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Abstract
The effect of air temperature on photosynthesis is important for the terrestrial carbon cycle. The
optimumair temperature for photosynthesis is one of themajor parameters in data-driven and
process-based photosynthesismodels that estimate the gross primary production (GPP) of vegetation
under a changing climate. To date,mostmodels use the biome-specific optimumair temperature
( -Topt b) parameter. Towhat degree will the site-specific optimumair temperature ( -Topt s) affect GPP
simulation results remains unclear. In this study, we estimated -Topt s by usingGPPdata from11
grassland eddy flux tower sites (GPPEC) and satellite vegetation indices (NDVI and EVI).We found
thatTopt-s parameter values estimated fromEVI have good consistencywith those fromGPPEC at
individual sites.We also evaluated the effects of site-specific and biome-specific optimumair
temperature parameters on grassland photosynthesis. The results showed that the use of -Topt s in the
Vegetation PhotosynthesisModel improved to various degrees in both daily and annual GPP estimates
in those grassland flux tower sites. Our results highlight the necessity and potential for the use of -Topt s

in terrestrial GPPmodels, especially in those situationswith large temperature variation (heatwave
and cold spill events).

1. Introduction

The relationship between air temperature and photo-
synthesis or gross primary production (GPP) of
vegetation at the local, regional, and global scales has
been studied over many decades (Williams et al 2014;
Huang et al 2019). Global warming and climatic
extremes (e.g. heatwaves and cold spills) have large
impacts on vegetation production across space and
time (Mu et al 2011; Jiao et al 2019a; Ryu et al 2019).
Accurately quantifying the effects of air temperature
on the GPP of vegetation at local, regional, and global
scales is critical to improving themodeling of GPP and
terrestrial carbon cycles.

In addition to process-based biogeochemical
models (Sellers et al 1986; McGuire et al 1995; Zhang
et al 2012), satellite-based data-driven biogeochemical

models have proven to be a great tool for estimating
GPP, as satellite-based sensors provide continuous
observations across local, regional, and global scales,
especially for regions with limited in situ observations.
A number of satellite-based terrestrial carbon models
have been developed and used to estimate GPP at var-
ious spatial scales (Potter et al 1993; Xiao et al 2004a;
Zhao et al 2005; Turner et al 2006; Jiang and Ryu 2016;
Ryu et al 2019). Most of these satellite-based GPP
models are designed on the basis of the production
efficiency concept, also known as light use efficiency
(LUE) or the radiation use efficiency concept (table S1,
available online at stacks.iop.org/ERL/15/034064/
mmedia). These LUE models estimated daily GPP
based on photosynthetically active radiation (PAR)
absorbed by vegetation (APAR) and LUE (ε)
( e= ´GPP APAR ). In these models, the LUE (ε)
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parameter is often estimated as the product of the
potential or maximum LUE (ε0) and a few down-reg-
ulation scalars such as temperature, precipitation,
soil moisture, vapor pressure deficit, and leaf age
(Monteith 1972, 1977; Prince andGoward 1995).

Temperature constraint, represented by temper-
ature scalar (Ts), has been used in most LUE models
(table S1). The typical response of leaf-level photo-
synthesis to temperature can be described by a bell-
shaped relationship (Berry and Bjorkman 1980;
Cox 2001; Clark et al 2011; Landsberg et al 2011).
Because of the limitation of electric transport and
Rubisco activity, plants tend to have low photosynth-
esis at cool temperatures, and increase to a maximum
rate at optimal temperatures in the 20 °C–30 °C range
and then decrease again at very high temperatures (Fit-
ter and Hay 2012). This optimum temperature (Topt)
response has been described across a wide range of
plant species (Kirschbaum and Farquhar 1984; Batta-
glia et al 1996; Fitter and Hay 2012), and ecosystem
biomes (Huang et al 2019). In most satellite-based
LUE GPPmodels, Ts has been defined as a function of
Topt, maximum temperature, and minimum temper-
ature for vegetation growth. As reported, the temper-
ature scalar (Ts) is more sensitive and is more highly
governed by the choice of Topt than by maximum and
minimum temperatures (Raich et al 1991; Zhang et al
2017b). Thus, the choice of Topt largely affects the Ts
and finally affects the accuracy of GPP estimates in the
models.

