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Abstract

The effect of air temperature on photosynthesis is important for the terrestrial carbon cycle. The
optimum air temperature for photosynthesis is one of the major parameters in data-driven and
process-based photosynthesis models that estimate the gross primary production (GPP) of vegetation
under a changing climate. To date, most models use the biome-specific optimum air temperature
(Topt—1) parameter. To what degree will the site-specific optimum air temperature (Top ) affect GPP
simulation results remains unclear. In this study, we estimated T, _; by using GPP data from 11
grassland eddy flux tower sites (GPPgc) and satellite vegetation indices NDVI and EVI). We found
that Tp_s parameter values estimated from EVI have good consistency with those from GPPg¢ at
individual sites. We also evaluated the effects of site-specific and biome-specific optimum air
temperature parameters on grassland photosynthesis. The results showed that the use of T, in the
Vegetation Photosynthesis Model improved to various degrees in both daily and annual GPP estimates
in those grassland flux tower sites. Our results highlight the necessity and potential for the use of Tg
in terrestrial GPP models, especially in those situations with large temperature variation (heatwave

and cold spill events).

1. Introduction

The relationship between air temperature and photo-
synthesis or gross primary production (GPP) of
vegetation at the local, regional, and global scales has
been studied over many decades (Williams er al 2014;
Huang et al 2019). Global warming and climatic
extremes (e.g. heatwaves and cold spills) have large
impacts on vegetation production across space and
time (Mu et al 2011; Jiao et al 2019a; Ryu et al 2019).
Accurately quantifying the effects of air temperature
on the GPP of vegetation at local, regional, and global
scales is critical to improving the modeling of GPP and
terrestrial carbon cycles.

In addition to process-based biogeochemical
models (Sellers et al 1986; McGuire et al 1995; Zhang
et al 2012), satellite-based data-driven biogeochemical

models have proven to be a great tool for estimating
GPP, as satellite-based sensors provide continuous
observations across local, regional, and global scales,
especially for regions with limited in situ observations.
A number of satellite-based terrestrial carbon models
have been developed and used to estimate GPP at var-
ious spatial scales (Potter et al 1993; Xiao et al 2004a;
Zhao et al 2005; Turner et al 2006; Jiang and Ryu 2016;
Ryu et al 2019). Most of these satellite-based GPP
models are designed on the basis of the production
efficiency concept, also known as light use efficiency
(LUE) or the radiation use efficiency concept (table S1,
available online at stacks.iop.org/ERL/15/034064/
mmedia). These LUE models estimated daily GPP
based on photosynthetically active radiation (PAR)
absorbed by vegetation (APAR) and LUE (¢)
(GPP = APAR x ¢). In these models, the LUE (¢)
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parameter is often estimated as the product of the
potential or maximum LUE (g,) and a few down-reg-
ulation scalars such as temperature, precipitation,
soil moisture, vapor pressure deficit, and leaf age
(Monteith 1972, 1977; Prince and Goward 1995).

Temperature constraint, represented by temper-
ature scalar (T), has been used in most LUE models
(table S1). The typical response of leaf-level photo-
synthesis to temperature can be described by a bell-
shaped relationship (Berry and Bjorkman 1980;
Cox 2001; Clark et al 2011; Landsberg et al 2011).
Because of the limitation of electric transport and
Rubisco activity, plants tend to have low photosynth-
esis at cool temperatures, and increase to a maximum
rate at optimal temperatures in the 20 °C-30 °C range
and then decrease again at very high temperatures (Fit-
ter and Hay 2012). This optimum temperature (Tq,)
response has been described across a wide range of
plant species (Kirschbaum and Farquhar 1984; Batta-
glia et al 1996; Fitter and Hay 2012), and ecosystem
biomes (Huang et al 2019). In most satellite-based
LUE GPP models, T, has been defined as a function of
Tope, Maximum temperature, and minimum temper-
ature for vegetation growth. As reported, the temper-
ature scalar (T;) is more sensitive and is more highly
governed by the choice of T, than by maximum and
minimum temperatures (Raich et al 1991; Zhang et al
2017b). Thus, the choice of T, largely affects the T
and finally affects the accuracy of GPP estimates in the
models.

