassified as
mangrove forests (In red polygons); (b) isolated mangrove forests (111.00935E, 19.67804N) due to human disturbance in Tonggulin, Wenchang City, Hainan Province; (c)
planted mangrove forests (108.49370E, 21.84820N) from GE VHSR at Tuanhe Island, Qinzhou City, Guangxi ZAR; and (d) field photo taken at Tuanhe Island. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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mangrove forests may slightly underestimate the total area with
mangrove trees in China.

4.2.3. Isolated mangrove forests
Isolated mangrove forests (Fig. 13b) and those that have narrow

connections to seawater, may not fit the intersection-with-sea cri-
terion. Although such mangrove forest areas are likely to be very
small in southern China, the applicability of this algorithm to other
regions in the world needs to be explored.

4.2.4. Other land cover types
Some buildings and moving objects such as boats and ships

would affect the signals of both optical and SAR data, which create
some errors during water body identification and therefore affect
mangrove forest mapping. For example, we detected a strong cross
scatter in Sentinel-1A data in Macao (Fig. S13c). This cross scatter
was caused by a building with a conical roof and separated the
yearlong water bodies mapped by Sentinel-1A VH band into small
pieces. About 8 ha of patchy mangrove forests was excluded by the
intersection-with-sea criterion and therefore lead to very low con-
sistency between MFMDC and MFMDC+VIA (Table 3).

4.2.5. Directional reflectance effects
A number of studies have suggested the need for minimizing

near-nadir Landsat bidirectional reflectance (BRDF) effects to pro-
vide more consistent reflectance data over space and time (Flood,
2013; Nagol et al., 2015; Roy et al., 2016). The ±7.5� variation in
view zenith angle can results in as much as 20% along scan varia-
tion in reflectance at the lower latitude sites, and the impact of
variation in solar zenith angle is significant in tropics due to the
relative proximity of Landsat scans to the principle plane (Nagol
et al., 2015). Accounting or correction of BRDF effects (e.g. incorpo-
rating corrections for effects of sun-target-sensor geometry) would
improve the mapping accuracy of mangrove forests, but not con-
sidered in this study because of ready-to-use data or algorithm
are not available in GEE right now.

4.2.6. The value of visual interpretation and area adjustment
Accurately mapping mangrove forests at a regional scale is a

challenging task, especially in those regions that have varying den-
sities of mangrove forests along lengthy coastlines. As mangrove
forests cover a very small percentage of Earth’s surface, visual
interpretation has been widely used to map mangrove forests or
to improve map accuracy (Long and Skewes, 1996; Giri et al.,
2011; Rodrigues and Souza-Filho, 2011; De Santiago et al., 2013;
Vo et al., 2013; Wu et al., 2013; Carney et al., 2014; Jia et al.,
2014). Our algorithm can reduce the number of misclassified pixels
in those regions that have sparse mangrove forest cover by using
stricter thresholds (e.g. higher frequency thresholds), but man-
grove forests that are frequently or rarely inundated, or have
sparse canopy, could also be eliminated (e.g. a lot of hollow in
mangrove patches) (Fig. 4a&c). A compromising strategy was to
use slightly looser thresholds (e.g. linear fits with l� 2r values)
to identify most mangrove forests, then adjust it with the aid of
GE VHSR images and raster MFMDC that without use of the
intersection-with-sea criterion. In the case with no available VHSR
imagery, false color composite (R/G/B = Band 5/4/3) of Landsat
cloud-free images was another good option for visual interpreta-
tion, because healthy mangrove forests always appear very dark
green (Spalding et al., 2010). The visual adjustment usually
includes: (1) deleting obvious misclassification patches (or poly-
gons) and (2) adding mangrove forest polygons in areas where
the intersection-with-sea criterion was not met. Unlike direct
visual interpretation, the adjustment of vector MFMDC was con-
ducted very quickly by simply deleting/adding polygons, while
polygon boundaries from MFMDC rarely needed modification. In
addition, the algorithm performs well in regions with a relatively
dense distribution of mangrove forests (Table 3).

4.3. Comparison with other available maps of mangrove forests

The differences between MFMDC+VIA and other vector maps and
data can be explained by several factors. First, other remote
sensing-based studies used moderate spatial optical images (e.g.
Landsat TM/ETM+, HJ-1A/B) from a single date or a mosaic to gen-
erate mangrove forest maps of China. Classification with limited
observations may be affected by tidal variability and other factors.
Second, the quality of data sources and classification methods have
significant impacts on the results. For example, mangrove forest
area map results in Guangdong Province varied largely from mul-
tispectral imagery of CBERS-02B and HJ-1 A/B, and the visual inter-
pretation method (Wu et al., 2011, 2013). The WAM10 map,
derived from a combination of visual interpretation and unsuper-
vised classification, shows large classification errors in Fujian and
Zhejiang Province where natural mangrove forests in China is lim-
ited to about 27�N (Spalding et al., 2010). Thirdly, some maps like
WAM10 and WFM were generated more than ten years ago, and
deforestation may create inconsistency between these maps
(Fig. 11d). The differences between MFMDC+VIA and WAM10 were
mainly caused by (1) classification error, (2) change in land cover
type, and (3) geometric offset of some mangrove forests in
WAM10 (Fig. 11).
5. Conclusion

The mangrove forest ecosystem and the organisms they support
are of significant ecological and socio-economic value. Effective
classification algorithms are highly desirable for monitoring man-
grove forests across local, regional, and global scales. The increas-
ing amount of publicly available time series optical and SAR data,
and cloud platforms such as GEE, have provided an opportunity
to map mangrove forests using time series data approaches. By
observing spatial-temporal changes in mangrove forest ecosys-
tems, we have established a new algorithm using the frequency
of greenness, canopy coverage, and tidal inundation from time ser-
ies Landsat ETM+/OLI data, Sentinel-1A, and DEM data. Application
of this algorithm in China yields a reliable mangrove forest map of
China in 2015 with high accuracy when validated with ground-
reference data (UA/PA/OA > 95%). The resultant map is also spa-
tially consistent with mangrove forest maps that are public and
visually adjusted. The total area of China’s mangrove forests in
2015 was 20,303 ha, about 92% of which were distributed in
Guangxi ZAR, Guangdong Province, and Hainan Province. This
study has demonstrated the potential of this algorithm for man-
grove forest mapping in China. It is feasible to implement the algo-
rithm at continental and global scales on the GEE platform, after
the thresholds and the intersection-with-sea criterion are carefully
investigated.
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