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A B S T R A C T

In recent decades, intensification of animal production has been occurring rapidly in transition economies to
meet the growing demands of increasingly urban populations. This comes with significant environmental, health
and social impacts. To assess these impacts, detailed maps of livestock distributions have been developed by
downscaling census data at the pixel level (10 km or 1 km), providing estimates of the density of animals in each
pixel. However, these data remain at fairly coarse scale and many epidemiological or environmental science
applications would make better use of data where the distribution and size of farms are predicted rather than the
number of animals per pixel. Based on detailed 2010 census data, we investigated the spatial point pattern
distribution of extensive and intensive chicken farms in Thailand. We parameterized point pattern simulation
models for extensive and intensive chicken farms and evaluated these models in different parts of Thailand for
their capacity to reproduce the correct level of spatial clustering and the most likely locations of the farm
clusters. We found that both the level of clustering and location of clusters could be simulated with reasonable
accuracy by our farm distribution models. Furthermore, intensive chicken farms tended to be much more
clustered than extensive farms, and their locations less easily predicted using simple spatial factors such as
human populations. These point-pattern simulation models could be used to downscale coarse administrative
level livestock census data into farm locations. This methodology could be of particular value in countries where
farm location data are unavailable.

1. Introduction

Following demographic and economic development, the per capita
consumption of animal-source food has increased continuously over the
past few decades, with significant consequences for livestock produc-
tion (Delgado, 1999; Slingenbergh et al., 2013; Steinfeld, 2004). The
growth in demand for animal products, mainly meat, eggs and milk,
was met primarily through intensification of livestock production,
which was particularly marked for monogastric species such as poultry
and pigs (Gilbert et al., 2015; Smil, 2002). Interest in good spatial data

on livestock distribution has grown along intensification and the
growing importance of livestock as a food and income source, as well as
a source of environmental and sanitary issues (Burdett et al., 2015;
Martin et al., 2015; Steinfeld et al., 2006). Several challenges exist in
relation to the production of such maps, among which the level of in-
tensification and the available source data stand out.

In most high-income countries, detailed farm registers exist, but are
often distributed in aggregated form to protect privacy. In low and
middle-income countries, registers rarely exist and the most accurate
data sets are produced through agricultural censuses, the detail of
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which varies considerably across countries (Robinson et al., 2014; Wint
et al., 2007). Both situations, from data-rich or -poor countries, may
lead to livestock statistics being only available at coarse spatial scales
insufficient for detailed analyses. To increase the spatial detail of coarse
livestock data, previous studies on livestock distribution mapping de-
veloped spatial statistical algorithms linking densities to environmental
variables to downscale census data from administrative boundaries to
density estimates at the pixel level. This represents livestock densities
varying gradually across pixels, as in databases such as the Gridded
Livestock of the World (GLW) version 1 (Wint et al., 2007), version 2
(Robinson et al., 2014) and version 3 (Gilbert et al., 2018). Other au-
thors have applied similar approaches to map livestock at country or
continental scale (Neumann et al., 2009; Prosser et al., 2011; Van
Boeckel et al., 2011).

In addition to a lack of spatial detail, a distinction between intensive
and extensive production systems, is rarely made. Intensive systems
were defined as large-scale commercial, market-oriented and high-
input farms and extensive systems as small-scale, low-input backyard
production systems (Van Boeckel et al., 2012). However, this is an
important distinction in terms of their health and environmental im-
pacts (Van Boeckel et al., 2012; Gerber et al., 2013; Jones et al., 2013;
Gilbert et al., 2015). More specifically, intensification of pig and poultry
production comes with significant, among others, health impacts
(Leibler et al., 2009; Mennerat et al., 2010; Pulliam et al., 2012; Jones
et al., 2013; Slingenbergh et al., 2013; Van Boeckel et al., 2014). Health
impacts, notably through pathogen emergence and re-emergence, has a
potential global relevance, as illustrated by the threat of pandemic in-
fluenza (Leibler et al., 2009; Li et al., 2004; Monne et al., 2014). In-
tensified systems promote high densities of genetically similar in-
dividuals, which promotes pathogen amplification, selection of more
virulent pathogens and risk of pathogen spill-over (Jones et al., 2013).
Owing to their close interactions with humans, particularly in peri-
urban environments, and possible contacts with wild animals, intensive
production systems can also serve as an intermediate between wildlife
and human populations and as amplifier (Childs et al., 2007). Differ-
entiating between extensive and intensive systems, or simply knowing
where the largest farms are, is therefore particularly important in re-
gions where production is currently undergoing intensification, as the
distributions of extensive and intensive farms may have different spatial
patterns and may change rapidly through time. Thus far, few attempts
have been made to distinguish extensive from intensive production
systems. Gilbert et al. (2015) developed an approach to separate ex-
tensive from intensively raised animals in global chicken and pig maps
based on a simple mode using gross domestic product per capita. At the
country scale, Van Boeckel et al. (2012) observed a distinct bimodal
distribution in poultry farms in Thailand that could be used to distin-
guish extensive from intensive farms. They modelled extensive and
intensive poultry separately using a methodology similar to that of
GLW, and noted a relatively poor predictive accuracy for intensively-
raised chickens compared to extensive chickens using that approach.