Biome-specific optimum air temperature para-
meters (Top—1,) have been used to calculate biome-
specific temperature scalars (Ts_},) in biogeochemical
models (table S1), including the Moderate Resolution
Imaging Spectro-radiometer (MODIS) GPP algo-
rithm (Running and Zhao 2015), Vegetation Photo-
synthesis Model (VPM; Xiao et al 2004b), TEC (Yan
et al 2015), C-Fix (Veroustraete et al 2002), EC-LUE
(Yuan et al 2007), CFLUX (King et al 2011), and GLO-
PEM (Prince and Goward 1995). Several studies have
reported that the use of biome-specific parameters
introduced an inaccurate derivation of € and could be
one of the potential error sources in GPP data product
(Heinsch et al 2006; Turner et al 2006; Sjostrom et al
2013). Note that a vegetation biome often covers a very
large geographical domain, and vegetation may adapt
to its local climate over years and thus develop a site-
specific optimum air temperature (T,,.;) (Huang
et al 2019). There is a need to quantify the range of
Topt—s parameter values and the difference between
the Tope—s and Top—, parameters. There is also a need
to quantify the potential of using the T, parameter
to improve GPP estimates in the models. To date, only
a few studies have reported the use of T,y in esti-
mating GPP (Potter et al 2003, Sasai et al 2005). How-
ever, these studies have not used the GPP estimates
and air temperature from the eddy flux tower sites to
quantify the relationship between air temperature and
GPP and estimate T, parameter values. Therefore,
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our knowledge of the T parameter values and the
potential of using the T, parameter to improve
GPP estimates is still very limited. A number of scien-
tific questions need to be addressed: what is the most
appropriate method for estimating T, from both
GPP data in the eddy flux tower sites (GPPgc) and
satellite datasets (NDVI, EVI)? What are the differ-
ences between site-specific temperature scalar (T, )
and biome-specific temperature scalar (T_,), and to
what degree does T,y affect GPP estimates in the
data-driven models? The answers to these questions
will help improve our understanding of many aspects
of terrestrial carbon cycling, such as the impacts of cli-
matic extremes (e.g. heatwave, cold spill) on the seaso-
nal dynamics and inter-annual variation of GPP.
Grasslands in mid- to high-latitude regions are sen-
sitive and vulnerable to climate variability, and temper-
ature is a major climate factor controlling GPP (Yi et al
2010). Also grasslands have the largest inter-annual var-
iation of gross and net primary production among the
major ecosystem types (Fridley et al 2016; Hufkens et al
2016; Knapp et al 2017). Grasslands in these regions
have high uncertainties in satellite-based GPP esti-
mates. Compared with in situ flux observations, studies
have found that the MOD17 GPP algorithm under-
estimated grassland GPP from sites to regions (Doughty
et al 2018; Zhu et al 2016; Zhu et al 2018). The VPM
GPP product added a C3/C4 ratio for the parameter &
calculation and significantly improved grassland GPP
estimates (Zhang et al 2017b). However, larger uncer-
tainties still exist in mid- to high-latitude grassland
VPM GPP estimates (Wu et al 2018). The large uncer-
tainties in grassland GPP estimates directly hinder our
understanding of inner- and inter-annual GPP dynam-
ics, and affect our assessment of ecosystem response to
climate variability. For example, an analysis using
MOD17 GPP showed large carbon losses for the US in
2012 because of the warm spring and dry summer
(Wolf et al 2016), while the VPM GPP showed a slight
carbon uptake (Wu et al 2018). In this study, first we
quantified T, parameter values in 11 grassland sites
in mid- to high-latitude regions, and compared the
Topt—s and Ty, parameters. Our hypothesis is that
the T,pe_s parameter for photosynthesis of mid- to
high-latitude grasslands varies among the sites and dif-
fers substantially from the commonly used T, In
order to explore the effects of the methods that are used
to estimate T, and identify potential data sources
for Tope—s calculation across the globe, T, values
were calculated and compared with multiple data sour-
ces (GPPgc, MODIS NDVI, and EVI) and different
methods. Second, we assessed the effects of the T,
parameter on GPP estimates in these grasslands sites.
Our hypothesis is that the T,,,;_, parameter value may
result in a large overestimation or underestimation of
GPP of grasslands in previous GPP products, depend-
ing upon the differences between Top at individual
sites and T The VPM, which was developed under
the LUE concept and satellite datasets (Xiao et al 2004b;
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Zhang et al 2017b), was used to estimate GPP for each
site over several years. We also estimated and compared
VPM GPP products driven by the two different types of
T;, including both T;_; (GPR,) and T, (GPPy,). The
results from this study may help improve T para-
meter estimates and GPP estimates in the grasslands.