Biome-specific optimum air temperature para-
meters (Topt−b) have been used to calculate biome-
specific temperature scalars (Ts−b) in biogeochemical
models (table S1), including the Moderate Resolution
Imaging Spectro-radiometer (MODIS) GPP algo-
rithm (Running and Zhao 2015), Vegetation Photo-
synthesis Model (VPM; Xiao et al 2004b), TEC (Yan
et al 2015), C-Fix (Veroustraete et al 2002), EC-LUE
(Yuan et al 2007), CFLUX (King et al 2011), and GLO-
PEM (Prince and Goward 1995). Several studies have
reported that the use of biome-specific parameters
introduced an inaccurate derivation of ε and could be
one of the potential error sources in GPP data product
(Heinsch et al 2006; Turner et al 2006; Sjöström et al
2013). Note that a vegetation biome often covers a very
large geographical domain, and vegetation may adapt
to its local climate over years and thus develop a site-
specific optimum air temperature (Topt−s) (Huang
et al 2019). There is a need to quantify the range of
Topt−s parameter values and the difference between
the Topt−s and Topt−b parameters. There is also a need
to quantify the potential of using the Topt−s parameter
to improve GPP estimates in themodels. To date, only
a few studies have reported the use of Topt−s in esti-
mating GPP (Potter et al 2003, Sasai et al 2005). How-
ever, these studies have not used the GPP estimates
and air temperature from the eddy flux tower sites to
quantify the relationship between air temperature and
GPP and estimate Topt−s parameter values. Therefore,

our knowledge of the Topt−s parameter values and the
potential of using the Topt−s parameter to improve
GPP estimates is still very limited. A number of scien-
tific questions need to be addressed: what is the most
appropriate method for estimating Topt−s from both
GPP data in the eddy flux tower sites (GPPEC) and
satellite datasets (NDVI, EVI)? What are the differ-
ences between site-specific temperature scalar (Ts−s)
and biome-specific temperature scalar (Ts−b), and to
what degree does Topt−s affect GPP estimates in the
data-driven models?The answers to these questions
will help improve our understanding of many aspects
of terrestrial carbon cycling, such as the impacts of cli-
matic extremes (e.g. heatwave, cold spill) on the seaso-
nal dynamics and inter-annual variation ofGPP.

Grasslands inmid- to high-latitude regions are sen-
sitive and vulnerable to climate variability, and temper-
ature is a major climate factor controlling GPP (Yi et al
2010). Also grasslands have the largest inter-annual var-
iation of gross and net primary production among the
major ecosystem types (Fridley et al 2016; Hufkens et al
2016; Knapp et al 2017). Grasslands in these regions
have high uncertainties in satellite-based GPP esti-
mates. Compared with in situ flux observations, studies
have found that the MOD17 GPP algorithm under-
estimated grasslandGPP fromsites to regions (Doughty
et al 2018; Zhu et al 2016; Zhu et al 2018). The VPM
GPP product added a C3/C4 ratio for the parameter ε
calculation and significantly improved grassland GPP
estimates (Zhang et al 2017b). However, larger uncer-
tainties still exist in mid- to high-latitude grassland
VPM GPP estimates (Wu et al 2018). The large uncer-
tainties in grassland GPP estimates directly hinder our
understanding of inner- and inter-annual GPP dynam-
ics, and affect our assessment of ecosystem response to
climate variability. For example, an analysis using
MOD17 GPP showed large carbon losses for the US in
2012 because of the warm spring and dry summer
(Wolf et al 2016), while the VPM GPP showed a slight
carbon uptake (Wu et al 2018). In this study, first we
quantified Topt−s parameter values in 11 grassland sites
in mid- to high-latitude regions, and compared the
Topt−s and Topt−b parameters. Our hypothesis is that
the Topt−s parameter for photosynthesis of mid- to
high-latitude grasslands varies among the sites and dif-
fers substantially from the commonly used Topt−b. In
order to explore the effects of themethods that are used
to estimate Topt−s, and identify potential data sources
for Topt−s calculation across the globe, Topt−s values
were calculated and compared with multiple data sour-
ces (GPPEC, MODIS NDVI, and EVI) and different
methods. Second, we assessed the effects of the Topt−s

parameter on GPP estimates in these grasslands sites.
Our hypothesis is that the Topt−b parameter value may
result in a large overestimation or underestimation of
GPP of grasslands in previous GPP products, depend-
ing upon the differences between Topt−s at individual
sites andTopt−b. The VPM, which was developed under
the LUE concept and satellite datasets (Xiao et al 2004b;
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Zhang et al 2017b), was used to estimate GPP for each
site over several years.We also estimated and compared
VPMGPP products driven by the two different types of
T ,s including both -Ts s (GPPs) and Ts−b (GPPb). The
results from this study may help improve Topt−s para-
meter estimates andGPP estimates in the grasslands.