Finally, a continuous surface, pixel-based model may not be the best
way to represent intensive farms. Indeed, intensification of poultry
production is such that a very large number of birds can be present in a
single location (e.g. typically> 100,000 birds can be found in a farm or
site), with very few in an adjacent pixel. A discrete spatial representa-
tion of individual farms as single point locations, with the number of
birds as an attribute, may thus represent intensive farms better than a
continuous surface image. Another issue with regards to modelling farm
locations instead of animal densities is that such models would better fit
the needs of mathematical models of livestock diseases (Martin et al.,
2015). Epidemic mathematical transmission models may be sensitive to
the spatial clustering, distribution, type and overall density of farms
(Reeves, 2012; Tildesley and Ryan, 2012), and mitigation measures of
disease transmission are in part based on the distance between farms.
Fine-scale maps of farm distribution, including farm position and level
of clustering, could thus make an important contribution to models that

can inform control strategies (Bruhn et al., 2012). While broad-scale
clusters of farms may be captured by aggregated data, the factors in-
fluencing farm distribution are poorly known at finer scales (Burdett
et al., 2015). In the presence of aggregated census data, the distribution
of individual farm locations have tended to be based on random allo-
cation of points, regardless of other geographic information (Tildesley
et al., 2010) or, in some cases, constrained by geographical information
contained in probability surfaces (Bruhn et al., 2012; Burdett et al.,
2015; Emelyanova et al., 2009; Tildesley and Ryan, 2012). However,
none of these methods have captured both the number of points and the
pairwise interaction between points (first and second order character-
istics) to predict the spatial clustering of farms as well as differences in
their broader distributions.

In this paper, we investigated the use of point-pattern models as a
way to predict the distribution of individual farms both in terms of
spatial clustering and in terms of dependency on external variables
influencing their presence. This approach may provide more realistic
representations of animal distribution at fine spatial scales than con-
tinuous pixel-based distributions, especially for species such as poultry
and pigs that may be raised in high numbers in single premises. Our
analyses focused on Thailand chicken farms, as an example of a middle-
income country where extensive production systems (backyard poultry
farms) coexist with intensive ones (large-scale chicken farms) (Van
Boeckel et al., 2012).

2. Methods

2.1. Data

A detailed census of poultry holders was conducted in 2010 by the
Department of Livestock Development (DLD), Bangkok, Thailand. The
census included the number of chickens per owner for all farms in
Thailand. The administrative levels in Thailand are province, district,
sub-district and village, the latter being the smallest. The three first
levels have defined boundaries, while villages are recorded by co-
ordinates, usually at the center of the main cluster of houses.

During the census, the coordinates of each poultry holder were not
collected. The coordinates of the village were subsequently linked to
each poultry holder. The census recorded 1,936,590 chicken owners in
a total of 62,091 villages. Henceforth, we will use the term ‘farm’ to
represent both smallholders, who may be a single family with a few
chickens, and large-scale farms having several thousand birds. Farms
with no chickens were removed from the dataset. A set of Voronoi
polygons (Okabe et al., 2000) was built from the village coordinates.
The median area of the Voronoi polygons was 4 km2, the mean area was
8 km2 (Supplementary Material (SM) – Fig. S 1). A mask excluding
permanent water bodies and the province and city of Bangkok was
applied. Individual farms were assigned a random coordinate within
their polygon excluding of masked areas. Our input data set thus did not
include the exact locations of farms, but an approximate location.
However, given the extent (whole of Thailand) and the resolution of our
predictors (1 km), we considered this loss of accuracy to have a negli-
gible effect on our results.