2. Materials and methods

2.1. Study sites

Data from grassland flux tower sites at mid- to high-
latitudes were used in this study, and the details for
these sites are described in the FLUXNET-2015
dataset. We selected the flux sites based on the
following criteria: (1) the site has obvious seasonal
changes, winter (daily daytime mean temperature
(Tpr) lower than 0 °C) lasting at least 2 months for
each year; (2) land cover type at the site is homo-
geneous within the MODO09A1 (500 m) pixel (figure
S1); (3) the site has had continuous observation for at
least 1 year. In this study, we selected and analyzed 11
grassland sites. Spatial distribution and meteorological
information of all the flux tower sites used in the
analysis are shown in figure S2 and table S2.

2.2. Meteorological data and GPP data from the flux
tower sites

The FLUXNET-2015 dataset provides meteorological
data, water flux, and CO, flux data at half-hourly,
hourly, daily, and yearly intervals. We visually checked
the tower observations, and the values with low quality
such as those with the same values in a whole year were
removed. We also calculated daily downward surface
solar shortwave radiation (s;), daily daytime mean
temperature (Tpt), and daily GPP (GPPgc) which
were calculated with the variable USTAR filtering
approach and daytime portioning method (Kumar
et al 2016). Then, 8 day s,, Tpr and GPPgc were
generated from daily products respectively, and used
in the VPM GPP simulation and comparison.

2.3.MODIS vegetation indices

This study used the MODIS land reflectance product
MODO09A1 V006 (500 m spatial resolution and 8 day
intervals) (Vermote 2015). For all the sites, three
vegetation indices including the normalized difference
vegetation index (NDVI) (Rouse Jr et al 1974; Chang
et al 2018), enhanced vegetation index (EVI; Huete
et al 2002), and land surface water index (LSWTI) (Xiao
et al 2004a) were calculated using equations (1)—(3)
based on the following MODIS spectral bands: red
band (RED) (620-670 nm); near infrared band (NIR)
(841-876 nm); blue band (BLUE) (459-479 nm),
green band (GREEN) (545-565 nm), and
short wavelength near infrared band (SWIR)
(1628-1652 nm).

NIR — RED

NDVI = ———— M
NIR + RED
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EVI = 2.5 x NIR = RED
(NIR + 6 x RED — 7.5 x BLUE + 1)
@)
LSWI — NIR — SWIR' 3)
NIR + SWIR

To filter out poor quality observations, we firstly
identified those affected by ice, snow, and clouds using
the quality control (QC) layer (Zhang et al 2017b).
Poor quality observations were replaced by the multi-
year mean of good observations during the same time
period. The Best Index Slope Extraction method was
used to further detect the abnormal observations
unidentified by the QC layer. The abnormal values
were then filled with the mean value of its nearest two
observations (Viovy et al 1992; White et al 1997, Xiao
et al 2009). At the end, the Savitzky—Golay (S-G) filter
model was designed for removing the existing abnor-
mal values (Savitzky and Golay 1964; Chen et al 2004).

