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A B S T R A C T   

Gross primary productivity (GPP) of vegetation is affected by air temperature. Biogeochemical models use the 
optimum air temperature (Topt) parameter, which comes from biome-specific look-up tables (Topt− b− LT). Many 
studies have shown that plants have the capacity to adapt to changes in environmental conditions over time, 
which suggests that the static Topt− b− LT parameters in the biogeochemical models may poorly represent actual 
Topt and induce uncertainty in GPP estimates. Here, we estimated biome-specific, site-year-specific, and site- 
specific optimum air temperature using GPP data from eddy covariance (EC) flux tower sites (GPPEC) 
(Topt− b− EC, Topt− sy− EC, Topt− s− EC), the Enhanced Vegetation Index (EVI) from MODIS images (Topt− b− EVI, 
Topt− sy− EVI, Topt− s− EVI), and mean daytime air temperature (TDT). We evaluated the consistency among the four 
Topt parameters (Topt− b, Topt− sy, Topt− s and Topt− b− LT), and assessed how they affect satellite-based GPP estimates. 
We find that Topt parameters from MODIS EVI agree well with those from GPPEC, which indicates that EVI can be 
used as a variable to estimate Topt at individual pixels over large spatial domains. Topt− b, Topt− sy, and Topt− s 

differed significantly from Topt− b− LT. GPP estimates using Topt− b and Topt− sy were more consistent with GPPEC 
than when using Topt− b− LT for all the land cover types. Our use of Topt− sy substantially improved 8-day and annual 
GPP estimates across biomess (from 1% to 34%), especially for cropland, grassland, and open shrubland. Our 
simple calculation shows that global GPP estimates differ by up to 10 Pg C/yr when using our suggested 
Topt− sy− EVI instead of using the static Topt− b− LT. Our new approach on estimating Topt has the potential to improve 
estimates of GPP from satellite-based models, which could lead to better understanding of carbon-climate 
interactions.   

1. Introduction 

Gross primary production (GPP) of terrestrial vegetation is a critical 
part of the global carbon cycle and plays a vital role in regulating climate 
change by sequestering atmospheric CO2 (Battin et al., 2009; Sitch et al., 
2008). The annual GPP of terrestrial vegetation has been estimated to be 
about 120 Pg C/yr (Haberl et al., 2007; Tutmez, 2006), which is 
considerably greater than fossil fuel carbon emission (~10 PgC/yr). 
Thus, small changes in GPP could dramatically affect atmospheric CO2 
concentrations. Accurate GPP estimates are needed for better under
standing the global carbon cycle, assessing the response of terrestrial 
ecosystem to global warming, and forecasting how future changes in 
climate affect GPP (Anav et al., 2015; Ryu et al., 2019). 

Remote sensing provides data essential for understanding terrestrial 
ecosystems, such as canopy structure, plant photosynthetic capacity, 

and carbon fluxes (Badgley et al., 2017; Chang et al., 2019; Zhang et al., 
2016). There are two major types of data-driven GPP models that use 
satellite images: (1) GPP models that use statistical algorithms or ma
chine learning and (2) GPP models that use light absorption and light 
use efficiency (LUE) or radiation use efficiency (RUE) (Monteith, 1972; 
Potter et al., 2003; Running and Zhao, 2015; Xiao et al., 2004). A 
comparison of data-driven GPP models showed substantial uncertainties 
both spatially and temporally (Anav et al., 2015). The trends and 
interannual variation of annual GPP differ considerably across models 
(Ryu et al., 2019). A large bias was found between GPP simulated from 
26 terrestrial ecosystem models and GPP estimated with eddy covari
ance (EC) sites in the United States, especially under dry and cold con
ditions (Schaefer et al., 2012). Several GPP data products have been 
used to study the response of terrestrial ecosystems to climate variability 
(Jiao et al., 2019; Wu et al., 2018a; Yang et al., 2019). The differences 
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and uncertainties in satellite-based GPP models have yielded different 
conclusions about how terrestrial ecosystems respond to increased at
mospheric CO2, warmer mean annual temperatures, and extreme 
disturbance events (flooding, drought, heatwave) (Stocker et al., 2019; 
Wu et al., 2018b). Therefore, there is a need to more accurately estimate 
GPP with models at different spatial scales. 

The satellite- and LUE-based GPP models are simple and have been 
widely used to estimate carbon flux at local, regional, and global scales 
(Monteith, 1977; Zhang et al., 2016; Zhao and Running, 2010). These 
GPP models calculate daily GPP as the product of absorbed photosyn
thetically active radiation (APAR) and LUE (GPP = APAR × LUE) 
(Monteith, 1972). LUE values in these models are downscaled from 
maximum LUE (LUE0) using environmental constraints such as tem
perature, water, and leaf demography (Pei et al., 2018; Running and 
Zhao, 2015; Zhang et al., 2017). The relationships between GPP and 
environmental factors affect the accuracy of GPP estimates (Durgun 
et al., 2016; Huang et al., 2019; Zheng et al., 2018). 