The distribution of chickens per farm showed a clear bimodal pat-
tern (Van Boeckel et al., 2012) and a threshold of 500 chickens per farm
was used to separate extensive small-scale producers from intensive
large-scale systems. This threshold maximized the correlation between
the quantiles of the intensive and extensive distributions of animals per
farm in the two groups and the quantiles of two normal distributions of
same mean and standard deviation. This resulted in two datasets of
1,930,003 extensive farms with a median number of 20 chickens per
farm, and 6587 intensive farms with a median number of 8000 chickens
per farm. In the absence of other information on the farm (size, inputs,
outputs, practices), we assumed flock size to be an acceptable proxy for
the classification in ‘extensive’ or ‘intensive’ holdings.

Spatial predictor variables were selected to be both generic and
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available in databases with a global extent (Table 1,Fig. 1) so that the
models and approaches followed in this study could be transferred to
data-poor countries. The predictor variables were previously identified
as having strong predictive capacity by Van Boeckel et al. (2012). The
logarithm (base 10) of human population density (Worldpop database,
http://www.worldpop.org.uk, Gaughan et al., 2013) was included as
farms are unlikely to be located either in city centres or in completely
remote areas. “Remoteness”, defined as the travel time to Bangkok and
to the closest provincial capital, accounted for differences in accessi-
bility to provincial or national markets through the road and railway
networks. This was computed from Nelson's accessibility which is based
on a cost-distance algorithm in unit of time. The weighted surface ac-
counts for transport networks, environment and political factors af-
fecting travel times (Nelson, 2008). Thus, it also helps identifying areas
less suitable for chicken farms. Tree cover or percentage of land covered
by forest was included as areas covered by dense and permanent forest
may also exclude poultry farming (Hansen et al., 2013). Cropland or
percentage of land covered by crops accounted for areas providing
access to grain for feed (Fritz et al., 2015).

2.2. Sample areas

The analysis was applied on squares samples of equal area sampling
the Thai territory (Fig. 2). This allowed keeping processing time rea-
sonable by dealing with a fraction of the very numerous chicken farms
in Thailand and also avoided computational difficulties at the complex
edges of the country. Creating sample areas also allowed to cross-va-
lidate model results. The size and location of the sample areas were
chosen to cover most of Thailand completely, to cover a sufficient
number of farms, and to include a diversity of predictor values and farm
densities. For intensive farms, Thailand was divided into square areas of
200×200 km, and we analysed only the 11 sample areas with over 250

farms (Fig. 2a). For extensive farms, 38 sample areas of 112×112 km,
each having at least half over Thailand, were used (Fig. 2b).

2.3. Descriptive analysis

The distribution of extensive and intensive farm locations was in-
vestigated using point pattern analysis. We used the stationary and non-
stationary Besag's L-function, a transformation of Ripley's K-function, to
define the spatial pattern of intensive and extensive farms between
three different broad types of point pattern: random, clustered and
regular. The random case referred to the completely spatial randomness
(CSR) or homogenous Poisson process model. The L-functions were
estimated by sample areas with Lest() and Linhom() functions from
spastat package in R.

Ripley's K-function is a summary statistic of a point process, defined
as the expected number of r-neighbours of a point of X divided by the
intensity λ, i.e.

=K r
λ

u uX( ) 1
[number of neighbours of | has a point at location ]�

for any r≥ 0 at any location u, where r is the radius, λ is the homo-
geneous intensity of points, X is the point process and u is any location.
This definition assumes that the process is stationary, which imply that
the intensity is constant and does not depend on the location (Baddeley
et al., 2015). The empirical K-function is a summary of the pairwise
distances of a point pattern, which allows point patterns with different
intensities to be compared, and the analysis of a pattern at different
scales, since the function is normalized by the intensity. The empirical
K-function is defined as
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Table 1
Predictor variables tested in our models.