2.Materials andmethods

2.1. Study sites
Data from grassland flux tower sites at mid- to high-
latitudes were used in this study, and the details for
these sites are described in the FLUXNET-2015
dataset. We selected the flux sites based on the
following criteria: (1) the site has obvious seasonal
changes, winter (daily daytime mean temperature
(TDT) lower than 0 °C) lasting at least 2 months for
each year; (2) land cover type at the site is homo-
geneous within the MOD09A1 (500 m) pixel (figure
S1); (3) the site has had continuous observation for at
least 1 year. In this study, we selected and analyzed 11
grassland sites. Spatial distribution andmeteorological
information of all the flux tower sites used in the
analysis are shown infigure S2 and table S2.

2.2.Meteorological data andGPPdata from theflux
tower sites
The FLUXNET-2015 dataset provides meteorological
data, water flux, and CO2 flux data at half-hourly,
hourly, daily, and yearly intervals.We visually checked
the tower observations, and the values with low quality
such as those with the same values in a whole year were
removed. We also calculated daily downward surface
solar shortwave radiation ( ss ), daily daytime mean
temperature (TDT), and daily GPP (GPPEC) which
were calculated with the variable USTAR filtering
approach and daytime portioning method (Kumar
et al 2016). Then, 8 day s ,s TDT and GPPEC were
generated from daily products respectively, and used
in theVPMGPP simulation and comparison.

2.3.MODIS vegetation indices
This study used the MODIS land reflectance product
MOD09A1 V006 (500 m spatial resolution and 8 day
intervals) (Vermote 2015). For all the sites, three
vegetation indices including the normalized difference
vegetation index (NDVI) (Rouse Jr et al 1974; Chang
et al 2018), enhanced vegetation index (EVI; Huete
et al 2002), and land surface water index (LSWI) (Xiao
et al 2004a) were calculated using equations (1)–(3)
based on the following MODIS spectral bands: red
band (RED) (620–670 nm); near infrared band (NIR)
(841–876 nm); blue band (BLUE) (459–479 nm),
green band (GREEN) (545–565 nm), and
short wavelength near infrared band (SWIR)
(1628–1652 nm).

( )=
-
+

NDVI
NIR RED

NIR RED
1

( )
( )

= ´
-

+ ´ - ´ +
2

EVI 2.5
NIR RED

NIR 6 RED 7.5 BLUE 1

( )=
-
+

LSWI
NIR SWIR

NIR SWIR
. 3

To filter out poor quality observations, we firstly
identified those affected by ice, snow, and clouds using
the quality control (QC) layer (Zhang et al 2017b).
Poor quality observations were replaced by the multi-
year mean of good observations during the same time
period. The Best Index Slope Extraction method was
used to further detect the abnormal observations
unidentified by the QC layer. The abnormal values
were then filled with the mean value of its nearest two
observations (Viovy et al 1992; White et al 1997, Xiao
et al 2009). At the end, the Savitzky–Golay (S–G) filter
model was designed for removing the existing abnor-
mal values (Savitzky andGolay 1964; Chen et al 2004).

2.4.Methods for estimating site-specific optimum
temperature forGPP
Biome-specific optimum air temperature (Topt−b)was
used at 27 °C as reported in the global VPM GPP
product (Zhang et al 2017b). Site-specific optimum air
temperature (Topt−s) was estimated from the analyses
of temperature, GPPEC, EVI, and NDVI data at
individual flux tower sites. We developed two new
methods to estimate Topt−s, namely, the 95% max-
imum method and the generalized additive model
(GAM) regression method. In order to make a
comparison with a previous study (Potter et al 2003),
we also estimated the Topt−s from NDVI following the
method in the CASA model, which is denoted as

- - -T .opt s CASA NDVI In the response curve between the
daily air temperature (x-axis) and GPP or vegetation
indices (y-axis) (figure 1), we define the site-specific
optimum air temperature as the daily air temperature
when GPP or vegetation indices reach their peak value
within the growing season.