2.4. Methods for estimating site-specific optimum
temperature for GPP

Biome-specific optimum air temperature (Top;_1,) Was
used at 27 °C as reported in the global VPM GPP
product (Zhang et al 2017b). Site-specific optimum air
temperature (Top—s) Was estimated from the analyses
of temperature, GPPgc, EVI, and NDVI data at
individual flux tower sites. We developed two new
methods to estimate Top_s, namely, the 95% max-
imum method and the generalized additive model
(GAM) regression method. In order to make a
comparison with a previous study (Potter et al 2003),
we also estimated the T, from NDVI following the
method in the CASA model, which is denoted as
Topt—s—casa—npvr- In the response curve between the
daily air temperature (x-axis) and GPP or vegetation
indices (y-axis) (figure 1), we define the site-specific
optimum air temperature as the daily air temperature
when GPP or vegetation indices reach their peak value
within the growing season.

With the 95% maximum method, we firstly found
the maximum values of GPPgc (GPPgc_max), Or EVI
(EVI,.0), for each site. We calculated the optimum
temperature as the daily daytime mean temperature
(Tpr) during those observations with GPP or EVI
values equal to or higher than 95% GPPgc . OF
EVlax (figures 1(a) and (b)). Estimated o, using
the 95% maximum method from GPPgc and EVI are
denoted as ’I;)ptfsf%fGPPEc) T(‘)ptfsf%fEVI- Following
the CASA model and NDVI, the Top—s—casa—Npvi
was defined as the average monthly Tpr when
GPPgC_max OF EVIax occurred (figure 1(c)).

With the GAM regression method, the relation-
ship between the GPPg¢ values (or EVI values) and the
Tpr at a site over all the years were determined using a
cyclic penalized cubic regression spline smooth model
in R software. The optimum temperature for this site
was then defined as the Tpr when GPPg: (or EVI)
reached the maximum value in the GAM regression
line (figures 1(d), (e)). Top—s estimated by the GAM
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Figure 1. Methods used for estimating site-specific optimum air temperature (Tp_s) at AT-Neu. (a) and (b) T,
the 95% maximum method from the GPPg¢ and EVI; (¢) T,p,s was defined with the CASA averaged monthly method from the

NDVT; (d) and (e) Top—s Was defined with the GAM regression method from the GPPg and EVI. The black dashed lines represent the
selected observations for the T, calculations. The red dashed lines and points represent the T,

pt_s was defined with

pts Tesults.

method from GPPgc and EVI are denoted as
Tc‘)ptfstAMfGPPEca and ToptfstAMfEVI-

2.5. GPP simulation by the VPM model

The VPM estimates daily GPP (GPPypyy), is driven by
satellite images and climate data (Xiao et al 2004b),
and has been widely used in GPP simulation at site,
regional, and global scales (Zhang et al 2017b; Wu et al
2018; Chang et al 2019). In the VPM model, daily GPP
is estimated by APAR by chlorophyll in the canopy
(APAR,; APARy,; = FPARy, * PAR) and LUE (¢),
see equations (4) and (5):

GPPypy = € X FPARy,; x PAR 4)
e=¢ X i x W, )]

where ¢ is LUE, FPARy, is the fraction of PAR
absorbed by chlorophyll, and PAR is the photosyn-
thetic active radiation. EVI is used to estimate
FPAR . Temperature stress (I;) and water stress (W)
are used to downscale maximum LUE (gy5) and
estimate .

T; is calculated using the temperature response
equation documented in the Terrestrial Ecosystem
Model (Raich et al (1991)), as shown in equation (6):

_ (T — Tmin)(T — Tmax)
(T = Tnin)(T — Toa) — (T — Typ)?