Resolution (m) Units Reference

Human population density 1000 People per km2 Worldpop database
Remoteness 1000 Minute Nelson, 2008
Cropland 1000 Pixel % covered by crops Fritz et al., 2015
Tree cover 1000 Pixel % covered by forest Hansen et al., 2013

Fig. 1. Predictors values. Human population density (logarithm of human population density in heads per km2), Remoteness (travel time to province capital cities
in minute), Cropland (percent of pixel covered by crops) and Tree cover (percent of pixel covered by forest).
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where a is the study area, n is the total number of points in a, the sum is
taken over all ordered pairs of distinct points i and j, d[i, j] is the dis-
tance between two points and I(d[i, j]≤ r) is the indicator that equals 1
if the distance is less than or equal to r. The term e[i, j] is the edge
correction weight, which was discarded as the number of points con-
sidered in both datasets was very large. By using

−
a

n n( 1)
, it assumes that

the process is stationary. An observed point pattern is considered as
clustered, random or regular depending on whether its empirical K-
function is respectively higher than, close to or lower than the K-
function of a CSR, i.e. the curve of equation y= πr2. In the case of a
non-stationary process, a generalisation of the later should be used, the
inhomogeneous K-function. This generalisation assumes that X is a
point process with a non-constant intensity λ(u) at each location u, i.e.
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where A is a constant denominator, and d[i, j] is the distance between
points xi and xj (Baddeley et al., 2000). Besag's L-function =L r( ) K r

π
( )

is a transformation of the K-function for which a CSR is a straight line
Lrandom(r)= r when L(r) is plotted against r.

2.4. Point pattern simulation

2.4.1. Model choice
To predict the spatial distribution of intensive and extensive farms

as points, the Log-Gaussian Cox Processes (LGCP) model was used
(Møller et al., 1998), with the Palm maximum likelihood method of

Fig. 2. Sample areas defined for the study (a) 11 sample areas of 200 km length side defined for the intensive dataset (b) 38 sample areas of 112 km length side
defined for the extensive dataset.
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Fig. 3. Descriptive analysis of intensive and extensive farms datasets using stationary and non-stationary L-functions. Each dashed line represents the
empirical L-function, L(r), estimated from the observed point pattern from each sample area, and r is the radius in meters. Comparing the empirical L-functions of a
point pattern with the theoretical L-function of a completely spatial randomness (CSR) enables to determine if a pattern is clustered, random or regular, with L-
functions higher than, close to or lower than the CSR case, respectively. Dashed grey line: stationary empirical L-function, Lhom(r), for each sample area; dashed blue
lines: non-stationary empirical L-function, Linhom(r), for each sample area; black line: theoretical L-function, Lpoisson(r), of a CSR. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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parameter optimisation (Baddeley et al., 2015; Tanaka et al., 2008).
The Palm maximum likelihood method provides almost the same re-
sults as the minimum contrast method and our study may be done with
both of these algorithm (Baddeley et al., 2015).

We compared the five processes modelling clustered point patterns;
the Matérn cluster process, the Thomas process, the Cauchy cluster
process, the Variance gamma cluster process and the LGCP with ex-
ponential covariance function (SM-Fig. S 2) (Baddeley et al., 2015).
These models were fitted on one sample area of 200 km length in
Thailand using the intensive dataset, including covariates with the
command line kppm(X, ~ Hpop + Crop + Tree + Remot + I(Hpop^2)+
I(Crop^2) + I(Tree^2) + I(Remot^2), clusters = c("Thomas","Mat-
Clust","Cauchy","VarGamma","LGCP")) using the kppm() function from
spatstat package in R (all other arguments had default settings). The
covariates were selected based on the Akaike Information Criterion
(AIC) as below. We assessed how these different models were able to
reproduce the clustering of the observed point pattern by using the two-
sided global rank envelope test. The hypothesis tested by the rank en-
velope test is that the model tested can explain the process from which
the observed point pattern originates. The test provides a p-value and a
graphical representation of the envelope. The p-value decreases when
the empirical L-function goes out of the global rank envelope. It was
implemented based on extreme rank lengths with the

global_rank_envelope() function from GET package in R (Mrkvička et al.,
2017; Myllymäki et al., 2017) for 100,000 simulations of each model.
The extreme rank lengths type was selected because it allowed to run
fewer simulations (Mrkvička et al., 2016; Myllymäki et al., 2017). The
conclusion of the extreme rank envelope test was that the LGCP per-
formed best. It had by far the highest p-value, 5.40e-02, compared to
the other models with a p-value of 2.80e-04, 2.40e-04, 1.08e-03, 6.48e-
03, for the Matern, Thomas, Variance Gamma, Cauchy models, re-
spectively (SM – Fig. S 3). Hence, LGCP was used for all subsequent
modelling of clustered point patterns.