With the 95%maximummethod, we firstly found
the maximum values of GPPEC (GPPEC-max), or EVI
(EVImax), for each site. We calculated the optimum
temperature as the daily daytime mean temperature
(TDT) during those observations with GPP or EVI
values equal to or higher than 95% GPPEC-max or
EVImax (figures 1(a) and (b)). Estimated Topt−s using
the 95% maximum method from GPPEC and EVI are
denoted as - - -T ,opt s 95 GPPEC - - -T .opt s 95 EVI Following
the CASA model and NDVI, the - - -Topt s CASA NDVI

was defined as the average monthly TDT when
GPPEC-max or EVImax occurred (figure 1(c)).

With the GAM regression method, the relation-
ship between the GPPEC values (or EVI values) and the
TDT at a site over all the years were determined using a
cyclic penalized cubic regression spline smooth model
in R software. The optimum temperature for this site
was then defined as the TDT when GPPEC (or EVI)
reached the maximum value in the GAM regression
line (figures 1(d), (e)). Topt−s estimated by the GAM
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method from GPPEC and EVI are denoted as

- - -T ,opt s GAM GPPEC
and - - -T .opt s GAM EVI

2.5. GPP simulation by theVPMmodel
The VPM estimates daily GPP (GPPVPM), is driven by
satellite images and climate data (Xiao et al 2004b),
and has been widely used in GPP simulation at site,
regional, and global scales (Zhang et al 2017b;Wu et al
2018; Chang et al 2019). In the VPMmodel, daily GPP
is estimated by APAR by chlorophyll in the canopy
(APARchl; APARchl=FPARchl

* PAR) and LUE (ε),
see equations (4) and (5):

( )e= ´ ´GPP FPAR PAR 4VPM chl

( )e e= ´ ´T W 5s s0

where ε is LUE, FPARchl is the fraction of PAR
absorbed by chlorophyll, and PAR is the photosyn-
thetic active radiation. EVI is used to estimate
FPAR .chl Temperature stress (Ts) and water stress (Ws)
are used to downscale maximum LUE (ε0) and
estimate ε.

Ts is calculated using the temperature response
equation documented in the Terrestrial Ecosystem
Model (Raich et al (1991)), as shown in equation (6):

( )( )
( )( ) ( )

( )=
- -

- - - -
T

T T T T

T T T T T T
6s

min max

min max opt
2

whereT is the daily daytimemean air temperature (°C);
T ,min T ,max and Topt are the minimum, maximum, and
maximum air temperatures for photosynthesis, respec-
tively. The biome-specific parameters used in the global

VPM GPP simulations came from the biome-specific
look-up table, and the Topt for grasslands was set as
27 °C (Zhang et al 2017b). Four groups of site-specific
Ts ( -Ts s) were calculated using the two methods (95%
max and GAM) fromGPPEC and EVI, and are denoted
as - - -T ,s s 95 GPPEC - - -T ,s s 95 EVI - - -T ,s s GAM GPPEC

and
- - -Ts s GAM EVI and the four groups of GPPVPM

based on -Ts s are denoted as - - -GPP ,VPM s 95 GPPEC

- - -GPP ,VPM s 95 EVI - - -GPPVPM s GAM GPPEC
, and

- - -GPP .VPM s GAM EVI

3. Results

3.1. Estimation of site-specific optimumair
temperature fromGPPEC and vegetation index
We estimated Topt−s for each site with the three
methods using GPPEC, EVI, and NDVI (table S2). The
results (figure 2) showed that theTopt−s values showed a
large difference within the grassland sites, and the
estimates of Topt−s for individual sites were very
different form the Topt−b used in the global VPM GPP
product (27 °C). For the estimates of Topt−s based on
every method, the difference between the highest and
lowestTopt−s of the 11 grassland sites was larger than 10
°C. Topt−s calculated from EVI and NDVI were
significantly correlated with Topt−s from GPPEC when
using same estimationmethod (rootmean square error
(RMSE) values are from1.58–3.28 °C). As shownby the
linear regression results (RMSE, R2, P-value), Topt−s

estimates fromNDVIusing the twomethods developed
in our study, - - -Topt s 95 NDVI and - - -T ,opt s GAM NDVI