The relationships between GPP and air temperature are commonly 
described as bell-shaped (Fitter and Hay, 2012; Lin et al., 2012). Here, 
we define optimum temperature (Topt) as the temperature at which 
photosynthesis peaks for a given period (e.g., a year) and over a given 
area (e.g., a pixel). This is different from the maximum photosynthesis 
that could be achieved in optimal conditions when photosynthesis in 
unconstrained by environmental conditions. Many GPP models assume a 
single photosynthesis-air temperature response curve for each biome, 
and use a biome-specific look-up table, in which maximum, optimum, 
and minimum air temperature parameters are defined for each biome 
(Melillo et al., 1993; Running and Zhao, 2015; Turner et al., 2006a; 
Zhang et al., 2017). A biome (e.g., forest, grassland) is often distributed 
across large geographical areas and across a gradient of environmental 
conditions, and plant species in a biome are likely to have adapted to 
local environmental conditions (Niu et al., 2012; Smith et al., 2016). 
Furthermore, the parameters set for a given biome, especially for those 
biomes with large geographic distribution, might not have been 
collected from a representative sample of observations (McGuire et al., 
1992; Raich et al., 1991). For example, eddy flux tower sites are mainly 
located in the temperate zone in the United States and Europe. Thus, 
biome-specific air temperature parameter values in the look-up table 
cannot capture local photosynthesis-air temperature relationships 
(Heinsch et al., 2006; Turner et al., 2006b; Yan et al., 2015). 

The temperature scalar (Ts) in LUE-based GPP models is particularly 
sensitive to the choice of optimum air temperature (Zhang et al., 2017). 
Topt values in most of the GPP models were biome-specific, including 
MOD17 GPP (Running and Zhao, 2015), VPM (Xiao et al., 2004), TEC 
(Yan et al., 2015), C-Fix (Veroustraete et al., 2002), EC-LUE (Yuan et al., 
2007), CFLUX (King et al., 2011), and GLO-PEM (Prince and Goward, 
1995). A recent study suggested that the biome-specific Topt values used 
in the models were much higher than under natural conditions (Huang 
et al., 2019). Here, we used biome-specific (Topt-b), site-specific (Topt-s), 
and site-year-specific (Topt-sy) optimum temperature to estimate GPP for 
comparison to GPPEC. The site-year-specific optimum temperature pa
rameters (Topt-sy) vary among sites across years and are different than 
the biome-specific temperature parameters (Topt-b). 

The global network of eddy covariance flux tower sites provides GPP 
(GPPEC) and air temperature (TEC) data, and are often used to quantify 
the photosynthesis-related temperature parameters at the ecosystem or 
landscape scales (Baldocchi, 2003). Here, we used the EC data to 
compare Topt-sy, Topt_s and Topt-b at the site scale. However, it is impor
tant to note that there is a limited number of EC towers in the world 
(Anav et al., 2015) . Therefore, there is a need to explore satellite data 
for a proxy that could be used to approximate the 
photosynthesis-temperature relationship, specifically, Topt-s or Topt-sy. 

Vegetation indices (VIs) are used as satellite proxies for photosyn
thesis in many studies (Gamon et al., 2013; Yan et al., 2019). The 
commonly used VIs includes the Enhanced Vegetation Index (EVI) and 
the Normalized Difference Vegetation Index (NDVI). Compared to NDVI, 

EVI is less affected by atmospheric conditions and soil background, and 
is a better proxy of canopy chlorophyll content and canopy greenness 
than NDVI because NDVI tends to saturate when leaf area index is high 
(Chang et al., 2019; Huete et al., 2002). EVI is significantly correlated 
with FPAR, APAR, and GPP (Ma et al., 2014; Zhang et al., 2017). To 
date, there are few studies that investigate the use of EVI to estimate 
Topt-s and Topt-sy (Chang et al., 2020; Huang et al., 2019). 

Several studies sought to improve GPP estimates by adjusting Topt-b, 
and found that uncertainties in GPP estimates could be reduced by 
adjusting the optimized parameters in GPP models using eddy covari
ance CO2 flux observations (Xiao et al., 2014; Xiao et al., 2011). Several 
studies suggested that the use of biome-specific temperature parameters 
(Topt-b), rather than site-year-specific temperature parameters (Topt-sy), 
introduced some uncertainties in GPP estimates (Heinsch et al., 2006; 
Turner et al., 2006b; Yan et al., 2015). A comprehensive study to assess 
the effect of Topt-b, Topt-s, and Topt-sy in GPP models could help improve 
the estimates of GPP. To date, no study has used EC tower sites to assess 
the effect of Topt-b, Topt-s, and Topt-sy on GPP estimates in the GPP models. 

To address the need to improve the optimum air temperature 
parameter estimates, our objectives were to: 1) estimate Topt-sy, Topt-s 
and Topt-b by using GPPEC and air temperature data from EC flux tower 
sites (Topt− b− EC, Topt-s-EC, Topt− sy− EC) and quantify their differences to 
Topt-b from the Biome Property Look-up Table (Topt− b− LT); 2) estimate 
Topt-sy, Topt-s, and Topt-b by using EVI and air temperature data 
(Topt− sy− EVI, Topt-s-EVI, Topt-b-EVI); 3) compare the differences between 
EVI-based Topt-sy (Topt− sy− EVI) and GPPEC-based Topt-sy (Topt− sy− EC); and 
4) incorporate Topt− sy− EVI and Topt− b into the Vegetation Photosynthesis 
Model (VPM) (Xiao et al., 2004) to assess the differences in GPPVPM 
estimates with Topt− sy− EVI and with Topt− b. We used data from 165 eddy 
covariance flux sites in the FLUXNET network. We used daily daytime 
mean air temperature (TDT) from the EC flux tower sites to delineate the 
start date of the growing season (SOS) and the end date of the growing 
season (EOS) for the site. The data within the growing season (SOS, EOS) 
were used to analyse the GPP-temperature and EVI-temperature 
relationships. 