(6)

N

where T'is the daily daytime mean air temperature (°C);
Tinin> Tmax> and T are the minimum, maximum, and
maximum air temperatures for photosynthesis, respec-
tively. The biome-specific parameters used in the global

VPM GPP simulations came from the biome-specific
look-up table, and the T, for grasslands was set as
27 °C (Zhang et al 2017b). Four groups of site-specific
T; (T;_s) were calculated using the two methods (95%
max and GAM) from GPPgc and EV], and are denoted
as Ty s 95 GpPye> Lios—95-Evh Li—s—GaM-—Gpp> and
Ts—s—GAM—EVI and the four groups of GPPypy
based on T;_; are denoted as GPPypy—_s—o5-Gppye

and

GPPypnm—s—95s—evis  GPPypm—s—caM—GPPye»

GPPypn—s—GAM—EVI-

3. Results

3.1. Estimation of site-specific optimum air
temperature from GPPgc and vegetation index

We estimated T for each site with the three
methods using GPPg, EVI, and NDVI (table S2). The
results (figure 2) showed that the T, values showed a
large difference within the grassland sites, and the
estimates of T, for individual sites were very
different form the T, used in the global VPM GPP
product (27 °C). For the estimates of T based on
every method, the difference between the highest and
lowest T, of the 11 grassland sites was larger than 10
°C. Tops calculated from EVI and NDVI were
significantly correlated with Top, s from GPPgc when
using same estimation method (root mean square error
(RMSE) values are from 1.58-3.28 °C). As shown by the
linear regression results (RMSE, R®, P-value), Topi—s
estimates from NDVT using the two methods developed
in our study, Topi—s—95-npvi and Topt—s—Gam—NDVD
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Figure 3. Comparison of site-specific temperature scalar (T;_) values and biome-specific temperature scalar (T;_,) for all grassland
sites. (a) Ts—s—o95—Gpppc and (b) T5_s—o5_gyi are from eddy covariance GPP (GPPgc) and EVI with the 95% maximum method;

() Ti—s—cam—cppgc and (d) T;—;—gam—gvi are the T;_ from eddy covariance GPP (GPPgc) and EVI with the GAM regression
method. The black line in each panel is a linear regression line for all samples. Other colors represent different flux tower sites.

* DK.Eng * IT.MBo * IT.Tor * NL.Hor * RUHal * US.IB2

Ts—b

were more consistent with T, estimates from
GPPgc (Topi—s—Gppy) than those from the CASA model
(Topt—s—casa—~pvr) (figures 2(c) and (d)).

3.2. Effects of site-specific optimum air temperature
on temperature scalars in the models

Top—s based T;_; values in the VPM model
were calculated with Tope—s—95_Gppees Topt—s—95—EvD>
Topt—s—GaM—Gppyes and Tope—s—Gam—evi- The results
showed that the T;_, values in the model for all

observations at the 11 sites (figure 3) have large
differences from T;_y,, and most of the T;_, values
were larger than T;_y. The results indicated that the
use of T;_y, in a previous global GPP simulation had
underestimated T; or overestimated the temperature
limitation (temperature constraints) on the photo-
synthesis of grassland sites, especially for the sites
with low temperatures such as IT-Tor and IT-MBo,
where the annual mean temperatures are 5.1 °C and
2.9 °C, respectively (table S3).
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Table 1. A comparison between GPPypy, calculated with T;_ s (GPPypy—s), T;—1, (GPPypn—1), and GPPgc. Simple linear regression models
were used at each eddy covariance site, and R?>and RMSE (gC/ m?/ day) were shown. " means a P-value less than 0.001.

Cor Cor Cor Cor Cor
(GPPypy—b» (GPPypym —5—95-GPPrc> (GPPypyr—s5-95-EVI> (GPPypM—s—GAM-GPPgc> (GPPypM —s—GAM—EVD>

SiteID GPPge) GPPge) GPPge) GPPge) GPPge)