2.4.2. Model fitting and validation
Four different types of model were built and compared: (i) “CSR”: a

completely spatial randomness (CSR) or homogenous Poisson process
model, which randomly distributed farms; (ii) “iCSR”: inhomogeneous
Poisson process model, a CSR in which the average density of points is
spatially varying. The average density is an intensity function λ(u) of
spatial location u. In our model, the intensity was modelled as
λ= exp (covariates); (iii) “LGCP”: a LGCP model with a homogeneous
intensity (without any covariates) with an exponential covariance
function (Baddeley et al., 2015); and (iv) “iLGCP”: a LGCP model with
covariates predicting an inhomogeneous intensity and identifying
highly probable locations for clusters. iLGCP was defined with a cov-
ariate exponential function and a random intensity modelled as
λ= exp (covariates). For the later model, the AIC was used to select the
best combination of predictor variables:

= +AIC PL k edf2 log( ) ( )

where PL is the maximized Palm likelihood of the fitted model, and edf
the effective degrees of freedom of the model (Baddeley et al., 2015-
section 12.6.4; Tanaka et al., 2008). The AIC values of the models with
different combination of covariates were compared on the 11 areas for
the intensive farms dataset using the standardized difference with null
model AIC,

−AIC AIC
AIC

null model

null

i

where AICnull is the AIC of a LGCP model without covariates and
AICmodeli is the AIC of ith LGCP models with a set of variables. The model
showing the greatest (positive) difference with the AICnull model was
selected for both non-stationary models, the iCSR and the iLGCP. This
was implemented with the functions ppm() and kppm() from the R
package spatstat when the model was the CSR and LGCP, respectively.
The relative importance of each predictor variable was estimated as the
exponential of the coefficient value of a covariate multiplied by the
range of values of the covariate (Baddeley et al., 2015).

We aimed to evaluate the goodness-of-fit of our simulated patterns
in their capacity to reproduce both the level of clustering and the lo-
cation of clusters in comparison to the observed patterns. For each
sample area and type of model, and using the best-fit parameters, we

Fig. 4. Comparison of models with different combination of covariates
(human population density (Hpop), remoteness (Remot), cropland (Crop)
and tree cover (Tree)) with AIC standardized difference. The first model is
fitted with Hpop, the second model is fitted with Hpop + Remot, the third
model is fitted with Hpop + Remot + Crop, the fourth is fitted with Hpop +
Remot + Crop + Tree, for the four variables de square term is also added. Grey
lines represent values for each sample area of the intensive dataset and the
black line the average line.

Table 2
Proportions of sample areas with a significant p-value at different significance thresholds.

(a) Intensive dataset (b) Extensive dataset

Calibration Calibration
Significance threshold 0,001 0,01 0,05 0,1 Significance threshold 0,001 0,01 0,05 0,1
CSR 100 100 100 100 CSR 100 100 100 100
iCSR 91 100 100 100 iCSR 100 100 100 100
LGCP 0 27 64 73 LGCP 0 16 34 45
iLGCP 27 36 73 82 iLGCP 24 53 68 76

Validation Validation
Significance threshold 0,001 0,01 0,05 0,1 Significance threshold 0,001 0,01 0,05 0,1
CSR 100 100 100 100 CSR 100 100 100 100
iCSR 82 91 91 100 iCSR 100 100 100 100
LGCP 0 27 64 73 LGCP 50 68 79 79
iLGCP 45 64 73 73 iLGCP 79 89 92 95
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Fig. 5. The observed point pattern and examples of simulations produced by the four model types along with the global rank envelope test, for a sample
area for both intensive and extensive datasets. The four models were the completely spatial randomness (CSR), the CSR with covariates (iCSR), the Log-Gaussian
Cox process (LGCP) and the LGCP with covariates (iLGCP). In the global rank envelope test, with extreme rank lengths: dashed lines represent the 95% global
envelope with 8000 and 1500 simulations for intensive and extensive datasets, respectively; black line: the empirical L-function estimated from the observed point
pattern; and red points: the points of the empirical L-function which are outside the envelope. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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simulated 1500 and 8000 point patterns for extensive and intensive
datasets, respectively. The number of simulations was chosen to bal-
ance the stability of the p-value and computing time (SM – Fig. S 4). We
implemented the global rank envelope test again to quantify the simi-
larities in the level of clustering. This function allows a point pattern to
be characterised independently from the density of points, which en-
abled the comparison of the p-values across simulations and areas. We
then looked at the proportion of sample areas with significant p-values.
To evaluate the goodness-of-fit of the simulated patterns in terms of
location of the clusters, each sample area was further divided into 64
square quadrats. The correlation coefficient between the observed and
modelled number of farms per quadrat for each simulation was com-
puted. Quadrats intersecting the Thai border were removed when<
95% of their area was in Thailand. Quadrat size was chosen to have a
sufficient number of quadrats and of points per quadrat to produce a
meaningful correlation coefficient (SM - Fig. S 5). In addition to
goodness-of-fit methods estimated for each model type (CSR, iCSR
LGCP and iLGCP) on the calibration area, we also estimated goodness-
of-fit methods (global rank envelope test and correlation coefficient) on