2. Materials and Methods 

2.1. Study sites 

We selected 165 eddy flux tower sites in the FLUXNET network using 
the following criteria: 1) each site had at least one year of observation 
(Table S1); 2) the flux site was dominated by one biome type within a 
radius of ~1 km around the site; 3) the dominant biome covered more 
than ~2/3 area of the 500 m MODIS pixel in which flux site was located. 
We overlaid the boundary of the MODIS pixel with high-resolution 
satellite imagery to visually interpret the land cover within the MODIS 
pixel and around the EC sites using the tool available on our website: htt 
p://www.eomf.ou.edu/modis/visualization/gmap/. Here we show the 
screenshots from the website for two eddy flux tower sites, one showing 
a site that is appropriate for comparison to a MODIS gridcell (Fig. S1), 
and the other showing a site that is not appropriate for such a com
parison (Fig. S2). These eddy flux tower sites include 11 biomes and a 
number of sites: 18 croplands (CRO), 2 closed shrublands (CSH), 21 
deciduous broadleaf Forest (DBF), 14 evergreen broadleaf forest (EBF), 
42 evergreen needleleaf forest (ENF), 25 grasslands (GRA), 9 mixed 
forest (MF), 8 open shrublands (OSH), 7 savannas (SAV), 13 wetlands 
(WET), and 6 woody savannas (WSA). Note that we assumed the GPPEC 
well represented GPP in the MODIS pixel where the flux tower was 
located and was not affected largely by information from outside of the 
1-km buffer. In fact, the eddy flux tower footprints are variable across 
sites, and are affected by factors such as wind speed, wind direction, 
tower height, and canopy type. Thus, tower footprints are very 
complicated and challenging to accurately estimate (Running et al., 
1999; Waring et al., 1995). The 500-m square grid cell do not exactly 
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overlay an EC tower footprint. 

2.2. Climate and GPP data from the eddy flux tower sites 

Meteorological data include incoming solar shortwave radiation 
(SW_IN_F) and daytime air temperature TDT, which were input data in 
the VPM model. We used daily meteorological and GPP data in the 
FLUXNET-2015 dataset (http://fluxnet.fluxdata.org/data/fluxnet2015 
-dataset/). We used GPP_DT_VUT_REF, which was GPP estimated from 
observed net ecosystem exchange (NEE) data with the variable USTAR 
filtering approach and daytime partitioning method (Papale et al., 2006; 
Reichstein et al., 2005). We averaged the daily meteorological and 
GPPEC data to 8-day temporal resolution such that it was consistent with 
the 8-day MODIS data. 

2.3. MODIS land surface reflectance and vegetation indices for the eddy 
flux tower sites 

We used MODIS spectral reflectance products MOD09A1 V006 with 
500-m spatial resolution and 8-day temporal resolution. We calculated 
EVI, land surface water index (LSWI) Chandrasekar et al., 2010; Zhang 
et al., 2017), and Normalized Difference Snow Index (NDSI) with 
MOD09A1 V006 spectral bands using equations (1), ((2), and (3). 
MODIS bands are: red band (RED) (620–670 nm), near infrared band 
(NIR) (841–876 nm), blue band (BLUE) (459–479 nm), green band 
(GREEN) (545–565 nm), and short wavelength near infrared band 
(SWIR) (1628–1652 nm). 

EVI = 2.5 ×
NIR − RED

(NIR + 6 × RED − 7.5 × BLUE + 1)
(1)  

LSWI =
NIR − SWIR
NIR + SWIR

(2)  

NDSI =
GREEN − SWIR
GREEN + SWIR

(3) 

Vegetation indices can be affected by clouds, cloud shadows, and soil 
background, so pre-processing of the time-series datasets are needed. We 
used data quality control (QC) layer for the identification of ice, snow, 
and cloud, and then gap-filled the affected observations with multi-year 
mean observation values Chang et al., 2019). We also used the Best 
Index Slope Extraction (BISE) method to identify abnormal observations 
missed by QC (Xiao et al., 2009). We used the Savitzky-Golay (S-G) 
method and smoothed the time-series data curves (Chang et al., 2019). 
We used EVI to estimate the fraction of photosynthetically active radi
ation absorbed by chlorophyll (FPARchl), and used LSWI to estimate the 
water scalar for the VPM model (Zhang et al., 2017), see equation (7) 
and ((9) respectively. We also used EVI to calculate Topt− sy− EVI and 
Topt-s-EVI. 

2.4. MODIS land cover classification product 

We used the MODIS MCD12Q1 v006 land cover data product. The 
studied 11 plant biomes, which have been decided from flux tower sites 
above, were classified using the Annual International Geosphere- 
Biosphere Programme (IGBP) classification system. We used land 
cover data for 2010 and calculated the area of each biome. Based on the 
area and GPP estimates, we then calculated annual total GPP for each 
biome. 