AT-Neu 0.75"*,3.02 0.80""",2.38 0.80%"*,2.37 0.76"%,2.81 0.80"%,2.31
CH-Fru 0.76"*,2.79 0.817",2.18 0.82%%%,2.02 0.79**,2.30 0.79""*,2.37
CH-Oel 0.47°%,3.72 0.52%,3.28 0.52%%*,3.27 0.52*%%,3.30 0.52%%%,3.27
CN-Cng 0.85"*,1.06 0.85"",1.04 0.85"*,1.04 0.85""*,1.04 0.85"*,1.04
DE-RuR 0.81°"%,1.89 0.85"*,1.77 0.86""*,1.75 0.83""*,1.73 0.83"**,1.73
DK-Eng 0.37"*,2.59 0.43"",2.83 0.427"*2.88 0.43"*2.86 0.43%%%,2.85
IT-MBo 0.83""*,1.75 0.89""*,1.76 0.89*,1.74 0.88*,1.75 0.88*,1.75
IT-Tor 0.89"%,1.31 0.91""*,1.60 0.91°**,1.58 0.91°"%,1.43 0.91%**,1.54
NL-Hor 0.82"*,1.71 0.83"%,2.00 0.83*,1.99 0.82*,1.79 0.83"*,1.97
RU-Hal 0.85""*,1.15 0.877%,0.991 0.87"%,0.99 0.86"*,1.00 0.86""*,1.04
US-IB2 0.84"*,1.76 0.86"*,1.65 0.84"*,1.75 0.83**,1.77 0.84"*,1.74

3.3. Effects of site-specific temperature scalar on
GPP estimates in the model simulation

For most grassland sites, GPPypy values calculated
with T;_ (GPPypp_s) were significantly correlated
with GPPgc, and had a higher correlation coefficient
(R%) and lower RMSE than results from GPPypy_,
(table 1). Also, GPPypy_s values estimated from
four types of T (s 95 Gpror Ts—s—95—EVD>
Ts— s Gam—Gppye> and T, ganv—gvr) were higher than
GPPypy_p with various values for almost all the
intervals of the total 11 grassland sites (figures 4(a)—
(d)). For some sites, the GPPypy s values were higher
than GPPypy_p, upto4gC m 2 da)f1 in the summer.
In addition, the average annual GPPypy_p (1121.20 g
C m™? year ') was 25.36% lower than the average
annual GPPgpc for the selected grassland sites
(1502.16 g C m 2 yearfl) (figure 4(e)). The average
annual GPPypy_s was higher than GPPypy -y, for
80~178 gCm ™ year ', depending upon the method.
Four types of annual GPPypy_s were lower than
GPPEC for 11.95% (GPPVPMfstAMfGPPFCL 8.00%
(GPPyppm s GaM—GPpee)> 9-81% (GPPypn 95— Gppy)s
and 5.35% (GPPypy_s_95_gyi) respectively. Similarly,
RMSE values between the four GPPypy—s and GPPg
were lower than that between GPPypy;_1, and GPPgc.
From both 8 day and annual analyses, the results
indicated that using a site-specific optimum temper-
ature improved the accuracy of the GPP estimates in
the VPM model.

4. Discussion

Tope Was generally studied and estimated along the
level of organization of species, community, and
ecosystem. The studies indicated that T, varies across
species and across ecosystems (biomes) (Kattge and
Knorr 2007; Lin et al 2012), and T,,,_, was used in the
biogeochemical models. Different from most previous
studies, our study explored and discussed the varia-
bility of T, across sites within a biome. Our results
showed large differences of T, across sites within a

biome, and thus supported the urgent need to address
Topt—s in a global terrestrial ecosystem study. In
addition, the ecosystem-level T, parameters in
previous global process-based ecosystem models were
directly scaled from the leaf-level T, parameters,
in which the Ty, values at the ecosystem level were
found to be consistently lower than those at the leaf
level and varied spatially (Huang et al 2019). Our study
introduced the methods by using satellite datasets for
ecosystem-level T extraction. The new methods
provide a new way and results for future ecosystem
Tope studies. Previous studies have suggested gradually
changed T, values along the latitude, while our study
did not find a clear relationship between T, and
latitude, annual precipitation, and temperature for the
11 grassland sites (figure S3). This is likely caused by
the limited number of grassland sites, or due to
grasslands being sensitive to both temperature anoma-
lies and water supply and cannot be well explained by a
single climate factor (Hufkens et al 2016; Green et al
2019).