a different sample area from the model calibration area, henceforth
referred to as the validation area.

3. Results

Intensive farms were clustered, as assessed by the L-functions
(Fig. 3). Extensive farms were randomly distributed, L-function being
around the CSR case L-function. Empirical non-stationary L-functions
(L-inhom on Fig. 3) were closer to CSR case than the stationary L-
functions (L-hom on Fig. 3). All four spatial predictors and their
quadratic terms were included in the non-stationary models (iCSR and
iLGCP), following the comparison of AIC on the intensive farms dataset
(Fig. 4). This intensity function was defined as

= + + + +

+ + + +

λ u β β Hpop u β Remot u β Crop u β Tree u

β Hpop u β Remot u β Crop u β Tree (u)

( ) exp( ( ) ( ) ( ) ( )

( ) ( ) ( ) ),
0 1 2 3 4

5
2

6
2

7
2

8
2

with β0, β1… , β8 parameters to be estimates, Hpop the human popu-
lation density, Remot the remoteness, Crop the cropland and Tree the
tree cover.

Fig. 6. Correlation coefficient between the numbers of points per quadrat for all quadrats in observed and each simulated pattern for a) extensive and b)
intensive farms. The distribution of correlation coefficient values for all simulations (1500 and 8000 simulations for extensive and intensive datasets, respectively)
on each area is plotted for the four models (completely spatial randomness (CSR), the CSR with covariates (iCSR), the Log-Gaussian Cox process (LGCP) and the LGCP
with covariates (iLGCP)), for calibration and validations areas.

Fig. 7. Relative covariates importance of iLGCP
models by sample area with covariates for a) in-
tensive and b) extensive dataset. Logarithm of the
relative importance of each covariate and its quad-
ratic term: human population density (Hpop +
Hpop2), tree cover (Tree + Tree2), cropland (Crop +
Crop2) and the remoteness or accessibility (Remot +
Remot2).
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In terms of indicators of level of clustering (Table 2a and b), mea-
sured with the global rank envelope test, LGCP and iLGCP reproduced
the observed level of clustering better than the random models (CSR
and iCSR), having higher p-values in almost all sample areas from both
datasets. CSR and iCSR models were almost always highly significant
(p < 0.05), thus neither models explained the observed point patterns.
LGCP was more often the best model but did not explain the data in all
sample areas since their p-values were significant in some areas. In
sample areas where a model was not rejected, both LGCP and iLGCP
performed well for the intensive dataset. LGCP and iLGCP were sig-
nificant at 0.05 in 64% and 73% of cases for the calibration and the
validation. However, LGCP performed better than iLGCP in extensive
dataset. LGCP and iLGCP were significant at the p < 0.05 level on
extensive dataset, in 34% and 68% of cases for calibration and 79% and
92% of cases validation. However, the variance of LGCP models was
higher than iLGCP models. iLGCP models were then more easily re-
jected by the global rank envelope as seen with the width of the en-
velopes (Fig. 5).