2.5. Methods to estimate growing season from air temperature data at the 
sites 

Snow affects MODIS EVI values at high-latitude, and EVI values at 
snow-covered sites were relatively high during winter. Here, we selected 
CA-SF1 (ENF) as an example, which is located in Canada. The site has a 

mean annual temperature 0.4◦C. MODIS NDSI values are higher than 0.4 
during winter, which indicates the presence of snow cover during this 
period (Fig. 1) (Chang et al., 2019). Due to snow, winter EVI values were 
higher than the highest summer EVI value at CA-SF1 (Fig. 1b). As 
temperature increases and snow melts, high winter EVI values decrease 
to its annual minimum, and then increase during spring or early summer 
because of leaf growth. NDSI decreases when TDT reaches about 5◦C. To 
reduce the effects from snow, global Topt-sy estimates from EVI should be 
based on data from the growing season, which is also snow-free period. 

We used TDT and the degree-day accumulated temperature model to 
determine the start of the snow-free growing season (SOS) and the end of 
the snow-free growing season (EOS), and to assess the snow-free period 
for each year. The degree-day model assumes that the minimum tem
perature for plant growth is 5◦C (Chang et al., 2019; Prentice et al., 
1992). The SOS date was defined as the date when TDT was above 5◦C 
and would last for at least three 8-day observations (Chang et al., 2019), 
and the EOS date was defined as the date when TDT was lower than 5◦C 
at the next observation (Fig. 1). We estimated SOS and EOS for each 
site-year at the 165 flux sites, and the multi-year mean SOS and EOS for 
individual sites were shown in Fig. S3. 

2.6. Methods to estimate site-year-specific and site-specific optimum air 
temperature of photosynthesis from GPPEC and EVI data 

We estimated Topt− sy values for each site-year from both GPPEC and 
MODIS EVI. Topt− sy values were defined as the average air temperature 
of the observations with GPPEC (or EVI) equal or higher than 95% of the 
maximum GPPEC (or EVI) during the growing season. Site-specific op
timum air temperature (Topt− s) was calculated as multi-year mean 
Topt− sy for each site. We estimated Topt− sy and Topt− s using both 8-day 
TDT and 8-day daily mean air temperature (TDA). As TDA includes both 
daytime and night-time temperature, there are notable differences be
tween TDT and TDA (Fig. S4). The Topt-s calculated from TDT and TDA have 
2◦C difference (Fig. S5). As we intended to analyze the photosynthesis- 
temperature relationship, we used TDT which is more appropriate than 
TDA for Topt calculation and GPP simulation. 

2.7. Methods to assess the effect of biome-specific and site-year-specific 
optimum air temperature on GPP estimates 

VPM is a satellite-based LUE model that estimates 8-day GPP using 
absorbed photosynthetically active radiation by chlorophyll (APARchl) 
and light use efficiency (ε) Xiao et al., 2004). The VPM equations are 
listed as equation (4) to ((9). In these equations, ε is light use efficiency, 
APARchl is the absorbed photosynthetically active radiation by chloro
phyll, PAR is the amount of photosynthetic active radiation at the top of 
the canopy, FPARchl is the fraction of PAR absorbed by chlorophyll, 
which is calculated from EVI using linear regression. FPARchl calculated 
from EVI was suggested to be more appropriate to represent 
pigment-level energy process, which is directly correlated to GPP, than 
the canopy-level FPAR products (Zhang et al., 2013; Zhang et al., 2009). 
Previous publications suggested that using FPARchl from EVI can better 
capture the seasonal variation of vegetation photosynthetic capacity and 
greatly improve the models that estimate GPP than using MODIS 
canopy-level FPAR product (MOD15A2H) (Zhang et al., 2014; Zhang 
et al., 2017). ε is downscaled from the maximum light used efficiency 
(ε0) with temperature (Ts) and water scalars (Ws). Ts is calculated as a 
function of minimum temperature (Tmin), maximum temperature (Tmax), 
and optimum temperature for plant growth (Topt). Ws is calculated as a 
function of LSWI and the maximum LSWI in a 5-years moving window 
during the growing season. 

GPPVPM = ε × APARchl (4)  

APARchl = FPARchl × PAR (5) 
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Fig. 1. Temporal dynamics of daily mean air temperature (TDA), daily daytime mean air temperature (TDT), MODIS NDSI, MODIS EVI, and GPPEC during 2004-2005 
at the CA-SF1 flux site. This site is evergreen needleleaf forest (ENF). EVI values during winter at this site are affected by snow cover. Vertical green dashed lines 
represent the start of the snow-free growing season (SOS) and vertical brown dashed lines are the end of snow-free growing season (EOS). 

Fig. 2. The relationships between GPP estimates (GPPEC) from the flux tower data and EVI and daily daytime mean air temperature (TDT) within individual biomes. 
Solid black and red lines are fitting curves for GPPEC and EVI using a cyclic penalized cubic regression spline. Annotated text numbers in each panel represent the 
daily daytime mean air temperature when GPPEC (black) or EVI (red) peak in a year. As there are large amount of observation points, we showed boxplots for points 
in 2 degree C bins in panels. 
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ε = ε0 × Ts × Ws (6)  

FPARchl = 1.25 × (EVI − 0.1) (7)  

Ts =
(TDT − Tmin)(TDT − Tmax)

(TDT − Tmin)(TDT − Tmax) −
(
TDT − Topt

)2 (8)  

Ws =
(1 + LSWI)

(1 + LSWImax)
(9) 

We incorporated Topt-b and Topt-sy into the Vegetation Photosynthesis 
Model (VPM) and compared GPPVPM calculated from both parameters 
with GPPEC to determine which temperature parameter performed best. 
Topt− b− LT followed the setting in global VPM GPP product (Zhang et al., 
2017), see the marked orange stars in Fig. 4. 