In recent years, many approaches have been devel-
oped to reduce the impacts from biome-specific look-
up table parameters and coarse image resolutions in
GPP estimates, such as readjusting biome-specific
parameters (Sjostrom et al 2013), considering different
C3/C4 ¢q values (Zhang et al 2017b; Wu et al 2018),
and generating new equations for LUE (Ma et al 2014).
Our study contributed the LUE estimates by adjusting
the temperature parameter and therefore temperature
scalars, which was a less considered direction. Even
though the CASA model has already tried to use Tqp—s
instead of Ty, in the Net Photosynthesis Productiv-
ity (NPP) products (Field et al 1995), the two methods
(95% max and GAM regression) developed in our
study improved the estimates of T, significantly.
Compared with the Top— estimated from NDVT in
the CASA model, T, estimated from EVI was more
consistent to Tope—s from GPPgc (figure 2), which
indicates that EVI is a reliable indicator for Topes
estimation in space, which could contribute to a
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large-scale GPP simulation in the future. Because
Top—s in the CASA model has usually been defined as
the monthly mean temperature when NDVI reaches
its maximum (Yan et al 2015), thus Top—s—casa—NDVI
had more errors than that with a 95% max and GAM
regression (figure 1). What is more, NDVI was more
affected than EVI especially at regions mixed with
complicated background information (Chang et al
2019). As a previous validation study has proved that
the global GPPypy product with T, has been more
reliable than GPPcas4 when compared with GOME-2
SIF data, our GPPypy with Top—s could be much
more competitive in model comparison studies (Wu
et al 2018). It is important to apply the Tp_ estima-
tion methods in other land cover types, and explore
the effects on GPP simulation. Both the datasets and
methods in this study have widely applicability in
other land cover types.

Accurate T, estimation is a reasonably reliable
way for improving GPP estimates. A CASA model
research study improved NPP by about 50 g Cm ™ yr ™'
at China’s Shennongjia Forestry District in the Hubei
province by slightly improving the T, estimation
method, in which the T, was defined as the mean
temperature during the period of mature stability

(Pei et al 2018). Our results indicated that using T, in
previous VPM GPP studies could lead to an under-
estimation of GPP of 25% for grassland ecosystems
annually (figure 4(e)). But we found that even though the
use of T, improved GPP estimation and resulted in
higher GPP values than using T, in most grassland
sites, GPPypy; with T, was still lower than GPPgc
from eddy covariance observation for many of the 8 day
intervals (figures S4(a)~(d)), and GPPypp_s was about
5%-12% lower than GPPgc annually (figure 4(e)).
The annual underestimation mostly occurred in the
higher GPP years with 1400g Cm yr ' at AT-Neu
(2002-2012) and CH-Oel (2002-2007), which could be
caused by the inter-annual and inner-annual variability
of C3/C4 composition which are not well recognized in
the models (Doughty et al 2018; Zhu et al 2018). At
AT-Neu (figure S6) and CH-Oel (figure S7), the start of
the season and end of the season from GPPgc and
GPPypys agrees well with each other, but the magnitude
differs substantially between them within a few years (e.g.
2002, 2003, 2004, 2006 at AT-Neu). Both shortwave
radiation data and vegetation index data do not support a
very high GPPgc during the 8 day periods of those years.
We used daily GPP portioned by net ecosystem exchange
(NEE) in the flux tower sites which has been reported
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to have errors or uncertainties in some observations
(Reichstein et al 2005). Here, we would like to attribute
the quality of GPPyc data as a major source of the large
discrepancy between annual GPPypy; and GPPgc in
some years. The daily GPP data showed that the abnor-
mal GPPgc values could be caused by the intensive rain-
fall (figures S8 and S9). The consistency between GPPgc
and climate data and remote sensing data is important
for us to evaluate GPPyc data. However, the use of T
was slightly overestimated for the years with lower
annual GPP. The overestimation for low GPP years,
mostly occurred at IT-Tor (2009-2013), and could be
related to the water stress or lower annual precipitation
in these years (628—-818 mm yr 1) relative to the multi-
year mean annual precipitation (920 mmyr ). Under
drought conditions, there could be alower T than in
normal years. Further studies are needed to explore the
possible ways to improve GPP estimation at the ecosys-
tem scale. Other likely sources of uncertainty in data-dri-
ven GPP products include for example the model
structure (Zheng et al 2018), meteorological input data-
sets (Anav et al 2015), and seasonal dynamic of LUE (Wei
et al 2017). Many novel approaches have been developed
to reduce uncertainties in GPP estimates. For example, a
study estimated GPP by only using PAR and EVI (Ma
et al 2014). The Photochemical Reflectance Index was
found to be significantly correlated to LUE, and was
effective in detecting seasonal carbon fluxes in evergreen
ecosystems where FPAR and greenness-related vegeta-
tion indices change little (Garbulsky et al 2011; Mid-
dleton et al 2016). NIRv was better correlated to modeled
MODIS FPAR than NDVI and significantly correlated to
GPP (Badgley et al 2017), and has been used for GPP esti-
mates globally in 0.5° (Badgley et al 2018). Also, sig-
nificant linear relationships between GPP and OCO-2-
based SIF product (GOSIF) contributed to the work that
estimated GPP in 0.05° using GOSIF (Li and Xiao 2019).
Further studies are needed to explore the possible ways to
improve GPP estimation at the ecosystem scale.