Figure 1.Methods used for estimating site-specific optimumair temperature (Topt–s) at AT-Neu. (a) and (b)Topt–s was definedwith
the 95%maximummethod from theGPPEC and EVI; (c)Topt–s was definedwith theCASA averagedmonthlymethod from the
NDVI; (d) and (e)Topt–s was definedwith theGAMregressionmethod from theGPPEC and EVI. The black dashed lines represent the
selected observations for theTopt–s calculations. The red dashed lines and points represent theTopt–s results.
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were more consistent with Topt−s estimates from
GPPEC ( - -Topt s GPPEC

) than those from theCASAmodel
( - - -Topt s CASA NDVI) (figures 2(c) and (d)).

3.2. Effects of site-specific optimumair temperature
on temperature scalars in themodels
Topt−s based -Ts s values in the VPM model
were calculated with - - -T ,opt s 95 GPPEC - - -T ,opt s 95 EVI

- - -T ,opt s GAM GPPEC
and - - -T .opt s GAM EVI The results

showed that the -Ts s values in the model for all

observations at the 11 sites (figure 3) have large
differences from -T ,s b and most of the -Ts s values
were larger than -T .s b The results indicated that the
use of -Ts b in a previous global GPP simulation had
underestimated Ts or overestimated the temperature
limitation (temperature constraints) on the photo-
synthesis of grassland sites, especially for the sites
with low temperatures such as IT-Tor and IT-MBo,
where the annual mean temperatures are 5.1 °C and
2.9 °C, respectively (table S3).

Figure 2.Comparisons among site-specific optimum temperature (Topt–s) values estimatedwith differentmethods and data sources.
- - -T ,opt s 95 GPPEC - - -Topt s 95 EVI, and - - -Topt s 95 NDVI are theTopt–s from eddy covarianceGPP (GPPEC),MODIS EVI, andNDVI using

the 95%maximummethod; - - -T ,opt s GAM GPPEC - - -Topt s GAM EVI, and - - -Topt s GAM NDVI are theTopt–s from eddy covarianceGPPEC,
EVI, andNDVI using theGAMregressionmethod. - - -Topt s CASA NDVI is theTopt–s calculated fromNDVI following the CASAmodel.
Solid lines are linear regression lines.

Figure 3.Comparison of site-specific temperature scalar ( -Ts s) values and biome-specific temperature scalar ( -Ts b) for all grassland
sites. (a) - - -Ts s 95 GPPEC and (b) - - -Ts s 95 EVI are from eddy covarianceGPP (GPPEC) and EVIwith the 95%maximummethod;
(c) - - -Ts s GAM GPP CE and (d) - - -Ts s GAM EVI are the -Ts s from eddy covarianceGPP (GPPEC) andEVIwith theGAMregression
method. The black line in each panel is a linear regression line for all samples. Other colors represent different flux tower sites.
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3.3. Effects of site-specific temperature scalar on
GPP estimates in themodel simulation
For most grassland sites, GPPVPM values calculated
with -Ts s ( -GPPVPM s) were significantly correlated
with GPPEC, and had a higher correlation coefficient
(R2) and lower RMSE than results from -GPPVPM b

(table 1). Also, -GPPVPM s values estimated from
four types of -Ts s ( - - -T ,s s 95 GPPEC - - -T ,s s 95 EVI

- - -T ,s s GAM GPP CE
and - - -Ts s GAM EVI) were higher than

-GPPVPM b with various values for almost all the
intervals of the total 11 grassland sites (figures 4(a)–
(d)). For some sites, the -GPPVPM s values were higher
than -GPP ,VPM b up to 4 gCm−2 day−1 in the summer.
In addition, the average annual -GPPVPM b (1121.20 g
C m−2 year−1) was 25.36% lower than the average
annual GPPEC for the selected grassland sites
(1502.16 g C m−2 year−1) (figure 4(e)). The average
annual -GPPVPM s was higher than -GPPVPM b for
80∼178 g Cm−2 year−1, depending upon the method.
Four types of annual -GPPVPM s were lower than
GPPEC for 11.95% ( - - -GPPVPM s GAM GPP CE ), 8.00%
( - - -GPPVPM s GAM GPP CE ), 5.81% ( - - -GPPVPM s 95 GPPEC

),
and 5.35% ( - - -GPPVPM s 95 EVI) respectively. Similarly,
RMSE values between the four -GPPVPM s and GPPEC
were lower than that between -GPPVPM b and GPPEC.
From both 8 day and annual analyses, the results
indicated that using a site-specific optimum temper-
ature improved the accuracy of the GPP estimates in
theVPMmodel.