3. Results 

3.1. Estimates of biome-specific optimum air temperature from GPPEC and 
EVI 

The response curves of both GPPEC and EVI to TDT were similar and 
show typical bell-shaped photosynthesis-temperature relationships 
(Fig. 2). TDT at peak EVI was close to TDT at peak GPPEC across the biome 
types. In addition, our regression analysis showed that the Topt− b− EC 
values differed to the Topt− b− LT used in the global VPM product (Topt− b− LT 

values are marked as orange stars in Fig. 4). Specifically, Topt− b− LT were 
higher than Topt− b estimated from EVI (Topt− b− EVI) and Topt− b from GPPEC 
(Topt− b− EC) in CRO, EBF, GRA, OSH, and SAV biomes. Differences be
tween Topt− b− LT and Topt− b− EC in OSH and GRA were 14.03∘C and 9.31∘C 
respectively, which were much higher than the differences in other bi
omes (Table. S2). Topt− b− LT values were lower than Topt− b− EC in CSH, 
DBF, MF, WET, and WSA biomes by 1.00 ∘C to 5.55 ∘C. 

3.2. Estimates of site-year-specific and site-specific optimum air 
temperature from GPPEC and EVI 

The linear regression analysis indicated that Topt− sy− EVI was signifi
cantly correlated with Topt− sy− EC (P < 0.001) (Fig. 3). The difference 
between Topt− sy− EVI and Topt− sy− GPPEC ranged from 2 ∘C in WSA to 4.85∘C 
in CSH. Topt− sy showed large variations across sites and years within 
individual biomes. The dynamic ranges from minimum to maximum 
Topt− sy among site-years within a biome differed across biomes (Fig. 4). 
Specifically, the dynamic range of Topt− sy− EC was lowest in SAV with 
8.13∘C and highest in ENF with 23.52 ∘C. On average, the dynamic 
ranges of Topt− sy− EC and Topt− sy− EVI for the selected 11 biomes were 
17.25 ∘C and 18.85 ∘C, respectively. Both Topt− sy− EC and Topt− sy− EVI had a 
higher dynamic range within ENF and GRA (> 20∘C) than other biomes, 
and the lowest dynamic range in SAV (Fig. 4, Fig. S6). 

The site-year specific optimum air temperature (Topt− sy) was 
different than the Topt− b− LT values (Fig. 4). Topt− b− LT for CRO was 30 ∘C 
while Topt− sy− EC ranged from 13.59 ∘C to 32.70 ∘C and was 21.74 ∘C on 
average. Most of the mean Topt− sy− EC and Topt− sy− EVI values were sub
stantially lower than Topt− b− LT across biomes, especially in CRO, EBF, 
GRA, and OSH. Compared with mean Topt− sy− EC, the Topt− b− LT of CRO, 
EBF, GRA, and OSH in the global VPM were higher by ~8 ∘C, 6 ∘C, 7 ∘C, 
and 11 ∘C, respectively. 

The site-specific optimum temperature (Topt− s) values from MODIS 
EVI (Topt− s− EVI) were also significantly correlated to Topt− s from GPPEC 
(Topt− s− EC) (P < 0.001) with a RMSE of 1.99 ∘C (Fig. 5 a). Topt− s values 
ranged from ~10 ∘C to ~30 ∘C across the 165 flux tower sites (Fig. S7). 
Both Topt− s− EC and Topt− s− EVI were highly variable among sites within a 
biome (Fig. 5 b,c). The highest dynamic range of Topt− s was in GRA. The 
difference between the higher and lower quartiles in GRA was as high as 
~10∘C. Topt− s− EC and Topt− s− EVI also varied significantly across CRO, 
EBF, CSH, and WSA sites. In addition, there was a strong linear rela
tionship between Topt− s and annual TDT (P < 0.001, R2 = 0.61) (Fig. 5 a). 
Also, there were strong longitudinal gradients of Topt− s for the flux sites 
(Fig. 6). Specifically, we found no clear latitudinal change in Topt− s in the 

Fig. 3. Relationships between site-year-specific optimum air temperature (Topt− sy) estimated from EVI (Topt− sy− EVI) and Topt− sy from GPPEC (Topt− sy− EC) across the 
biomes. “n” represents the number of site-years for each biome. 
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tropical region (an average ~27 ∘C), while Topt− s sharply decreased from 
low to high latitudes. 

3.3. The effects of biome-specific and site-year-specific optimum air 
temperature on GPP estimates 

GPPVPM simulated with Topt− sy− EVI (GPPVPM− sy− EVI) were signifi
cantly correlated with 8-day GPPEC across all the studied biomes (p <
0.001) (Fig. 7). Compared with GPPVPM simulated with Topt− b− LT 