In terms of location of clusters (Fig. 6a and b), the models with
covariates (iCSR and iLGCP) performed better than the models without
(CSR and LCGP). The two sets of metrics of the iCSR and iLGCP models
in the calibration and validation areas had significantly higher corre-
lation coefficients than the other models (CSR and LGCP), for both in-
tensive and extensive farm point patterns. This result was expected
since these models are inhomogeneous, having an intensity explained
by covariates. The medians of the correlation coefficients of iCSR and
iLGCP were generally higher for the extensive than for the intensive
dataset. However, correlation coefficients were slightly higher for iCSR
models compared to iLGCP models in both calibration and validation
area. The medians of the correlation coefficients of the different models

(CSR, iCSR, LGCP and iLGCP (calibration and validation)) were 0.008,
0.565, 0.004, 0.411, −0.006, 0.521, −0.002 and 0.356 for the in-
tensive dataset and 0.006, 0.752, 0.003, 0.631, 0.000, 0.711, 0.007 and
0.576 for the extensive dataset. Taking into account both indices, of the
level of clustering and the location of clusters, iLGCP performed the
best. We provided as an illustration a simulation produced by the four
model types (CSR, iCSR, LGCP and iLGCP) applied to a sample area
from intensive and extensive farms datasets and a plot of the observed
farm patterns (Fig. 5), along with the plot of the global rank envelope
test.

The coefficients of the different iLGCP model parameters for both
intensive and extensive datasets are presented in Fig. 8. Human popu-
lation density was by far the most important predictor of intensive and
extensive models on average, followed by tree cover, cropland and
remoteness (Fig. 7), and the relative importance of predictor variables
were similar for the intensive and extensive farms.

4. Discussion

In this paper, we explored the potential of point pattern simulation
models to reproduce real-world distribution of intensive and extensive
chicken farms. The implementation of these models allowed to produce
a set of discrete and realistic point locations. Our iLGCP models were
able to reproduce the level of clustering and the local density of farms
better than the other models. LGCP models reproduced the level of
clustering, but not the cluster location well, whereas iCSR located the
clusters well, but did not capture the level of clustering. Extensive farm
distribution was closer to a random distribution than intensive farms,
and these simulations benefitted less from using a LGCP. Conversely,
intensive farms were more clustered, so the LGCP models reproduced

Fig. 8. Boxplots of the coefficients from the different iLGCP model parameters fitted on each sample area (α, σ2 and β0, β1… β8). In LGCP models, the
covariance is defined as C0(r)= σ2 exp (r/α) where σ2 is the variance and α the scale parameter and the intensity function was defined as λ(u)= exp (β0+ β1Hpop
(u)+ β2Crop(u)+ β3Tree(u)+ β4Remot(u)+ β5Hpop2(u)+ β6Crop2(u)+ β7Tree2(u)+ β8Remot2(u)).

C. Chaiban, et al. Agricultural Systems 173 (2019) 335–344

342



these patterns much better than the random model, but the quality of
the prediction of local densities was lower.

Our result indicated clearly the need to account for clustering in the
distribution of intensive farms. Such clustering of farms may enable
farmers to benefit from economies of scale (Van Boeckel et al., 2012), or
facilitate operations for contract farming. Many farmers in Thailand
operate as contractors for large consolidator companies such as
Charoen Pokphand (CP). Farms directly owned by CP may also be
clustered. Also, as described by Feder et al. (1985), the adoption of
agricultural innovations in developing countries is affected by group
influences on individual behaviour. The presence of a well-established,
successful, intensive poultry farm may stimulate similar economic ac-
tivity nearby. The improved prediction of intensive farm locations by
including clustering thus makes sense.

More surprising was the dominance of human population density as
a predictor of intensive farms since broiler production in Thailand was
previously described as being mainly located around hatcheries, feed
mills and processing plants (Costales, 2004; NaRanong, 2007), but
these may themselves correlate to human population. The association
with human population density could relate to market access, and the
model typically placed intensive farms in areas with intermediate
human population density, such as in peri-urban areas. The establish-
ment of a chicken farm is thus constrained by a trade-off between
market access and the cost of land, which may become prohibitive in
more urbanized areas. Our results contrasted with the results of Van
Boeckel et al. (2012), who showed cropping factor had a stronger effect
than human population in their logistic regression models of presence/
absence of intensively raised chickens. This variable was not included
in our model since it was not available globally. Methodological dif-
ferences may also explain the lower effect of some factors. Van Boeckel
et al. (2012) analysed the entire extent of Thailand, whereas our models
were trained within much smaller spatial units. Further predictors may
be worth including, if available at the global level. Other accessibility
predictors, such as travel distance to ports where feed could be im-
ported, or where outputs could be exported may improve our predic-
tions. Another global predictor which could provide valuable in-
formation on access to service and markets is the location of settlement.