4.Discussion

Topt was generally studied and estimated along the
level of organization of species, community, and
ecosystem. The studies indicated thatTopt varies across
species and across ecosystems (biomes) (Kattge and
Knorr 2007; Lin et al 2012), and Topt−b was used in the
biogeochemical models. Different frommost previous
studies, our study explored and discussed the varia-
bility of Topt across sites within a biome. Our results
showed large differences of Topt across sites within a

biome, and thus supported the urgent need to address
Topt−s in a global terrestrial ecosystem study. In
addition, the ecosystem-level Topt−b parameters in
previous global process-based ecosystem models were
directly scaled from the leaf-level Topt−b parameters,
in which the Topt−b values at the ecosystem level were
found to be consistently lower than those at the leaf
level and varied spatially (Huang et al 2019). Our study
introduced the methods by using satellite datasets for
ecosystem-level Topt−s extraction. The new methods
provide a new way and results for future ecosystem
Topt studies. Previous studies have suggested gradually
changed Topt values along the latitude, while our study
did not find a clear relationship between Topt and
latitude, annual precipitation, and temperature for the
11 grassland sites (figure S3). This is likely caused by
the limited number of grassland sites, or due to
grasslands being sensitive to both temperature anoma-
lies andwater supply and cannot be well explained by a
single climate factor (Hufkens et al 2016; Green et al
2019).

In recent years, many approaches have been devel-
oped to reduce the impacts from biome-specific look-
up table parameters and coarse image resolutions in
GPP estimates, such as readjusting biome-specific
parameters (Sjöström et al 2013), considering different
C3/C4 ε0 values (Zhang et al 2017b; Wu et al 2018),
and generating new equations for LUE (Ma et al 2014).
Our study contributed the LUE estimates by adjusting
the temperature parameter and therefore temperature
scalars, which was a less considered direction. Even
though the CASAmodel has already tried to use Topt−s

instead of Topt−b in the Net Photosynthesis Productiv-
ity (NPP) products (Field et al 1995), the two methods
(95% max and GAM regression) developed in our
study improved the estimates of Topt−s, significantly.
Compared with the Topt−s estimated from NDVI in
the CASAmodel, Topt−s estimated from EVI wasmore
consistent to Topt−s from GPPEC (figure 2), which
indicates that EVI is a reliable indicator for Topt−s

estimation in space, which could contribute to a

Table 1.A comparison betweenGPPVPM calculatedwith -Ts s ( -GPPVPM s), -Ts b ( -GPPVPM b), andGPPEC. Simple linear regressionmodels
were used at each eddy covariance site, andR2 andRMSE (gC/m2/day)were shown. ***means a P-value less than 0.001.

SiteID

Cor

( -GPP ,VPM b

GPPEC)

Cor

( - - -GPP ,VPM s 95 GPPEC

GPPEC)

Cor

( - - -GPP ,IVPM s 95 EV

GPPEC)

Cor

( - - -GPP ,VPM s GAM GPP CE

GPPEC)

Cor

( - - -GPP ,VPM s GAM EVI

GPPEC)

AT-Neu 0.75***,3.02 0.80***,2.38 0.80***,2.37 0.76***,2.81 0.80***,2.31

CH-Fru 0.76***,2.79 0.81***,2.18 0.82***,2.02 0.79***,2.30 0.79***,2.37

CH-Oe1 0.47***,3.72 0.52***,3.28 0.52***,3.27 0.52***,3.30 0.52***,3.27

CN-Cng 0.85***,1.06 0.85***,1.04 0.85***,1.04 0.85***,1.04 0.85***,1.04

DE-RuR 0.81***,1.89 0.85***,1.77 0.86***,1.75 0.83***,1.73 0.83***,1.73

DK-Eng 0.37***,2.59 0.43***,2.83 0.42***,2.88 0.43***,2.86 0.43***,2.85

IT-MBo 0.83***,1.75 0.89***,1.76 0.89***,1.74 0.88***,1.75 0.88***,1.75

IT-Tor 0.89***,1.31 0.91***,1.60 0.91***,1.58 0.91***,1.43 0.91***,1.54

NL-Hor 0.82***,1.71 0.83***,2.00 0.83***,1.99 0.82***,1.79 0.83***,1.97

RU-Ha1 0.85***,1.15 0.87***,0.991 0.87***,0.99 0.86***,1.00 0.86***,1.04

US-IB2 0.84***,1.76 0.86***,1.65 0.84***,1.75 0.83***,1.77 0.84***,1.74
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large-scale GPP simulation in the future. Because
Topt−s in the CASA model has usually been defined as
the monthly mean temperature when NDVI reaches
its maximum (Yan et al 2015), thus - - -Topt s CASA NDVI