(GPPVPM− b− LT), GPPVPM− sy− EVI had a lower RMSE value for most biomes 
than GPPVPM− b− LT when compared to GPPEC. The 8-day GPPVPM− b− LT 
values were much lower than GPPEC observations during summer season 
when GPP is high, especially for CRO, ENF, EBF, GRA, SAV, and WSA. 
GPPVPM− sy− EVI were higher than GPPVPM− b− LT, especially for CRO and 
GRA. For all the biomes, the linear regression slopes of GPPVPM− sy− EVI 

versus GPPEC were much closer to one than GPPVPM− b− LT versus GPPEC. 
Annual GPPVPM− sy− EVI was also significantly correlated with GPPEC 

across the biomes (Fig. 8). The linear regression analysis between 
GPPVPM− sy− EVI and GPPEC showed higher R2 values and lower RMSE 
values than that between GPPvpm− b− LT and GPPEC. Multi-year average 

annual GPP estimated by GPPVPM− b− LT underestimated GPP for all the 
biomes by varying amounts (Table 1). Annual GPPVPM− sy− EVI estimates 
were higher than GPPVPM− b− LT for all biomes except CSH and were closer 
to GPPEC. For instance, annual GPPVPM− sy− EVI was higher than 
GPPVPM− b− LT by more than 100 g C m− 2 yr− 1 in CRO (186 g C m− 2 yr− 1), 
EBF (145 g C m− 2 yr− 1), and GRA (184 g C m− 2 yr− 1). Annual 
GPPVPM− sy− EVI was higher than GPPVPM− b− LT with varying ratios across 
biomes, which ranged from 1% to 34%. Specifically, Annual 
GPPVPM− sy− EVI was higher than GPPVPM− b− LT by 34% for OSH, 18% for 
CRO, and 19% for GRA. Annual GPPVPM− b− LT in OSH was 224 g C m− 2 

yr− 1 while annual GPPVPM− sy− EVI was 301 g C m− 2 yr− 1, which was much 
higher. In a simple calculation for illustrative purposes, at the global 
scale GPPVPM− b− LT was ~10 Pg C/yr lower than GPPVPM− sy− EVI (Table 1). 
These results clearly show that replacing the static and biome-specific 
Topt− b− LT values with site- and site-year specific values, such as 
Topt− sy− EVI, can have a large impact on GPP estimates at global scale. 

We also compared the GPP estimates using Topt− b− LT and Topt− b− EC. 
We selected 5 biomes in which differences between Topt− b− LT and 
Topt− b− EC were larger than 3 ∘C: CRO (3.2 ∘C), CSH (4.8∘C), GRA (9.31 
∘C), OSH (14.03 ∘C), and WSA (5.55 ∘C) (Fig. 2, Table S2). Then we 

Fig. 4. Site-year-specific optimum air temperature (Topt− sy) values estimated from GPPEC (Topt− sy− EC, red bars) and EVI (Topt− sy− EVI, blue bars) for different biomes. 
For a given biome, the bar bottom represents the minimum value for all the sites, bar top is maximum value, black dot is mean value, black triangle is median value, 
orange star is optimum air temperature suggested in look up table (Topt− b− LT). 

Fig. 5. Relationships and distribution of site-specific optimum air temperature (Topt− s) estimated from GPPEC (Topt− s− EC) and EVI (Topt− s− EVI). (a) Linear regression of 
Topt− s− EVI and Topt− s− EC for the 165 flux tower sites. (b) Boxplot of Topt− s− EC for different biomes. (c) Boxplot of Topt− s− EVI for different biomes. Topt− s was defined as 
the multi-year mean value of Topt− sy for each site. 
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simulated GPPVPM for the 5 biomes using the two forms of Topt− b. We 
found that GPPVPM estimates were significantly improved relative to 
GPPEC when using Topt− b− EC rather than Topt− b− LT across the 5 biomes at 
both the 8-day and annual time scale (Fig. 9). 

4. Discussion 

4.1. The limitation of biome-specific optimum air temperature 

The Topt− b values based on GPPEC and TDT in our study differed 
greatly relative to the Topt− b− LT used in previous global GPP models 

Fig. 6. Relationship of site-specific temperature from flux tower GPPEC (Topt− s− GPPEC ) to (a) annual mean daytime air temperature and (b) latitude.  

Fig. 7. A comparison of daily GPP estimates (g C/m2/day) from VPM simulation with Topt− sy− EVI (GPPVPM− sy− EVI), VPM simulation with Topt− b− LT (GPPVPM− b− LT), and 
eddy covariance flux tower GPP (GPPEC) in 8-day interval. 
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across biomes (Fig. 2, Table S2). Biome-specific maximum, minimum, 
and optimum temperature parameters in most of the global GPP models, 
such as VPM, TEM (Melillo et al., 1993; Raich et al., 1991), TEC (Yan 
et al., 2015), and EC-LUE (Yuan et al., 2007), use the look-up table 
generated by the TEM model (Melillo et al., 1993). As presented, the 
biome-specific parameters in this look-up table were taken from two 
papers: McGuire et al. (1992) and Raich et al. (1991). However, in both 
publications a limited number of sites and a few biomes were used to 

determine the parameters. Specifically, Raich et al. (1991) defined 
biome-specific parameters from only 12 sites with 7 biomes in South 
America. McGuire et al. (1992) defined biome-specific parameters based 
on 16 sites with 16 biomes. Note that 10 of the 16 sites were in the 
United States while the others were in Canada, New Zealand, South 
Africa, Puerto Rico, India, and Brazil. The limited number of sites and 
biomes used to determine biome-specific parameters introduces large 
uncertainties. In addition, biome-specific temperature parameters in 

Fig. 8. A comparison of annual GPPVPM (kg C/m2/yr) simulated with Topt− sy− EVI (GPPVPM− sy− EVI) and annual GPPVPM with Topt− b− LT (GPPVPM− b− LT) against annual 
GPP from eddy covariance flux sites (GPPEC) across biome types (biomes). 