At the local scale, a degree of “random noise” in the location of
intensive farms is inevitable, which we did not expect to capture. The
initial establishment of an intensive farm may be influenced both by
fine-scale spatial factors (i.e. land availability, location suitability and
access to inputs and markets) and by individual farmer characteristics
(i.e. where they live, the locations of their other investments, their fa-
mily history and land ownership). Such factors would be difficult to
account for in models at the scale considered here. At the scale of the
variables used in our models, several sites may then seem equally sui-
table for setting up a farm, for example, by having an easy access to
markets and inputs such as feed. This does not interfere with our ob-
jective to depict a realistic distribution of farms.

The distribution of extensive farms was less clustered, and more
readily predicted by human population density. This fitted our ex-
pectations because extensively raised chickens are typically owned as
backyard poultry by rural populations (Van Boeckel et al., 2012).

The resolution of the sample areas should not influence our results,
since sample areas were chosen to optimise the variability of situations
encountered within Thailand in terms of predictor values and density of
farms. The reason why the variability of model performed in the dif-
ferent sample areas could be due to the range of predictor value which
differ from one area to another. An analysis on whole Thailand would
only deal with its geometry and the number of points in the extensive
dataset (leading to computation problems).

Our results indicate that a producing point-based distribution maps
of intensive and extensive flocks is feasible. To use this approach in
data-poor countries with a comparable farming system, an important
next step will be to validate the model in a different country, but with
similar environmental conditions, such as Vietnam, where detailed

census data exist. Eventually, it would be interesting to investigate how
the extensive and intensive models could predict the distribution of
farms according to different levels of intensification. One could imagine
high-income countries where 99% of the production is intensive to be
best predicted by the intensive model alone, and, conversely, that the
extensive model could be tested in low-income countries. In inter-
mediate situations, one could apply both models according to the
proportion of extensively raised poultry predicted at the national level
by Gilbert et al. (2015). To predict farm locations into these different
situations, LGCP models would be applied with the same parameters in
neighboring countries or in countries with similar agro-ecologies. Sev-
eral datasets would thus be required to predict farm distribution into
countries from different regions or environments. Further extension of
this work will lead to the development of entire farm allocation models,
where the total number of animals of an administrative unit could be
allocated to farms at locations predicted by the LGCP simulation model
in such a way to reproduce a given distribution of animals per farm.
While artificial-intelligence-based image processing may soon allow to
detect most intensified livestock raising infrastructure automatically, it
would not detect middle-size commercial poultry farms, which still
exists in large numbers in Thailand, and that can look like a normal
building. We believe that statistical approaches such as these still hold
value for different settings but also for hind- and forecasting of the
farming distribution.

Other types of livestock production may benefit from similar ap-
proaches. Pig farming, for example, is also disconnected from the land
and could be subject to similar spatial constraints linked to feed
availability and market access. In contrast, the distribution of grazing
ruminant farms may have very different spatial determinants. The de-
pendence on large areas for grazing may result in a more homogenous
spatial distribution (except for feedlot cattle). Land-use predictor vari-
ables such as rangeland or pastures may thus become more important
factors.

Middle- and low-income countries are those where this approach
bears the greatest value, in relation to the data scarcity some face, and
the co-existence, to varying degrees, of extensive and intensive pro-
duction. While in Brazil livestock data are available at fine scale, in
some other large livestock producing countries, such as China and
India, livestock data are only available at coarse resolution. These are
precisely where the impact of livestock diseases on livelihoods, animal
and human health are greatest (Childs et al., 2007) and where good
quality data may help with disease prevention. In high-income coun-
tries, where intensive production dominates, results like ours offer an
interesting substitute to the original data protected by privacy laws.

5. Conclusions

We developed farm distribution models using a point pattern
modelling method, which allowed the simulation of chicken farm dis-
tributions both in terms of spatial clustering and location of clusters.
The methods used here no longer predict livestock distribution as a
continuous variable but as a discrete variable (i.e. point locations),
which is better suited for situations in which animals are raised in very
large numbers in single premises. Upon validation in other countries,
this may facilitate several applications in epidemiology or environ-
mental science in countries where such detailed data are lacking, or
where livestock data are aggregated to protect privacy.
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