had more errors than that with a 95% max and GAM
regression (figure 1). What is more, NDVI was more
affected than EVI especially at regions mixed with
complicated background information (Chang et al
2019). As a previous validation study has proved that
the global GPPVPM product withTopt−b has beenmore
reliable than GPPCASA when compared with GOME-2
SIF data, our GPPVPM with Topt−s could be much
more competitive in model comparison studies (Wu
et al 2018). It is important to apply the Topt−s estima-
tion methods in other land cover types, and explore
the effects on GPP simulation. Both the datasets and
methods in this study have widely applicability in
other land cover types.

Accurate Topt−s estimation is a reasonably reliable
way for improving GPP estimates. A CASA model
research study improved NPP by about 50 g Cm−2 yr−1

at China’s Shennongjia Forestry District in the Hubei
province by slightly improving the Topt−s estimation
method, in which the Topt−s was defined as the mean
temperature during the period of mature stability

(Pei et al 2018). Our results indicated that usingTopt−b in
previous VPM GPP studies could lead to an under-
estimation of GPP of 25% for grassland ecosystems
annually (figure 4(e)). Butwe found that even though the
use of Topt−s improved GPP estimation and resulted in
higher GPP values than using Topt−b in most grassland
sites, GPPVPM with Topt−s was still lower than GPPEC
from eddy covariance observation for many of the 8 day
intervals (figures S4(a)–(d)), and -GPPVPM s was about
5%–12% lower than GPPEC annually (figure 4(e)).
The annual underestimation mostly occurred in the
higher GPP years with 1400 g Cm−2 yr−1 at AT-Neu
(2002–2012) and CH-Oe1 (2002–2007), which could be
caused by the inter-annual and inner-annual variability
of C3/C4 composition which are not well recognized in
the models (Doughty et al 2018; Zhu et al 2018). Åt
AT-Neu (figure S6) and CH-Oe1 (figure S7), the start of
the season and end of the season from GPPEC and
GPPVPM agrees well with each other, but the magnitude
differs substantially between themwithin a few years (e.g.
2002, 2003, 2004, 2006 at AT-Neu). Both shortwave
radiationdata and vegetation indexdata donot support a
very high GPPEC during the 8 day periods of those years.
WeuseddailyGPPportioned bynet ecosystemexchange
(NEE) in the flux tower sites which has been reported

Figure 4. Seasonal and annual comparisons amongmodeledGPPVPM values andGPPEC. (a)–(d) Seasonal characteristics for values of
the difference betweenGPPVPMwith the site-specific parameter ( -GPPVPM s) andGPPVPMwith the biome-specific parameter
( -GPPVPM b) at all grassland sites. TheGPPVPM are estimated at 8 day intervals. The average value for each interval is calculated for all
the observation years for a single site. Four types of -GPPVPM s were used: (a) - - -GPPVPM s 95 GPP CE and (b) - - -GPPVPM s 95 EVI were
calculated using the -Ts s from eddy covarianceGPP (GPPEC) and EVIwith the 95%maximummethod; (c) - - -GPPVPM s GAM GPPEC