Table 1 
Annual GPP (g C m− 2 yr− 1) comparison among GPPEC, GPPVPM− b− LT, and GPPVPM− sy− EVI at the biome and global scales. Note that these numbers are a simple calculation 
with 11 of all the biome types and used only for illustrating the likely differences, and they are much lower than the numbers from VPM global simulations at individual 
pixels (Zhang et al., 2017).  

Biome Type Annual Mean (g C/m2/yr) Difference  Biome area (107 km2) Annual Total (Pg C/yr) 

GPPEC GPPVPM− b− LT  GPP VPM−

sy − EVI  
GPP (g /m2/yr) Ratio  GPPVPM− b− LT  GPP VPM−

sy − EVI  
CRO 1308.08 1048.86 1234.83 185.96 17.73% 1.01 10.60 12.48 
CSH 1358.83 1282.76 1234.59 -48.17 -3.76% 0.03 0.42 0.41 
DBF 1567.88 1543.76 1572.00 28.23 1.83% 0.23 3.53 3.59 
EBF 2412.94 1662.70 1807.88 145.18 8.73% 0.82 13.56 14.74 
ENF 1372.88 846.79 883.74 36.95 4.36% 0.27 2.28 2.38 
GRA 1191.89 988.57 1172.73 184.15 18.63% 2.71 26.79 31.78 
MF 1414.49 1205.11 1216.54 11.42 0.95% 0.49 5.95 6.01 
OSH 307.43 224.36 301.19 76.83 34.25% 1.41 3.16 4.24 
SAV 1078.44 1053.15 1066.70 13.55 1.29% 1.43 15.11 15.30 
WET 1093.06 1091.54 1124.37 32.84 3.01% 0.10 1.08 1.11 
WSA 1103.08 1033.81 1063.38 29.57 2.86% 1.08 11.20 11.52 
Annual Total GPP for Selected Biomes 93.68 103.57 

Difference of annual GPP is calculated as (GPPVPM− sy− EVI - GPPVPM− b− LT). Improvement of ratio is calculated as (GPPVPM− sy− EVI - GPPVPM− b− LT) / GPPVPM− b− LT. Annual 
total GPP is calculated as (annual mean GPP × biome area). 
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Raich et al. (1991) and McGuire et al. (1992) were defined using in
formation from Larcher (1980), which was mostly based on field and 
laboratory studies at the leaf or plant scales rather than the canopy. 
Therefore, uncertainty is introduced when parameters from the look-up 
table are used to estimate GPP. 

The results from our analysis of GPPEC, EVI, and TemDT provides 
guidance for future studies on the relationship between photosynthesis 
and air temperature and for determining optimal temperature parame
ters for terrestrial biochemical models. We generated Topt− b− EC param
eters using 165 flux tower sites across 11biomes. The number of flux 
towers sites used for determining Topt− b in our study is much larger than 
in previous studies and is more applicable for global applications. Global 
GPP model estimates derived using Topt− b− LT introduces uncertainty in 
the estimates. From the LUE model, one can conclude that the higher 
values of Topt− b− LT than Topt− b− EC will result in the underestimation of 
GPP in CRO, EBF, GRA, OSH, and SAV. Replacing Topt− b− LT with 
Topt− b− EC in GPP simulations can improve GPP estimates. The biome- 
specific look-up table can be updated using our Topt− b− EC values, 
which is expected to improve GPP estimates. 

4.2. The contribution of site-year-specific optimum air temperature to 
GPP estimates 

The site-year-specific temperature parameters estimated in our study 

comprehensively considered the variations of temperature constraints 
among biomes, environmental conditions, and ecosystems. Topt− sy var
ied considerably across sites and years, and largely differed to Topt− b− LT 

and Topt− b− EC (Fig. 4). The large difference between Topt− sy and Topt− b− LT 

indicated that biome-specific parameters should be adjusted in terres
trial biochemical models. Previous studies have suggested that static 
parameters in the biome-specific look-up table introduce uncertainty in 
GPP estimates but did not address how the biome-specific parameters, 
especially temperature, affect the accuracy of modelled-GPP products 
(Sjöström et al., 2013; Zhao and Running, 2010). We not only compared 
the differences between Topt− sy, Topt− b− LT, and Topt− b− EC, but also 
examined the differences of how they perform in estimating GPP across 
biomes. 

Results of our study point to the potential development of a LUE- 
based GPP model based on Topt− sy. We demonstrated that GPP esti
mates in GRA, CRO, and OSH benefit most from Topt− sy. Because of their 
wide distribution across various geographical and ecological regions 
(Friedl et al., 2002), photosynthesis or growth of GRA, CRO, and OSH 
are particularly sensitive to temperature dynamics (Wang et al., 2018; 
Wu et al., 2018a). The Topt− b− LT parameters used in the global GPPVPM 
estimates are much higher than most of the Topt− sy in these biomes. 
Using Topt− b− LT in the global GPPVPM product underestimated GPP for 
the selected 11 biomes by about 10 Pg C/yr (Table 1), which indicated 
that total global GPP could be ~130-140 Pg C/yr instead of ~120-130 

Fig. 9. Comparisons of GPPVPM simulated with Topt− b− LT (GPPVPM− b− LT) and GPPVPM simulated with Topt− b− EC (GPPVPM− b− EC) against eddy covariance flux tower GPP 
(GPPEC) for CRO, CSH, GRA, OSH and WSA in 8-day intervals (top row) and annually (bottom row). 
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Pg C/yr. Multi-year mean values of Topt− sy calculated in our study were 
also much lower than Topt− b− LT used in other GPP models for most bi
omes, such as in TEC (Yan et al., 2015) and EC-LUE (Yuan et al., 2007), 
which could also have led to underestimations of GPP by these models. 
In summary, using Topt− sy is an efficient approach for improving future’s 
regional and global GPP estimates. 