The satellite-based GPPypp; s product with higher
estimate accuracies could be more reliable for studying
the impacts of climate variability, especially extreme
climate events, on the ecosystem. Here, we take
drought, which is expected to show an intensified fre-
quency and consequences under climate change (Jiao
et al 2016; Jiao et al 2019b), as an example for discuss-
ing the possible contributions of our study in a future
study. Previous studies based on three different global
GPP products reported that the impact of drought on
terrestrial primary production was underestimated by
satellite-based LUE GPP models (Turner et al 2005;
Mu et al 2007; Sims et al 2008). The reason for the
underestimation is that these GPP models did not
simulate the water balance, or did not account for the
direct effects of soil moisture in addition to VPD and
changes in greenness (Jiao et al 2019a; Stocker et al
2019). Our study found that GPPypy; computed with
Tope—s for the years with higher precipitation showed a
greater improvement than for the years with lower

P Letters

precipitation (figure S5). This result indicated that the
Topt—b used in previous global GPP simulations might
finally underestimate the decrease of GPP from a nor-
mal year to a drought year, which could be one of the
reasons for the underestimation of drought impacts
on ecosystem productivity. As known, when drought
occurs, it is often accompanied by higher temperature
(Zhang et al 2017a). The plants thus actually suffer
both water stress and temperature stress under
drought. As the drought condition T, was different
with and lower than Ty, the use of Top—1, might
not capture well the effect of increasing temperature
on GPP, and therefore resulted in a greater under-
estimation. Future GPP models need to consider the
comprehensive impacts from multi-parameters such
as temperature, water, canopy structural, leaf nitro-
gen, and chlorophyll content.

5. Conclusions

Our study explored the estimates of T, using a
satellite and the potential of using Tp¢— in estimating
the GPP of grasslands. We found that EVI has a similar
performance with in situ measured GPPgc for deter-
mining photosynthesis Top—s. We also compared the
differences in Top,— values using different extraction
methods and different data sources. Our results
provide references with data sources and methods for
reliable Top—s estimation and more accurate GPP
simulations at the site and global scales. T values
differ among sites and differ from T, significantly.
We found a significant improvement in the accuracy
of GPP estimates for grasslands by using T, rather
than T, We suggest that terrestrial ecosystem
models should account for site-specific temperature
parameters. As the climatic impacts on ecosystems
have always been assessed by GPP anomalies, an
improved GPP product would help us better under-
stand the impacts of extreme events on terrestrial
ecosystem carbon cycles, and better manage terrestrial
ecosystems.
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