and (d) - - -GPPVPM s GAM EVI were calculated using -Ts s fromGPPEC and EVIwith theGAMregressionmethod. The colors in (a), (b),
(c), and (d) represent different flux tower sites. (e)Annual -GPPVPM s and -GPPVPM b comparedwithGPPEC.
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to have errors or uncertainties in some observations
(Reichstein et al 2005). Here, we would like to attribute
the quality of GPPEC data as a major source of the large
discrepancy between annual GPPVPM and GPPEC in
some years. The daily GPP data showed that the abnor-
mal GPPEC values could be caused by the intensive rain-
fall (figures S8 and S9). The consistency between GPPEC
and climate data and remote sensing data is important
for us to evaluateGPPEC data.However, the use ofTopt−s
was slightly overestimated for the years with lower
annual GPP. The overestimation for low GPP years,
mostly occurred at IT-Tor (2009–2013), and could be
related to the water stress or lower annual precipitation
in these years (628–818mm yr−1) relative to the multi-
year mean annual precipitation (920mm yr−1). Under
drought conditions, there could be a lowerTopt−s than in
normal years. Further studies are needed to explore the
possible ways to improve GPP estimation at the ecosys-
tem scale. Other likely sources of uncertainty in data-dri-
ven GPP products include for example the model
structure (Zheng et al 2018), meteorological input data-
sets (Anav et al 2015), and seasonal dynamic of LUE (Wei
et al 2017). Many novel approaches have been developed
to reduce uncertainties in GPP estimates. For example, a
study estimated GPP by only using PAR and EVI (Ma
et al 2014). The Photochemical Reflectance Index was
found to be significantly correlated to LUE, and was
effective in detecting seasonal carbon fluxes in evergreen
ecosystems where FPAR and greenness-related vegeta-
tion indices change little (Garbulsky et al 2011; Mid-
dleton et al 2016). NIRvwas better correlated tomodeled
MODIS FPAR thanNDVI and significantly correlated to
GPP (Badgley et al 2017), and has beenused forGPP esti-
mates globally in 0.5° (Badgley et al 2018). Also, sig-
nificant linear relationships between GPP and OCO-2-
based SIF product (GOSIF) contributed to the work that
estimated GPP in 0.05° using GOSIF (Li and Xiao 2019).
Further studies are needed to explore thepossibleways to
improveGPPestimation at the ecosystemscale.

The satellite-based -GPPVPM s product with higher
estimate accuracies could bemore reliable for studying
the impacts of climate variability, especially extreme
climate events, on the ecosystem. Here, we take
drought, which is expected to show an intensified fre-
quency and consequences under climate change (Jiao
et al 2016; Jiao et al 2019b), as an example for discuss-
ing the possible contributions of our study in a future
study. Previous studies based on three different global
GPP products reported that the impact of drought on
terrestrial primary production was underestimated by
satellite-based LUE GPP models (Turner et al 2005;
Mu et al 2007; Sims et al 2008). The reason for the
underestimation is that these GPP models did not
simulate the water balance, or did not account for the
direct effects of soil moisture in addition to VPD and
changes in greenness (Jiao et al 2019a; Stocker et al
2019). Our study found that GPPVPM computed with
Topt−s for the years with higher precipitation showed a
greater improvement than for the years with lower

precipitation (figure S5). This result indicated that the
Topt−b used in previous global GPP simulations might
finally underestimate the decrease of GPP from a nor-
mal year to a drought year, which could be one of the
reasons for the underestimation of drought impacts
on ecosystem productivity. As known, when drought
occurs, it is often accompanied by higher temperature
(Zhang et al 2017a). The plants thus actually suffer
both water stress and temperature stress under
drought. As the drought conditionTopt−s was different
with and lower than Topt−b, the use of Topt−b might
not capture well the effect of increasing temperature
on GPP, and therefore resulted in a greater under-
estimation. Future GPP models need to consider the
comprehensive impacts from multi-parameters such
as temperature, water, canopy structural, leaf nitro-
gen, and chlorophyll content.

5. Conclusions

Our study explored the estimates of Topt−s using a
satellite and the potential of using Topt−s in estimating
the GPP of grasslands.We found that EVI has a similar
performance with in situ measured GPPEC for deter-
mining photosynthesis Topt−s. We also compared the
differences in Topt−s values using different extraction
methods and different data sources. Our results
provide references with data sources and methods for
reliable Topt−s estimation and more accurate GPP
simulations at the site and global scales. Topt−s values
differ among sites and differ from Topt−b significantly.
We found a significant improvement in the accuracy
of GPP estimates for grasslands by using Topt−s rather
than Topt−b. We suggest that terrestrial ecosystem
models should account for site-specific temperature
parameters. As the climatic impacts on ecosystems
have always been assessed by GPP anomalies, an
improved GPP product would help us better under-
stand the impacts of extreme events on terrestrial
ecosystem carbon cycles, and better manage terrestrial
ecosystems.
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