The improved GPP product will can be used for the study of terres
trial carbon cycle. Based on global GPP product estimated by machine- 
learning technique using FLUXNET measurements, a study found that 
croplands have higher photosynthetic capacity than other vegetation 
types, and that croplands expansion moderately dominated the increase 
of peak global GPP and changes in annual GPP (Huang et al., 2018). 
Improved GPP products may show that agricultural intensification could 
have stronger than anticipated impacts on vegetation productivity. Also, 
the grassland biome is the largest in the world and grassland produc
tivity are highly sensitive to climate variability (Hovenden et al., 2014). 
Grassland productivity has been found to be increasing under warmer 
mean annual temperatures (Fridley et al., 2016; Hufkens et al., 2016). 
Considering the high underestimation of grassland GPP by models with 
biome-specific temperature parameters, grassland could actually have 
performed larger variability if we use GPP estimated using site-specific 
parameters. 

4.3. Other sources of error and uncertainty in satellite-based GPP 
estimates 

Even though we have incorporated Topt− sy instead of Topt− b− LT into 
GPP simulation and improved GPP estimates, GPPVPM-sy-EVI values are 
still lower than GPPEC (Fig. 7, Fig. 8). One uncertainty could come from 
the inaccurate estimation of temperature parameters because of the 
limited number and poor distribution of flux tower sites. For example, 
there were only two CSH site available for our study and it was not 
possible to detect the peak from regression lines (Fig. 2). Underestima
tion is a common problem in many satellite-based GPP estimates, such as 
with the MODIS GPP product (Sjöström et al., 2013; Zhu et al., 2018). 
Many parameters other than Topt-b have been reported as sources of error 
and uncertainty in satellite-based GPP, such as model structure, forcing 
data, and parameter selection (Zheng et al., 2018). 

For warmer and water-limited sites in southern Europe, water 
availability has been reported to be an important factor limiting GPP, 
while air temperature can better explain the variability of GPP at cold 
northern sites (Reichstein et al., 2007). Temperature was not a limiting 
factor or significant driver in some biomes, such as SAV and WSA (Ma 
et al., 2014), so adjusting temperature in our study could not signifi
cantly improve GPP estimate in these biomes. Some studies have pointed 
out that satellite-based GPP do not consider soil moisture, and thus fail 
to accurately estimate the magnitude of canopy GPP under drought or 
water deficit (Kanniah et al., 2009; Stocker et al., 2019). Even though 
VPM uses LSWI as a proxy for land surface water content, the model still 
failed accurately determining the information of soil moisture, which 
has been assumed to contribute more to explaining GPP variability than 
other water proxies like VPD (Ryu et al., 2019). 

The quality and accuracy of input data can also introduce un
certainties into GPP estimates. For example, the MODIS 8-day vegeta
tion indices (EVI and LSWI) used in VPM model were calculated from 8- 
day surface reflectance composite data that are generated by the 
Maximum Value Composite (MVC) or Constrained-View Angle 
Maximum Value Composite (CV-MVC) algorithm (Chen et al., 2006; 
Huete et al., 2002). MODIS surface reflectance data are often affected by 
cloud, snow, and soil background (Chang et al., 2019; Huete et al., 
2002). Contaminated or missing observations were gap-filled using 
simple linear regression model or non-linear regression model such as 
S-G fitting method (Chang et al., 2018). However, the gap-filling pro
cedures can lead to an underestimation of FPAR or LUE and subse
quently introduced considerable error to the GPP product (Zhao et al., 

2005). EVI still has limitations in capturing the seasonal dynamics of 
dense canopies (Chang et al., 2019), which could result in the under
estimation of GPP in ENF and EBF. 

5. Conclusions 

Biome-specific parameters have introduced errors and uncertainties 
in GPP simulation. Here, we assessed the consistency of Topt− b− EC, Topt− s, 
Topt− sy, and Topt− b− LT and their effects on satellite-based GPP estimates. 
Our use of an accumulated temperature-based growing season effi
ciently decreased the effects of snow on Topt estimation. We explored the 
use of MODIS EVI to approximate Topt of photosynthesis and found that 
Topt− b, Topt− s, and Topt− sy from EVI were significantly close to those from 
GPPEC. We calculated site-level GPPVPM by using Topt− b− LT , Topt− b− EC, 
and Topt− sy− EVI. The new GPPVPM estimates, especially GPP with 
Topt− sy− EVI, significantly improved GPPVPM estimates. We used 165 flux 
sites distributed globally and in various biomes, which indicated that the 
method can be used in regional and global scale. The relationship be
tween biome-specific, site-specific, and site-year-specific temperature 
with improved GPP estimates can help in carbon-related agriculture, 
environment, health, and economic decision-making. 
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